1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

""" 

The arraypad module contains a group of functions to pad values onto the edges 

of an n-dimensional array. 

 

""" 

from __future__ import division, absolute_import, print_function 

 

import numpy as np 

from numpy.core.overrides import array_function_dispatch 

 

 

__all__ = ['pad'] 

 

 

############################################################################### 

# Private utility functions. 

 

 

def _arange_ndarray(arr, shape, axis, reverse=False): 

""" 

Create an ndarray of `shape` with increments along specified `axis` 

 

Parameters 

---------- 

arr : ndarray 

Input array of arbitrary shape. 

shape : tuple of ints 

Shape of desired array. Should be equivalent to `arr.shape` except 

`shape[axis]` which may have any positive value. 

axis : int 

Axis to increment along. 

reverse : bool 

If False, increment in a positive fashion from 1 to `shape[axis]`, 

inclusive. If True, the bounds are the same but the order reversed. 

 

Returns 

------- 

padarr : ndarray 

Output array sized to pad `arr` along `axis`, with linear range from 

1 to `shape[axis]` along specified `axis`. 

 

Notes 

----- 

The range is deliberately 1-indexed for this specific use case. Think of 

this algorithm as broadcasting `np.arange` to a single `axis` of an 

arbitrarily shaped ndarray. 

 

""" 

initshape = tuple(1 if i != axis else shape[axis] 

for (i, x) in enumerate(arr.shape)) 

if not reverse: 

padarr = np.arange(1, shape[axis] + 1) 

else: 

padarr = np.arange(shape[axis], 0, -1) 

padarr = padarr.reshape(initshape) 

for i, dim in enumerate(shape): 

if padarr.shape[i] != dim: 

padarr = padarr.repeat(dim, axis=i) 

return padarr 

 

 

def _round_ifneeded(arr, dtype): 

""" 

Rounds arr inplace if destination dtype is integer. 

 

Parameters 

---------- 

arr : ndarray 

Input array. 

dtype : dtype 

The dtype of the destination array. 

 

""" 

if np.issubdtype(dtype, np.integer): 

arr.round(out=arr) 

 

 

def _slice_at_axis(shape, sl, axis): 

""" 

Construct a slice tuple the length of shape, with sl at the specified axis 

""" 

slice_tup = (slice(None),) 

return slice_tup * axis + (sl,) + slice_tup * (len(shape) - axis - 1) 

 

 

def _slice_first(shape, n, axis): 

""" Construct a slice tuple to take the first n elements along axis """ 

return _slice_at_axis(shape, slice(0, n), axis=axis) 

 

 

def _slice_last(shape, n, axis): 

""" Construct a slice tuple to take the last n elements along axis """ 

dim = shape[axis] # doing this explicitly makes n=0 work 

return _slice_at_axis(shape, slice(dim - n, dim), axis=axis) 

 

 

def _do_prepend(arr, pad_chunk, axis): 

return np.concatenate( 

(pad_chunk.astype(arr.dtype, copy=False), arr), axis=axis) 

 

 

def _do_append(arr, pad_chunk, axis): 

return np.concatenate( 

(arr, pad_chunk.astype(arr.dtype, copy=False)), axis=axis) 

 

 

def _prepend_const(arr, pad_amt, val, axis=-1): 

""" 

Prepend constant `val` along `axis` of `arr`. 

 

Parameters 

---------- 

arr : ndarray 

Input array of arbitrary shape. 

pad_amt : int 

Amount of padding to prepend. 

val : scalar 

Constant value to use. For best results should be of type `arr.dtype`; 

if not `arr.dtype` will be cast to `arr.dtype`. 

axis : int 

Axis along which to pad `arr`. 

 

Returns 

------- 

padarr : ndarray 

Output array, with `pad_amt` constant `val` prepended along `axis`. 

 

""" 

if pad_amt == 0: 

return arr 

padshape = tuple(x if i != axis else pad_amt 

for (i, x) in enumerate(arr.shape)) 

return _do_prepend(arr, np.full(padshape, val, dtype=arr.dtype), axis) 

 

 

def _append_const(arr, pad_amt, val, axis=-1): 

""" 

Append constant `val` along `axis` of `arr`. 

 

Parameters 

---------- 

arr : ndarray 

Input array of arbitrary shape. 

pad_amt : int 

Amount of padding to append. 

val : scalar 

Constant value to use. For best results should be of type `arr.dtype`; 

if not `arr.dtype` will be cast to `arr.dtype`. 

axis : int 

Axis along which to pad `arr`. 

 

Returns 

------- 

padarr : ndarray 

Output array, with `pad_amt` constant `val` appended along `axis`. 

 

""" 

if pad_amt == 0: 

return arr 

padshape = tuple(x if i != axis else pad_amt 

for (i, x) in enumerate(arr.shape)) 

return _do_append(arr, np.full(padshape, val, dtype=arr.dtype), axis) 

 

 

 

def _prepend_edge(arr, pad_amt, axis=-1): 

""" 

Prepend `pad_amt` to `arr` along `axis` by extending edge values. 

 

Parameters 

---------- 

arr : ndarray 

Input array of arbitrary shape. 

pad_amt : int 

Amount of padding to prepend. 

axis : int 

Axis along which to pad `arr`. 

 

Returns 

------- 

padarr : ndarray 

Output array, extended by `pad_amt` edge values appended along `axis`. 

 

""" 

if pad_amt == 0: 

return arr 

 

edge_slice = _slice_first(arr.shape, 1, axis=axis) 

edge_arr = arr[edge_slice] 

return _do_prepend(arr, edge_arr.repeat(pad_amt, axis=axis), axis) 

 

 

def _append_edge(arr, pad_amt, axis=-1): 

""" 

Append `pad_amt` to `arr` along `axis` by extending edge values. 

 

Parameters 

---------- 

arr : ndarray 

Input array of arbitrary shape. 

pad_amt : int 

Amount of padding to append. 

axis : int 

Axis along which to pad `arr`. 

 

Returns 

------- 

padarr : ndarray 

Output array, extended by `pad_amt` edge values prepended along 

`axis`. 

 

""" 

if pad_amt == 0: 

return arr 

 

edge_slice = _slice_last(arr.shape, 1, axis=axis) 

edge_arr = arr[edge_slice] 

return _do_append(arr, edge_arr.repeat(pad_amt, axis=axis), axis) 

 

 

def _prepend_ramp(arr, pad_amt, end, axis=-1): 

""" 

Prepend linear ramp along `axis`. 

 

Parameters 

---------- 

arr : ndarray 

Input array of arbitrary shape. 

pad_amt : int 

Amount of padding to prepend. 

end : scalar 

Constal value to use. For best results should be of type `arr.dtype`; 

if not `arr.dtype` will be cast to `arr.dtype`. 

axis : int 

Axis along which to pad `arr`. 

 

Returns 

------- 

padarr : ndarray 

Output array, with `pad_amt` values prepended along `axis`. The 

prepended region ramps linearly from the edge value to `end`. 

 

""" 

if pad_amt == 0: 

return arr 

 

# Generate shape for final concatenated array 

padshape = tuple(x if i != axis else pad_amt 

for (i, x) in enumerate(arr.shape)) 

 

# Generate an n-dimensional array incrementing along `axis` 

ramp_arr = _arange_ndarray(arr, padshape, axis, 

reverse=True).astype(np.float64) 

 

# Appropriate slicing to extract n-dimensional edge along `axis` 

edge_slice = _slice_first(arr.shape, 1, axis=axis) 

 

# Extract edge, and extend along `axis` 

edge_pad = arr[edge_slice].repeat(pad_amt, axis) 

 

# Linear ramp 

slope = (end - edge_pad) / float(pad_amt) 

ramp_arr = ramp_arr * slope 

ramp_arr += edge_pad 

_round_ifneeded(ramp_arr, arr.dtype) 

 

# Ramp values will most likely be float, cast them to the same type as arr 

return _do_prepend(arr, ramp_arr, axis) 

 

 

def _append_ramp(arr, pad_amt, end, axis=-1): 

""" 

Append linear ramp along `axis`. 

 

Parameters 

---------- 

arr : ndarray 

Input array of arbitrary shape. 

pad_amt : int 

Amount of padding to append. 

end : scalar 

Constal value to use. For best results should be of type `arr.dtype`; 

if not `arr.dtype` will be cast to `arr.dtype`. 

axis : int 

Axis along which to pad `arr`. 

 

Returns 

------- 

padarr : ndarray 

Output array, with `pad_amt` values appended along `axis`. The 

appended region ramps linearly from the edge value to `end`. 

 

""" 

if pad_amt == 0: 

return arr 

 

# Generate shape for final concatenated array 

padshape = tuple(x if i != axis else pad_amt 

for (i, x) in enumerate(arr.shape)) 

 

# Generate an n-dimensional array incrementing along `axis` 

ramp_arr = _arange_ndarray(arr, padshape, axis, 

reverse=False).astype(np.float64) 

 

# Slice a chunk from the edge to calculate stats on 

edge_slice = _slice_last(arr.shape, 1, axis=axis) 

 

# Extract edge, and extend along `axis` 

edge_pad = arr[edge_slice].repeat(pad_amt, axis) 

 

# Linear ramp 

slope = (end - edge_pad) / float(pad_amt) 

ramp_arr = ramp_arr * slope 

ramp_arr += edge_pad 

_round_ifneeded(ramp_arr, arr.dtype) 

 

# Ramp values will most likely be float, cast them to the same type as arr 

return _do_append(arr, ramp_arr, axis) 

 

 

def _prepend_max(arr, pad_amt, num, axis=-1): 

""" 

Prepend `pad_amt` maximum values along `axis`. 

 

Parameters 

---------- 

arr : ndarray 

Input array of arbitrary shape. 

pad_amt : int 

Amount of padding to prepend. 

num : int 

Depth into `arr` along `axis` to calculate maximum. 

Range: [1, `arr.shape[axis]`] or None (entire axis) 

axis : int 

Axis along which to pad `arr`. 

 

Returns 

------- 

padarr : ndarray 

Output array, with `pad_amt` values appended along `axis`. The 

prepended region is the maximum of the first `num` values along 

`axis`. 

 

""" 

if pad_amt == 0: 

return arr 

 

# Equivalent to edge padding for single value, so do that instead 

if num == 1: 

return _prepend_edge(arr, pad_amt, axis) 

 

# Use entire array if `num` is too large 

if num is not None: 

if num >= arr.shape[axis]: 

num = None 

 

# Slice a chunk from the edge to calculate stats on 

max_slice = _slice_first(arr.shape, num, axis=axis) 

 

# Extract slice, calculate max 

max_chunk = arr[max_slice].max(axis=axis, keepdims=True) 

 

# Concatenate `arr` with `max_chunk`, extended along `axis` by `pad_amt` 

return _do_prepend(arr, max_chunk.repeat(pad_amt, axis=axis), axis) 

 

 

def _append_max(arr, pad_amt, num, axis=-1): 

""" 

Pad one `axis` of `arr` with the maximum of the last `num` elements. 

 

Parameters 

---------- 

arr : ndarray 

Input array of arbitrary shape. 

pad_amt : int 

Amount of padding to append. 

num : int 

Depth into `arr` along `axis` to calculate maximum. 

Range: [1, `arr.shape[axis]`] or None (entire axis) 

axis : int 

Axis along which to pad `arr`. 

 

Returns 

------- 

padarr : ndarray 

Output array, with `pad_amt` values appended along `axis`. The 

appended region is the maximum of the final `num` values along `axis`. 

 

""" 

if pad_amt == 0: 

return arr 

 

# Equivalent to edge padding for single value, so do that instead 

if num == 1: 

return _append_edge(arr, pad_amt, axis) 

 

# Use entire array if `num` is too large 

if num is not None: 

if num >= arr.shape[axis]: 

num = None 

 

# Slice a chunk from the edge to calculate stats on 

if num is not None: 

max_slice = _slice_last(arr.shape, num, axis=axis) 

else: 

max_slice = tuple(slice(None) for x in arr.shape) 

 

# Extract slice, calculate max 

max_chunk = arr[max_slice].max(axis=axis, keepdims=True) 

 

# Concatenate `arr` with `max_chunk`, extended along `axis` by `pad_amt` 

return _do_append(arr, max_chunk.repeat(pad_amt, axis=axis), axis) 

 

 

def _prepend_mean(arr, pad_amt, num, axis=-1): 

""" 

Prepend `pad_amt` mean values along `axis`. 

 

Parameters 

---------- 

arr : ndarray 

Input array of arbitrary shape. 

pad_amt : int 

Amount of padding to prepend. 

num : int 

Depth into `arr` along `axis` to calculate mean. 

Range: [1, `arr.shape[axis]`] or None (entire axis) 

axis : int 

Axis along which to pad `arr`. 

 

Returns 

------- 

padarr : ndarray 

Output array, with `pad_amt` values prepended along `axis`. The 

prepended region is the mean of the first `num` values along `axis`. 

 

""" 

if pad_amt == 0: 

return arr 

 

# Equivalent to edge padding for single value, so do that instead 

if num == 1: 

return _prepend_edge(arr, pad_amt, axis) 

 

# Use entire array if `num` is too large 

if num is not None: 

if num >= arr.shape[axis]: 

num = None 

 

# Slice a chunk from the edge to calculate stats on 

mean_slice = _slice_first(arr.shape, num, axis=axis) 

 

# Extract slice, calculate mean 

mean_chunk = arr[mean_slice].mean(axis, keepdims=True) 

_round_ifneeded(mean_chunk, arr.dtype) 

 

# Concatenate `arr` with `mean_chunk`, extended along `axis` by `pad_amt` 

return _do_prepend(arr, mean_chunk.repeat(pad_amt, axis), axis=axis) 

 

 

def _append_mean(arr, pad_amt, num, axis=-1): 

""" 

Append `pad_amt` mean values along `axis`. 

 

Parameters 

---------- 

arr : ndarray 

Input array of arbitrary shape. 

pad_amt : int 

Amount of padding to append. 

num : int 

Depth into `arr` along `axis` to calculate mean. 

Range: [1, `arr.shape[axis]`] or None (entire axis) 

axis : int 

Axis along which to pad `arr`. 

 

Returns 

------- 

padarr : ndarray 

Output array, with `pad_amt` values appended along `axis`. The 

appended region is the maximum of the final `num` values along `axis`. 

 

""" 

if pad_amt == 0: 

return arr 

 

# Equivalent to edge padding for single value, so do that instead 

if num == 1: 

return _append_edge(arr, pad_amt, axis) 

 

# Use entire array if `num` is too large 

if num is not None: 

if num >= arr.shape[axis]: 

num = None 

 

# Slice a chunk from the edge to calculate stats on 

if num is not None: 

mean_slice = _slice_last(arr.shape, num, axis=axis) 

else: 

mean_slice = tuple(slice(None) for x in arr.shape) 

 

# Extract slice, calculate mean 

mean_chunk = arr[mean_slice].mean(axis=axis, keepdims=True) 

_round_ifneeded(mean_chunk, arr.dtype) 

 

# Concatenate `arr` with `mean_chunk`, extended along `axis` by `pad_amt` 

return _do_append(arr, mean_chunk.repeat(pad_amt, axis), axis=axis) 

 

 

def _prepend_med(arr, pad_amt, num, axis=-1): 

""" 

Prepend `pad_amt` median values along `axis`. 

 

Parameters 

---------- 

arr : ndarray 

Input array of arbitrary shape. 

pad_amt : int 

Amount of padding to prepend. 

num : int 

Depth into `arr` along `axis` to calculate median. 

Range: [1, `arr.shape[axis]`] or None (entire axis) 

axis : int 

Axis along which to pad `arr`. 

 

Returns 

------- 

padarr : ndarray 

Output array, with `pad_amt` values prepended along `axis`. The 

prepended region is the median of the first `num` values along `axis`. 

 

""" 

if pad_amt == 0: 

return arr 

 

# Equivalent to edge padding for single value, so do that instead 

if num == 1: 

return _prepend_edge(arr, pad_amt, axis) 

 

# Use entire array if `num` is too large 

if num is not None: 

if num >= arr.shape[axis]: 

num = None 

 

# Slice a chunk from the edge to calculate stats on 

med_slice = _slice_first(arr.shape, num, axis=axis) 

 

# Extract slice, calculate median 

med_chunk = np.median(arr[med_slice], axis=axis, keepdims=True) 

_round_ifneeded(med_chunk, arr.dtype) 

 

# Concatenate `arr` with `med_chunk`, extended along `axis` by `pad_amt` 

return _do_prepend(arr, med_chunk.repeat(pad_amt, axis), axis=axis) 

 

 

def _append_med(arr, pad_amt, num, axis=-1): 

""" 

Append `pad_amt` median values along `axis`. 

 

Parameters 

---------- 

arr : ndarray 

Input array of arbitrary shape. 

pad_amt : int 

Amount of padding to append. 

num : int 

Depth into `arr` along `axis` to calculate median. 

Range: [1, `arr.shape[axis]`] or None (entire axis) 

axis : int 

Axis along which to pad `arr`. 

 

Returns 

------- 

padarr : ndarray 

Output array, with `pad_amt` values appended along `axis`. The 

appended region is the median of the final `num` values along `axis`. 

 

""" 

if pad_amt == 0: 

return arr 

 

# Equivalent to edge padding for single value, so do that instead 

if num == 1: 

return _append_edge(arr, pad_amt, axis) 

 

# Use entire array if `num` is too large 

if num is not None: 

if num >= arr.shape[axis]: 

num = None 

 

# Slice a chunk from the edge to calculate stats on 

if num is not None: 

med_slice = _slice_last(arr.shape, num, axis=axis) 

else: 

med_slice = tuple(slice(None) for x in arr.shape) 

 

# Extract slice, calculate median 

med_chunk = np.median(arr[med_slice], axis=axis, keepdims=True) 

_round_ifneeded(med_chunk, arr.dtype) 

 

# Concatenate `arr` with `med_chunk`, extended along `axis` by `pad_amt` 

return _do_append(arr, med_chunk.repeat(pad_amt, axis), axis=axis) 

 

 

def _prepend_min(arr, pad_amt, num, axis=-1): 

""" 

Prepend `pad_amt` minimum values along `axis`. 

 

Parameters 

---------- 

arr : ndarray 

Input array of arbitrary shape. 

pad_amt : int 

Amount of padding to prepend. 

num : int 

Depth into `arr` along `axis` to calculate minimum. 

Range: [1, `arr.shape[axis]`] or None (entire axis) 

axis : int 

Axis along which to pad `arr`. 

 

Returns 

------- 

padarr : ndarray 

Output array, with `pad_amt` values prepended along `axis`. The 

prepended region is the minimum of the first `num` values along 

`axis`. 

 

""" 

if pad_amt == 0: 

return arr 

 

# Equivalent to edge padding for single value, so do that instead 

if num == 1: 

return _prepend_edge(arr, pad_amt, axis) 

 

# Use entire array if `num` is too large 

if num is not None: 

if num >= arr.shape[axis]: 

num = None 

 

# Slice a chunk from the edge to calculate stats on 

min_slice = _slice_first(arr.shape, num, axis=axis) 

 

# Extract slice, calculate min 

min_chunk = arr[min_slice].min(axis=axis, keepdims=True) 

 

# Concatenate `arr` with `min_chunk`, extended along `axis` by `pad_amt` 

return _do_prepend(arr, min_chunk.repeat(pad_amt, axis), axis=axis) 

 

 

def _append_min(arr, pad_amt, num, axis=-1): 

""" 

Append `pad_amt` median values along `axis`. 

 

Parameters 

---------- 

arr : ndarray 

Input array of arbitrary shape. 

pad_amt : int 

Amount of padding to append. 

num : int 

Depth into `arr` along `axis` to calculate minimum. 

Range: [1, `arr.shape[axis]`] or None (entire axis) 

axis : int 

Axis along which to pad `arr`. 

 

Returns 

------- 

padarr : ndarray 

Output array, with `pad_amt` values appended along `axis`. The 

appended region is the minimum of the final `num` values along `axis`. 

 

""" 

if pad_amt == 0: 

return arr 

 

# Equivalent to edge padding for single value, so do that instead 

if num == 1: 

return _append_edge(arr, pad_amt, axis) 

 

# Use entire array if `num` is too large 

if num is not None: 

if num >= arr.shape[axis]: 

num = None 

 

# Slice a chunk from the edge to calculate stats on 

if num is not None: 

min_slice = _slice_last(arr.shape, num, axis=axis) 

else: 

min_slice = tuple(slice(None) for x in arr.shape) 

 

# Extract slice, calculate min 

min_chunk = arr[min_slice].min(axis=axis, keepdims=True) 

 

# Concatenate `arr` with `min_chunk`, extended along `axis` by `pad_amt` 

return _do_append(arr, min_chunk.repeat(pad_amt, axis), axis=axis) 

 

 

def _pad_ref(arr, pad_amt, method, axis=-1): 

""" 

Pad `axis` of `arr` by reflection. 

 

Parameters 

---------- 

arr : ndarray 

Input array of arbitrary shape. 

pad_amt : tuple of ints, length 2 

Padding to (prepend, append) along `axis`. 

method : str 

Controls method of reflection; options are 'even' or 'odd'. 

axis : int 

Axis along which to pad `arr`. 

 

Returns 

------- 

padarr : ndarray 

Output array, with `pad_amt[0]` values prepended and `pad_amt[1]` 

values appended along `axis`. Both regions are padded with reflected 

values from the original array. 

 

Notes 

----- 

This algorithm does not pad with repetition, i.e. the edges are not 

repeated in the reflection. For that behavior, use `mode='symmetric'`. 

 

The modes 'reflect', 'symmetric', and 'wrap' must be padded with a 

single function, lest the indexing tricks in non-integer multiples of the 

original shape would violate repetition in the final iteration. 

 

""" 

# Implicit booleanness to test for zero (or None) in any scalar type 

if pad_amt[0] == 0 and pad_amt[1] == 0: 

return arr 

 

########################################################################## 

# Prepended region 

 

# Slice off a reverse indexed chunk from near edge to pad `arr` before 

ref_slice = _slice_at_axis(arr.shape, slice(pad_amt[0], 0, -1), axis=axis) 

 

ref_chunk1 = arr[ref_slice] 

 

# Memory/computationally more expensive, only do this if `method='odd'` 

if 'odd' in method and pad_amt[0] > 0: 

edge_slice1 = _slice_first(arr.shape, 1, axis=axis) 

edge_chunk = arr[edge_slice1] 

ref_chunk1 = 2 * edge_chunk - ref_chunk1 

del edge_chunk 

 

########################################################################## 

# Appended region 

 

# Slice off a reverse indexed chunk from far edge to pad `arr` after 

start = arr.shape[axis] - pad_amt[1] - 1 

end = arr.shape[axis] - 1 

ref_slice = _slice_at_axis(arr.shape, slice(start, end), axis=axis) 

rev_idx = _slice_at_axis(arr.shape, slice(None, None, -1), axis=axis) 

ref_chunk2 = arr[ref_slice][rev_idx] 

 

if 'odd' in method: 

edge_slice2 = _slice_last(arr.shape, 1, axis=axis) 

edge_chunk = arr[edge_slice2] 

ref_chunk2 = 2 * edge_chunk - ref_chunk2 

del edge_chunk 

 

# Concatenate `arr` with both chunks, extending along `axis` 

return np.concatenate((ref_chunk1, arr, ref_chunk2), axis=axis) 

 

 

def _pad_sym(arr, pad_amt, method, axis=-1): 

""" 

Pad `axis` of `arr` by symmetry. 

 

Parameters 

---------- 

arr : ndarray 

Input array of arbitrary shape. 

pad_amt : tuple of ints, length 2 

Padding to (prepend, append) along `axis`. 

method : str 

Controls method of symmetry; options are 'even' or 'odd'. 

axis : int 

Axis along which to pad `arr`. 

 

Returns 

------- 

padarr : ndarray 

Output array, with `pad_amt[0]` values prepended and `pad_amt[1]` 

values appended along `axis`. Both regions are padded with symmetric 

values from the original array. 

 

Notes 

----- 

This algorithm DOES pad with repetition, i.e. the edges are repeated. 

For padding without repeated edges, use `mode='reflect'`. 

 

The modes 'reflect', 'symmetric', and 'wrap' must be padded with a 

single function, lest the indexing tricks in non-integer multiples of the 

original shape would violate repetition in the final iteration. 

 

""" 

# Implicit booleanness to test for zero (or None) in any scalar type 

if pad_amt[0] == 0 and pad_amt[1] == 0: 

return arr 

 

########################################################################## 

# Prepended region 

 

# Slice off a reverse indexed chunk from near edge to pad `arr` before 

sym_slice = _slice_first(arr.shape, pad_amt[0], axis=axis) 

rev_idx = _slice_at_axis(arr.shape, slice(None, None, -1), axis=axis) 

sym_chunk1 = arr[sym_slice][rev_idx] 

 

# Memory/computationally more expensive, only do this if `method='odd'` 

if 'odd' in method and pad_amt[0] > 0: 

edge_slice1 = _slice_first(arr.shape, 1, axis=axis) 

edge_chunk = arr[edge_slice1] 

sym_chunk1 = 2 * edge_chunk - sym_chunk1 

del edge_chunk 

 

########################################################################## 

# Appended region 

 

# Slice off a reverse indexed chunk from far edge to pad `arr` after 

sym_slice = _slice_last(arr.shape, pad_amt[1], axis=axis) 

sym_chunk2 = arr[sym_slice][rev_idx] 

 

if 'odd' in method: 

edge_slice2 = _slice_last(arr.shape, 1, axis=axis) 

edge_chunk = arr[edge_slice2] 

sym_chunk2 = 2 * edge_chunk - sym_chunk2 

del edge_chunk 

 

# Concatenate `arr` with both chunks, extending along `axis` 

return np.concatenate((sym_chunk1, arr, sym_chunk2), axis=axis) 

 

 

def _pad_wrap(arr, pad_amt, axis=-1): 

""" 

Pad `axis` of `arr` via wrapping. 

 

Parameters 

---------- 

arr : ndarray 

Input array of arbitrary shape. 

pad_amt : tuple of ints, length 2 

Padding to (prepend, append) along `axis`. 

axis : int 

Axis along which to pad `arr`. 

 

Returns 

------- 

padarr : ndarray 

Output array, with `pad_amt[0]` values prepended and `pad_amt[1]` 

values appended along `axis`. Both regions are padded wrapped values 

from the opposite end of `axis`. 

 

Notes 

----- 

This method of padding is also known as 'tile' or 'tiling'. 

 

The modes 'reflect', 'symmetric', and 'wrap' must be padded with a 

single function, lest the indexing tricks in non-integer multiples of the 

original shape would violate repetition in the final iteration. 

 

""" 

# Implicit booleanness to test for zero (or None) in any scalar type 

if pad_amt[0] == 0 and pad_amt[1] == 0: 

return arr 

 

########################################################################## 

# Prepended region 

 

# Slice off a reverse indexed chunk from near edge to pad `arr` before 

wrap_slice = _slice_last(arr.shape, pad_amt[0], axis=axis) 

wrap_chunk1 = arr[wrap_slice] 

 

########################################################################## 

# Appended region 

 

# Slice off a reverse indexed chunk from far edge to pad `arr` after 

wrap_slice = _slice_first(arr.shape, pad_amt[1], axis=axis) 

wrap_chunk2 = arr[wrap_slice] 

 

# Concatenate `arr` with both chunks, extending along `axis` 

return np.concatenate((wrap_chunk1, arr, wrap_chunk2), axis=axis) 

 

 

def _as_pairs(x, ndim, as_index=False): 

""" 

Broadcast `x` to an array with the shape (`ndim`, 2). 

 

A helper function for `pad` that prepares and validates arguments like 

`pad_width` for iteration in pairs. 

 

Parameters 

---------- 

x : {None, scalar, array-like} 

The object to broadcast to the shape (`ndim`, 2). 

ndim : int 

Number of pairs the broadcasted `x` will have. 

as_index : bool, optional 

If `x` is not None, try to round each element of `x` to an integer 

(dtype `np.intp`) and ensure every element is positive. 

 

Returns 

------- 

pairs : nested iterables, shape (`ndim`, 2) 

The broadcasted version of `x`. 

 

Raises 

------ 

ValueError 

If `as_index` is True and `x` contains negative elements. 

Or if `x` is not broadcastable to the shape (`ndim`, 2). 

""" 

if x is None: 

# Pass through None as a special case, otherwise np.round(x) fails 

# with an AttributeError 

return ((None, None),) * ndim 

 

x = np.array(x) 

if as_index: 

x = np.round(x).astype(np.intp, copy=False) 

 

if x.ndim < 3: 

# Optimization: Possibly use faster paths for cases where `x` has 

# only 1 or 2 elements. `np.broadcast_to` could handle these as well 

# but is currently slower 

 

if x.size == 1: 

# x was supplied as a single value 

x = x.ravel() # Ensure x[0] works for x.ndim == 0, 1, 2 

if as_index and x < 0: 

raise ValueError("index can't contain negative values") 

return ((x[0], x[0]),) * ndim 

 

if x.size == 2 and x.shape != (2, 1): 

# x was supplied with a single value for each side 

# but except case when each dimension has a single value 

# which should be broadcasted to a pair, 

# e.g. [[1], [2]] -> [[1, 1], [2, 2]] not [[1, 2], [1, 2]] 

x = x.ravel() # Ensure x[0], x[1] works 

if as_index and (x[0] < 0 or x[1] < 0): 

raise ValueError("index can't contain negative values") 

return ((x[0], x[1]),) * ndim 

 

if as_index and x.min() < 0: 

raise ValueError("index can't contain negative values") 

 

# Converting the array with `tolist` seems to improve performance 

# when iterating and indexing the result (see usage in `pad`) 

return np.broadcast_to(x, (ndim, 2)).tolist() 

 

 

############################################################################### 

# Public functions 

 

 

def _pad_dispatcher(array, pad_width, mode, **kwargs): 

return (array,) 

 

 

@array_function_dispatch(_pad_dispatcher, module='numpy') 

def pad(array, pad_width, mode, **kwargs): 

""" 

Pads an array. 

 

Parameters 

---------- 

array : array_like of rank N 

Input array 

pad_width : {sequence, array_like, int} 

Number of values padded to the edges of each axis. 

((before_1, after_1), ... (before_N, after_N)) unique pad widths 

for each axis. 

((before, after),) yields same before and after pad for each axis. 

(pad,) or int is a shortcut for before = after = pad width for all 

axes. 

mode : str or function 

One of the following string values or a user supplied function. 

 

'constant' 

Pads with a constant value. 

'edge' 

Pads with the edge values of array. 

'linear_ramp' 

Pads with the linear ramp between end_value and the 

array edge value. 

'maximum' 

Pads with the maximum value of all or part of the 

vector along each axis. 

'mean' 

Pads with the mean value of all or part of the 

vector along each axis. 

'median' 

Pads with the median value of all or part of the 

vector along each axis. 

'minimum' 

Pads with the minimum value of all or part of the 

vector along each axis. 

'reflect' 

Pads with the reflection of the vector mirrored on 

the first and last values of the vector along each 

axis. 

'symmetric' 

Pads with the reflection of the vector mirrored 

along the edge of the array. 

'wrap' 

Pads with the wrap of the vector along the axis. 

The first values are used to pad the end and the 

end values are used to pad the beginning. 

<function> 

Padding function, see Notes. 

stat_length : sequence or int, optional 

Used in 'maximum', 'mean', 'median', and 'minimum'. Number of 

values at edge of each axis used to calculate the statistic value. 

 

((before_1, after_1), ... (before_N, after_N)) unique statistic 

lengths for each axis. 

 

((before, after),) yields same before and after statistic lengths 

for each axis. 

 

(stat_length,) or int is a shortcut for before = after = statistic 

length for all axes. 

 

Default is ``None``, to use the entire axis. 

constant_values : sequence or int, optional 

Used in 'constant'. The values to set the padded values for each 

axis. 

 

((before_1, after_1), ... (before_N, after_N)) unique pad constants 

for each axis. 

 

((before, after),) yields same before and after constants for each 

axis. 

 

(constant,) or int is a shortcut for before = after = constant for 

all axes. 

 

Default is 0. 

end_values : sequence or int, optional 

Used in 'linear_ramp'. The values used for the ending value of the 

linear_ramp and that will form the edge of the padded array. 

 

((before_1, after_1), ... (before_N, after_N)) unique end values 

for each axis. 

 

((before, after),) yields same before and after end values for each 

axis. 

 

(constant,) or int is a shortcut for before = after = end value for 

all axes. 

 

Default is 0. 

reflect_type : {'even', 'odd'}, optional 

Used in 'reflect', and 'symmetric'. The 'even' style is the 

default with an unaltered reflection around the edge value. For 

the 'odd' style, the extended part of the array is created by 

subtracting the reflected values from two times the edge value. 

 

Returns 

------- 

pad : ndarray 

Padded array of rank equal to `array` with shape increased 

according to `pad_width`. 

 

Notes 

----- 

.. versionadded:: 1.7.0 

 

For an array with rank greater than 1, some of the padding of later 

axes is calculated from padding of previous axes. This is easiest to 

think about with a rank 2 array where the corners of the padded array 

are calculated by using padded values from the first axis. 

 

The padding function, if used, should return a rank 1 array equal in 

length to the vector argument with padded values replaced. It has the 

following signature:: 

 

padding_func(vector, iaxis_pad_width, iaxis, kwargs) 

 

where 

 

vector : ndarray 

A rank 1 array already padded with zeros. Padded values are 

vector[:pad_tuple[0]] and vector[-pad_tuple[1]:]. 

iaxis_pad_width : tuple 

A 2-tuple of ints, iaxis_pad_width[0] represents the number of 

values padded at the beginning of vector where 

iaxis_pad_width[1] represents the number of values padded at 

the end of vector. 

iaxis : int 

The axis currently being calculated. 

kwargs : dict 

Any keyword arguments the function requires. 

 

Examples 

-------- 

>>> a = [1, 2, 3, 4, 5] 

>>> np.pad(a, (2,3), 'constant', constant_values=(4, 6)) 

array([4, 4, 1, 2, 3, 4, 5, 6, 6, 6]) 

 

>>> np.pad(a, (2, 3), 'edge') 

array([1, 1, 1, 2, 3, 4, 5, 5, 5, 5]) 

 

>>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4)) 

array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4]) 

 

>>> np.pad(a, (2,), 'maximum') 

array([5, 5, 1, 2, 3, 4, 5, 5, 5]) 

 

>>> np.pad(a, (2,), 'mean') 

array([3, 3, 1, 2, 3, 4, 5, 3, 3]) 

 

>>> np.pad(a, (2,), 'median') 

array([3, 3, 1, 2, 3, 4, 5, 3, 3]) 

 

>>> a = [[1, 2], [3, 4]] 

>>> np.pad(a, ((3, 2), (2, 3)), 'minimum') 

array([[1, 1, 1, 2, 1, 1, 1], 

[1, 1, 1, 2, 1, 1, 1], 

[1, 1, 1, 2, 1, 1, 1], 

[1, 1, 1, 2, 1, 1, 1], 

[3, 3, 3, 4, 3, 3, 3], 

[1, 1, 1, 2, 1, 1, 1], 

[1, 1, 1, 2, 1, 1, 1]]) 

 

>>> a = [1, 2, 3, 4, 5] 

>>> np.pad(a, (2, 3), 'reflect') 

array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2]) 

 

>>> np.pad(a, (2, 3), 'reflect', reflect_type='odd') 

array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8]) 

 

>>> np.pad(a, (2, 3), 'symmetric') 

array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3]) 

 

>>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd') 

array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7]) 

 

>>> np.pad(a, (2, 3), 'wrap') 

array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3]) 

 

>>> def pad_with(vector, pad_width, iaxis, kwargs): 

... pad_value = kwargs.get('padder', 10) 

... vector[:pad_width[0]] = pad_value 

... vector[-pad_width[1]:] = pad_value 

... return vector 

>>> a = np.arange(6) 

>>> a = a.reshape((2, 3)) 

>>> np.pad(a, 2, pad_with) 

array([[10, 10, 10, 10, 10, 10, 10], 

[10, 10, 10, 10, 10, 10, 10], 

[10, 10, 0, 1, 2, 10, 10], 

[10, 10, 3, 4, 5, 10, 10], 

[10, 10, 10, 10, 10, 10, 10], 

[10, 10, 10, 10, 10, 10, 10]]) 

>>> np.pad(a, 2, pad_with, padder=100) 

array([[100, 100, 100, 100, 100, 100, 100], 

[100, 100, 100, 100, 100, 100, 100], 

[100, 100, 0, 1, 2, 100, 100], 

[100, 100, 3, 4, 5, 100, 100], 

[100, 100, 100, 100, 100, 100, 100], 

[100, 100, 100, 100, 100, 100, 100]]) 

""" 

if not np.asarray(pad_width).dtype.kind == 'i': 

raise TypeError('`pad_width` must be of integral type.') 

 

narray = np.array(array) 

pad_width = _as_pairs(pad_width, narray.ndim, as_index=True) 

 

allowedkwargs = { 

'constant': ['constant_values'], 

'edge': [], 

'linear_ramp': ['end_values'], 

'maximum': ['stat_length'], 

'mean': ['stat_length'], 

'median': ['stat_length'], 

'minimum': ['stat_length'], 

'reflect': ['reflect_type'], 

'symmetric': ['reflect_type'], 

'wrap': [], 

} 

 

kwdefaults = { 

'stat_length': None, 

'constant_values': 0, 

'end_values': 0, 

'reflect_type': 'even', 

} 

 

if isinstance(mode, np.compat.basestring): 

# Make sure have allowed kwargs appropriate for mode 

for key in kwargs: 

if key not in allowedkwargs[mode]: 

raise ValueError('%s keyword not in allowed keywords %s' % 

(key, allowedkwargs[mode])) 

 

# Set kwarg defaults 

for kw in allowedkwargs[mode]: 

kwargs.setdefault(kw, kwdefaults[kw]) 

 

# Need to only normalize particular keywords. 

for i in kwargs: 

if i == 'stat_length': 

kwargs[i] = _as_pairs(kwargs[i], narray.ndim, as_index=True) 

if i in ['end_values', 'constant_values']: 

kwargs[i] = _as_pairs(kwargs[i], narray.ndim) 

else: 

# Drop back to old, slower np.apply_along_axis mode for user-supplied 

# vector function 

function = mode 

 

# Create a new padded array 

rank = list(range(narray.ndim)) 

total_dim_increase = [np.sum(pad_width[i]) for i in rank] 

offset_slices = tuple( 

slice(pad_width[i][0], pad_width[i][0] + narray.shape[i]) 

for i in rank) 

new_shape = np.array(narray.shape) + total_dim_increase 

newmat = np.zeros(new_shape, narray.dtype) 

 

# Insert the original array into the padded array 

newmat[offset_slices] = narray 

 

# This is the core of pad ... 

for iaxis in rank: 

np.apply_along_axis(function, 

iaxis, 

newmat, 

pad_width[iaxis], 

iaxis, 

kwargs) 

return newmat 

 

# If we get here, use new padding method 

newmat = narray.copy() 

 

# API preserved, but completely new algorithm which pads by building the 

# entire block to pad before/after `arr` with in one step, for each axis. 

if mode == 'constant': 

for axis, ((pad_before, pad_after), (before_val, after_val)) \ 

in enumerate(zip(pad_width, kwargs['constant_values'])): 

newmat = _prepend_const(newmat, pad_before, before_val, axis) 

newmat = _append_const(newmat, pad_after, after_val, axis) 

 

elif mode == 'edge': 

for axis, (pad_before, pad_after) in enumerate(pad_width): 

newmat = _prepend_edge(newmat, pad_before, axis) 

newmat = _append_edge(newmat, pad_after, axis) 

 

elif mode == 'linear_ramp': 

for axis, ((pad_before, pad_after), (before_val, after_val)) \ 

in enumerate(zip(pad_width, kwargs['end_values'])): 

newmat = _prepend_ramp(newmat, pad_before, before_val, axis) 

newmat = _append_ramp(newmat, pad_after, after_val, axis) 

 

elif mode == 'maximum': 

for axis, ((pad_before, pad_after), (chunk_before, chunk_after)) \ 

in enumerate(zip(pad_width, kwargs['stat_length'])): 

newmat = _prepend_max(newmat, pad_before, chunk_before, axis) 

newmat = _append_max(newmat, pad_after, chunk_after, axis) 

 

elif mode == 'mean': 

for axis, ((pad_before, pad_after), (chunk_before, chunk_after)) \ 

in enumerate(zip(pad_width, kwargs['stat_length'])): 

newmat = _prepend_mean(newmat, pad_before, chunk_before, axis) 

newmat = _append_mean(newmat, pad_after, chunk_after, axis) 

 

elif mode == 'median': 

for axis, ((pad_before, pad_after), (chunk_before, chunk_after)) \ 

in enumerate(zip(pad_width, kwargs['stat_length'])): 

newmat = _prepend_med(newmat, pad_before, chunk_before, axis) 

newmat = _append_med(newmat, pad_after, chunk_after, axis) 

 

elif mode == 'minimum': 

for axis, ((pad_before, pad_after), (chunk_before, chunk_after)) \ 

in enumerate(zip(pad_width, kwargs['stat_length'])): 

newmat = _prepend_min(newmat, pad_before, chunk_before, axis) 

newmat = _append_min(newmat, pad_after, chunk_after, axis) 

 

elif mode == 'reflect': 

for axis, (pad_before, pad_after) in enumerate(pad_width): 

if narray.shape[axis] == 0: 

# Axes with non-zero padding cannot be empty. 

if pad_before > 0 or pad_after > 0: 

raise ValueError("There aren't any elements to reflect" 

" in axis {} of `array`".format(axis)) 

# Skip zero padding on empty axes. 

continue 

 

# Recursive padding along any axis where `pad_amt` is too large 

# for indexing tricks. We can only safely pad the original axis 

# length, to keep the period of the reflections consistent. 

if ((pad_before > 0) or 

(pad_after > 0)) and newmat.shape[axis] == 1: 

# Extending singleton dimension for 'reflect' is legacy 

# behavior; it really should raise an error. 

newmat = _prepend_edge(newmat, pad_before, axis) 

newmat = _append_edge(newmat, pad_after, axis) 

continue 

 

method = kwargs['reflect_type'] 

safe_pad = newmat.shape[axis] - 1 

while ((pad_before > safe_pad) or (pad_after > safe_pad)): 

pad_iter_b = min(safe_pad, 

safe_pad * (pad_before // safe_pad)) 

pad_iter_a = min(safe_pad, safe_pad * (pad_after // safe_pad)) 

newmat = _pad_ref(newmat, (pad_iter_b, 

pad_iter_a), method, axis) 

pad_before -= pad_iter_b 

pad_after -= pad_iter_a 

safe_pad += pad_iter_b + pad_iter_a 

newmat = _pad_ref(newmat, (pad_before, pad_after), method, axis) 

 

elif mode == 'symmetric': 

for axis, (pad_before, pad_after) in enumerate(pad_width): 

# Recursive padding along any axis where `pad_amt` is too large 

# for indexing tricks. We can only safely pad the original axis 

# length, to keep the period of the reflections consistent. 

method = kwargs['reflect_type'] 

safe_pad = newmat.shape[axis] 

while ((pad_before > safe_pad) or 

(pad_after > safe_pad)): 

pad_iter_b = min(safe_pad, 

safe_pad * (pad_before // safe_pad)) 

pad_iter_a = min(safe_pad, safe_pad * (pad_after // safe_pad)) 

newmat = _pad_sym(newmat, (pad_iter_b, 

pad_iter_a), method, axis) 

pad_before -= pad_iter_b 

pad_after -= pad_iter_a 

safe_pad += pad_iter_b + pad_iter_a 

newmat = _pad_sym(newmat, (pad_before, pad_after), method, axis) 

 

elif mode == 'wrap': 

for axis, (pad_before, pad_after) in enumerate(pad_width): 

# Recursive padding along any axis where `pad_amt` is too large 

# for indexing tricks. We can only safely pad the original axis 

# length, to keep the period of the reflections consistent. 

safe_pad = newmat.shape[axis] 

while ((pad_before > safe_pad) or 

(pad_after > safe_pad)): 

pad_iter_b = min(safe_pad, 

safe_pad * (pad_before // safe_pad)) 

pad_iter_a = min(safe_pad, safe_pad * (pad_after // safe_pad)) 

newmat = _pad_wrap(newmat, (pad_iter_b, pad_iter_a), axis) 

 

pad_before -= pad_iter_b 

pad_after -= pad_iter_a 

safe_pad += pad_iter_b + pad_iter_a 

newmat = _pad_wrap(newmat, (pad_before, pad_after), axis) 

 

return newmat