1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

""" 

Set operations for arrays based on sorting. 

 

:Contains: 

unique, 

isin, 

ediff1d, 

intersect1d, 

setxor1d, 

in1d, 

union1d, 

setdiff1d 

 

:Notes: 

 

For floating point arrays, inaccurate results may appear due to usual round-off 

and floating point comparison issues. 

 

Speed could be gained in some operations by an implementation of 

sort(), that can provide directly the permutation vectors, avoiding 

thus calls to argsort(). 

 

To do: Optionally return indices analogously to unique for all functions. 

 

:Author: Robert Cimrman 

 

""" 

from __future__ import division, absolute_import, print_function 

 

import functools 

 

import numpy as np 

from numpy.core import overrides 

 

 

array_function_dispatch = functools.partial( 

overrides.array_function_dispatch, module='numpy') 

 

 

__all__ = [ 

'ediff1d', 'intersect1d', 'setxor1d', 'union1d', 'setdiff1d', 'unique', 

'in1d', 'isin' 

] 

 

 

def _ediff1d_dispatcher(ary, to_end=None, to_begin=None): 

return (ary, to_end, to_begin) 

 

 

@array_function_dispatch(_ediff1d_dispatcher) 

def ediff1d(ary, to_end=None, to_begin=None): 

""" 

The differences between consecutive elements of an array. 

 

Parameters 

---------- 

ary : array_like 

If necessary, will be flattened before the differences are taken. 

to_end : array_like, optional 

Number(s) to append at the end of the returned differences. 

to_begin : array_like, optional 

Number(s) to prepend at the beginning of the returned differences. 

 

Returns 

------- 

ediff1d : ndarray 

The differences. Loosely, this is ``ary.flat[1:] - ary.flat[:-1]``. 

 

See Also 

-------- 

diff, gradient 

 

Notes 

----- 

When applied to masked arrays, this function drops the mask information 

if the `to_begin` and/or `to_end` parameters are used. 

 

Examples 

-------- 

>>> x = np.array([1, 2, 4, 7, 0]) 

>>> np.ediff1d(x) 

array([ 1, 2, 3, -7]) 

 

>>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99])) 

array([-99, 1, 2, 3, -7, 88, 99]) 

 

The returned array is always 1D. 

 

>>> y = [[1, 2, 4], [1, 6, 24]] 

>>> np.ediff1d(y) 

array([ 1, 2, -3, 5, 18]) 

 

""" 

# force a 1d array 

ary = np.asanyarray(ary).ravel() 

 

# enforce propagation of the dtype of input 

# ary to returned result 

dtype_req = ary.dtype 

 

# fast track default case 

if to_begin is None and to_end is None: 

return ary[1:] - ary[:-1] 

 

if to_begin is None: 

l_begin = 0 

else: 

_to_begin = np.asanyarray(to_begin, dtype=dtype_req) 

if not np.all(_to_begin == to_begin): 

raise ValueError("cannot convert 'to_begin' to array with dtype " 

"'%r' as required for input ary" % dtype_req) 

to_begin = _to_begin.ravel() 

l_begin = len(to_begin) 

 

if to_end is None: 

l_end = 0 

else: 

_to_end = np.asanyarray(to_end, dtype=dtype_req) 

# check that casting has not overflowed 

if not np.all(_to_end == to_end): 

raise ValueError("cannot convert 'to_end' to array with dtype " 

"'%r' as required for input ary" % dtype_req) 

to_end = _to_end.ravel() 

l_end = len(to_end) 

 

# do the calculation in place and copy to_begin and to_end 

l_diff = max(len(ary) - 1, 0) 

result = np.empty(l_diff + l_begin + l_end, dtype=ary.dtype) 

result = ary.__array_wrap__(result) 

if l_begin > 0: 

result[:l_begin] = to_begin 

if l_end > 0: 

result[l_begin + l_diff:] = to_end 

np.subtract(ary[1:], ary[:-1], result[l_begin:l_begin + l_diff]) 

return result 

 

 

def _unpack_tuple(x): 

""" Unpacks one-element tuples for use as return values """ 

if len(x) == 1: 

return x[0] 

else: 

return x 

 

 

def _unique_dispatcher(ar, return_index=None, return_inverse=None, 

return_counts=None, axis=None): 

return (ar,) 

 

 

@array_function_dispatch(_unique_dispatcher) 

def unique(ar, return_index=False, return_inverse=False, 

return_counts=False, axis=None): 

""" 

Find the unique elements of an array. 

 

Returns the sorted unique elements of an array. There are three optional 

outputs in addition to the unique elements: 

 

* the indices of the input array that give the unique values 

* the indices of the unique array that reconstruct the input array 

* the number of times each unique value comes up in the input array 

 

Parameters 

---------- 

ar : array_like 

Input array. Unless `axis` is specified, this will be flattened if it 

is not already 1-D. 

return_index : bool, optional 

If True, also return the indices of `ar` (along the specified axis, 

if provided, or in the flattened array) that result in the unique array. 

return_inverse : bool, optional 

If True, also return the indices of the unique array (for the specified 

axis, if provided) that can be used to reconstruct `ar`. 

return_counts : bool, optional 

If True, also return the number of times each unique item appears 

in `ar`. 

 

.. versionadded:: 1.9.0 

 

axis : int or None, optional 

The axis to operate on. If None, `ar` will be flattened. If an integer, 

the subarrays indexed by the given axis will be flattened and treated 

as the elements of a 1-D array with the dimension of the given axis, 

see the notes for more details. Object arrays or structured arrays 

that contain objects are not supported if the `axis` kwarg is used. The 

default is None. 

 

.. versionadded:: 1.13.0 

 

Returns 

------- 

unique : ndarray 

The sorted unique values. 

unique_indices : ndarray, optional 

The indices of the first occurrences of the unique values in the 

original array. Only provided if `return_index` is True. 

unique_inverse : ndarray, optional 

The indices to reconstruct the original array from the 

unique array. Only provided if `return_inverse` is True. 

unique_counts : ndarray, optional 

The number of times each of the unique values comes up in the 

original array. Only provided if `return_counts` is True. 

 

.. versionadded:: 1.9.0 

 

See Also 

-------- 

numpy.lib.arraysetops : Module with a number of other functions for 

performing set operations on arrays. 

 

Notes 

----- 

When an axis is specified the subarrays indexed by the axis are sorted. 

This is done by making the specified axis the first dimension of the array 

and then flattening the subarrays in C order. The flattened subarrays are 

then viewed as a structured type with each element given a label, with the 

effect that we end up with a 1-D array of structured types that can be 

treated in the same way as any other 1-D array. The result is that the 

flattened subarrays are sorted in lexicographic order starting with the 

first element. 

 

Examples 

-------- 

>>> np.unique([1, 1, 2, 2, 3, 3]) 

array([1, 2, 3]) 

>>> a = np.array([[1, 1], [2, 3]]) 

>>> np.unique(a) 

array([1, 2, 3]) 

 

Return the unique rows of a 2D array 

 

>>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]]) 

>>> np.unique(a, axis=0) 

array([[1, 0, 0], [2, 3, 4]]) 

 

Return the indices of the original array that give the unique values: 

 

>>> a = np.array(['a', 'b', 'b', 'c', 'a']) 

>>> u, indices = np.unique(a, return_index=True) 

>>> u 

array(['a', 'b', 'c'], 

dtype='|S1') 

>>> indices 

array([0, 1, 3]) 

>>> a[indices] 

array(['a', 'b', 'c'], 

dtype='|S1') 

 

Reconstruct the input array from the unique values: 

 

>>> a = np.array([1, 2, 6, 4, 2, 3, 2]) 

>>> u, indices = np.unique(a, return_inverse=True) 

>>> u 

array([1, 2, 3, 4, 6]) 

>>> indices 

array([0, 1, 4, 3, 1, 2, 1]) 

>>> u[indices] 

array([1, 2, 6, 4, 2, 3, 2]) 

 

""" 

ar = np.asanyarray(ar) 

if axis is None: 

ret = _unique1d(ar, return_index, return_inverse, return_counts) 

return _unpack_tuple(ret) 

 

# axis was specified and not None 

try: 

ar = np.swapaxes(ar, axis, 0) 

except np.AxisError: 

# this removes the "axis1" or "axis2" prefix from the error message 

raise np.AxisError(axis, ar.ndim) 

 

# Must reshape to a contiguous 2D array for this to work... 

orig_shape, orig_dtype = ar.shape, ar.dtype 

ar = ar.reshape(orig_shape[0], -1) 

ar = np.ascontiguousarray(ar) 

dtype = [('f{i}'.format(i=i), ar.dtype) for i in range(ar.shape[1])] 

 

try: 

consolidated = ar.view(dtype) 

except TypeError: 

# There's no good way to do this for object arrays, etc... 

msg = 'The axis argument to unique is not supported for dtype {dt}' 

raise TypeError(msg.format(dt=ar.dtype)) 

 

def reshape_uniq(uniq): 

uniq = uniq.view(orig_dtype) 

uniq = uniq.reshape(-1, *orig_shape[1:]) 

uniq = np.swapaxes(uniq, 0, axis) 

return uniq 

 

output = _unique1d(consolidated, return_index, 

return_inverse, return_counts) 

output = (reshape_uniq(output[0]),) + output[1:] 

return _unpack_tuple(output) 

 

 

def _unique1d(ar, return_index=False, return_inverse=False, 

return_counts=False): 

""" 

Find the unique elements of an array, ignoring shape. 

""" 

ar = np.asanyarray(ar).flatten() 

 

optional_indices = return_index or return_inverse 

 

if optional_indices: 

perm = ar.argsort(kind='mergesort' if return_index else 'quicksort') 

aux = ar[perm] 

else: 

ar.sort() 

aux = ar 

mask = np.empty(aux.shape, dtype=np.bool_) 

mask[:1] = True 

mask[1:] = aux[1:] != aux[:-1] 

 

ret = (aux[mask],) 

if return_index: 

ret += (perm[mask],) 

if return_inverse: 

imask = np.cumsum(mask) - 1 

inv_idx = np.empty(mask.shape, dtype=np.intp) 

inv_idx[perm] = imask 

ret += (inv_idx,) 

if return_counts: 

idx = np.concatenate(np.nonzero(mask) + ([mask.size],)) 

ret += (np.diff(idx),) 

return ret 

 

 

def _intersect1d_dispatcher( 

ar1, ar2, assume_unique=None, return_indices=None): 

return (ar1, ar2) 

 

 

@array_function_dispatch(_intersect1d_dispatcher) 

def intersect1d(ar1, ar2, assume_unique=False, return_indices=False): 

""" 

Find the intersection of two arrays. 

 

Return the sorted, unique values that are in both of the input arrays. 

 

Parameters 

---------- 

ar1, ar2 : array_like 

Input arrays. Will be flattened if not already 1D. 

assume_unique : bool 

If True, the input arrays are both assumed to be unique, which 

can speed up the calculation. Default is False. 

return_indices : bool 

If True, the indices which correspond to the intersection of the two 

arrays are returned. The first instance of a value is used if there are 

multiple. Default is False. 

 

.. versionadded:: 1.15.0 

 

Returns 

------- 

intersect1d : ndarray 

Sorted 1D array of common and unique elements. 

comm1 : ndarray 

The indices of the first occurrences of the common values in `ar1`. 

Only provided if `return_indices` is True. 

comm2 : ndarray 

The indices of the first occurrences of the common values in `ar2`. 

Only provided if `return_indices` is True. 

 

 

See Also 

-------- 

numpy.lib.arraysetops : Module with a number of other functions for 

performing set operations on arrays. 

 

Examples 

-------- 

>>> np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1]) 

array([1, 3]) 

 

To intersect more than two arrays, use functools.reduce: 

 

>>> from functools import reduce 

>>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2])) 

array([3]) 

 

To return the indices of the values common to the input arrays 

along with the intersected values: 

>>> x = np.array([1, 1, 2, 3, 4]) 

>>> y = np.array([2, 1, 4, 6]) 

>>> xy, x_ind, y_ind = np.intersect1d(x, y, return_indices=True) 

>>> x_ind, y_ind 

(array([0, 2, 4]), array([1, 0, 2])) 

>>> xy, x[x_ind], y[y_ind] 

(array([1, 2, 4]), array([1, 2, 4]), array([1, 2, 4])) 

 

""" 

ar1 = np.asanyarray(ar1) 

ar2 = np.asanyarray(ar2) 

 

if not assume_unique: 

if return_indices: 

ar1, ind1 = unique(ar1, return_index=True) 

ar2, ind2 = unique(ar2, return_index=True) 

else: 

ar1 = unique(ar1) 

ar2 = unique(ar2) 

else: 

ar1 = ar1.ravel() 

ar2 = ar2.ravel() 

 

aux = np.concatenate((ar1, ar2)) 

if return_indices: 

aux_sort_indices = np.argsort(aux, kind='mergesort') 

aux = aux[aux_sort_indices] 

else: 

aux.sort() 

 

mask = aux[1:] == aux[:-1] 

int1d = aux[:-1][mask] 

 

if return_indices: 

ar1_indices = aux_sort_indices[:-1][mask] 

ar2_indices = aux_sort_indices[1:][mask] - ar1.size 

if not assume_unique: 

ar1_indices = ind1[ar1_indices] 

ar2_indices = ind2[ar2_indices] 

 

return int1d, ar1_indices, ar2_indices 

else: 

return int1d 

 

 

def _setxor1d_dispatcher(ar1, ar2, assume_unique=None): 

return (ar1, ar2) 

 

 

@array_function_dispatch(_setxor1d_dispatcher) 

def setxor1d(ar1, ar2, assume_unique=False): 

""" 

Find the set exclusive-or of two arrays. 

 

Return the sorted, unique values that are in only one (not both) of the 

input arrays. 

 

Parameters 

---------- 

ar1, ar2 : array_like 

Input arrays. 

assume_unique : bool 

If True, the input arrays are both assumed to be unique, which 

can speed up the calculation. Default is False. 

 

Returns 

------- 

setxor1d : ndarray 

Sorted 1D array of unique values that are in only one of the input 

arrays. 

 

Examples 

-------- 

>>> a = np.array([1, 2, 3, 2, 4]) 

>>> b = np.array([2, 3, 5, 7, 5]) 

>>> np.setxor1d(a,b) 

array([1, 4, 5, 7]) 

 

""" 

if not assume_unique: 

ar1 = unique(ar1) 

ar2 = unique(ar2) 

 

aux = np.concatenate((ar1, ar2)) 

if aux.size == 0: 

return aux 

 

aux.sort() 

flag = np.concatenate(([True], aux[1:] != aux[:-1], [True])) 

return aux[flag[1:] & flag[:-1]] 

 

 

def _in1d_dispatcher(ar1, ar2, assume_unique=None, invert=None): 

return (ar1, ar2) 

 

 

@array_function_dispatch(_in1d_dispatcher) 

def in1d(ar1, ar2, assume_unique=False, invert=False): 

""" 

Test whether each element of a 1-D array is also present in a second array. 

 

Returns a boolean array the same length as `ar1` that is True 

where an element of `ar1` is in `ar2` and False otherwise. 

 

We recommend using :func:`isin` instead of `in1d` for new code. 

 

Parameters 

---------- 

ar1 : (M,) array_like 

Input array. 

ar2 : array_like 

The values against which to test each value of `ar1`. 

assume_unique : bool, optional 

If True, the input arrays are both assumed to be unique, which 

can speed up the calculation. Default is False. 

invert : bool, optional 

If True, the values in the returned array are inverted (that is, 

False where an element of `ar1` is in `ar2` and True otherwise). 

Default is False. ``np.in1d(a, b, invert=True)`` is equivalent 

to (but is faster than) ``np.invert(in1d(a, b))``. 

 

.. versionadded:: 1.8.0 

 

Returns 

------- 

in1d : (M,) ndarray, bool 

The values `ar1[in1d]` are in `ar2`. 

 

See Also 

-------- 

isin : Version of this function that preserves the 

shape of ar1. 

numpy.lib.arraysetops : Module with a number of other functions for 

performing set operations on arrays. 

 

Notes 

----- 

`in1d` can be considered as an element-wise function version of the 

python keyword `in`, for 1-D sequences. ``in1d(a, b)`` is roughly 

equivalent to ``np.array([item in b for item in a])``. 

However, this idea fails if `ar2` is a set, or similar (non-sequence) 

container: As ``ar2`` is converted to an array, in those cases 

``asarray(ar2)`` is an object array rather than the expected array of 

contained values. 

 

.. versionadded:: 1.4.0 

 

Examples 

-------- 

>>> test = np.array([0, 1, 2, 5, 0]) 

>>> states = [0, 2] 

>>> mask = np.in1d(test, states) 

>>> mask 

array([ True, False, True, False, True]) 

>>> test[mask] 

array([0, 2, 0]) 

>>> mask = np.in1d(test, states, invert=True) 

>>> mask 

array([False, True, False, True, False]) 

>>> test[mask] 

array([1, 5]) 

""" 

# Ravel both arrays, behavior for the first array could be different 

ar1 = np.asarray(ar1).ravel() 

ar2 = np.asarray(ar2).ravel() 

 

# Check if one of the arrays may contain arbitrary objects 

contains_object = ar1.dtype.hasobject or ar2.dtype.hasobject 

 

# This code is run when 

# a) the first condition is true, making the code significantly faster 

# b) the second condition is true (i.e. `ar1` or `ar2` may contain 

# arbitrary objects), since then sorting is not guaranteed to work 

if len(ar2) < 10 * len(ar1) ** 0.145 or contains_object: 

if invert: 

mask = np.ones(len(ar1), dtype=bool) 

for a in ar2: 

mask &= (ar1 != a) 

else: 

mask = np.zeros(len(ar1), dtype=bool) 

for a in ar2: 

mask |= (ar1 == a) 

return mask 

 

# Otherwise use sorting 

if not assume_unique: 

ar1, rev_idx = np.unique(ar1, return_inverse=True) 

ar2 = np.unique(ar2) 

 

ar = np.concatenate((ar1, ar2)) 

# We need this to be a stable sort, so always use 'mergesort' 

# here. The values from the first array should always come before 

# the values from the second array. 

order = ar.argsort(kind='mergesort') 

sar = ar[order] 

if invert: 

bool_ar = (sar[1:] != sar[:-1]) 

else: 

bool_ar = (sar[1:] == sar[:-1]) 

flag = np.concatenate((bool_ar, [invert])) 

ret = np.empty(ar.shape, dtype=bool) 

ret[order] = flag 

 

if assume_unique: 

return ret[:len(ar1)] 

else: 

return ret[rev_idx] 

 

 

def _isin_dispatcher(element, test_elements, assume_unique=None, invert=None): 

return (element, test_elements) 

 

 

@array_function_dispatch(_isin_dispatcher) 

def isin(element, test_elements, assume_unique=False, invert=False): 

""" 

Calculates `element in test_elements`, broadcasting over `element` only. 

Returns a boolean array of the same shape as `element` that is True 

where an element of `element` is in `test_elements` and False otherwise. 

 

Parameters 

---------- 

element : array_like 

Input array. 

test_elements : array_like 

The values against which to test each value of `element`. 

This argument is flattened if it is an array or array_like. 

See notes for behavior with non-array-like parameters. 

assume_unique : bool, optional 

If True, the input arrays are both assumed to be unique, which 

can speed up the calculation. Default is False. 

invert : bool, optional 

If True, the values in the returned array are inverted, as if 

calculating `element not in test_elements`. Default is False. 

``np.isin(a, b, invert=True)`` is equivalent to (but faster 

than) ``np.invert(np.isin(a, b))``. 

 

Returns 

------- 

isin : ndarray, bool 

Has the same shape as `element`. The values `element[isin]` 

are in `test_elements`. 

 

See Also 

-------- 

in1d : Flattened version of this function. 

numpy.lib.arraysetops : Module with a number of other functions for 

performing set operations on arrays. 

 

Notes 

----- 

 

`isin` is an element-wise function version of the python keyword `in`. 

``isin(a, b)`` is roughly equivalent to 

``np.array([item in b for item in a])`` if `a` and `b` are 1-D sequences. 

 

`element` and `test_elements` are converted to arrays if they are not 

already. If `test_elements` is a set (or other non-sequence collection) 

it will be converted to an object array with one element, rather than an 

array of the values contained in `test_elements`. This is a consequence 

of the `array` constructor's way of handling non-sequence collections. 

Converting the set to a list usually gives the desired behavior. 

 

.. versionadded:: 1.13.0 

 

Examples 

-------- 

>>> element = 2*np.arange(4).reshape((2, 2)) 

>>> element 

array([[0, 2], 

[4, 6]]) 

>>> test_elements = [1, 2, 4, 8] 

>>> mask = np.isin(element, test_elements) 

>>> mask 

array([[ False, True], 

[ True, False]]) 

>>> element[mask] 

array([2, 4]) 

 

The indices of the matched values can be obtained with `nonzero`: 

 

>>> np.nonzero(mask) 

(array([0, 1]), array([1, 0])) 

 

The test can also be inverted: 

 

>>> mask = np.isin(element, test_elements, invert=True) 

>>> mask 

array([[ True, False], 

[ False, True]]) 

>>> element[mask] 

array([0, 6]) 

 

Because of how `array` handles sets, the following does not 

work as expected: 

 

>>> test_set = {1, 2, 4, 8} 

>>> np.isin(element, test_set) 

array([[ False, False], 

[ False, False]]) 

 

Casting the set to a list gives the expected result: 

 

>>> np.isin(element, list(test_set)) 

array([[ False, True], 

[ True, False]]) 

""" 

element = np.asarray(element) 

return in1d(element, test_elements, assume_unique=assume_unique, 

invert=invert).reshape(element.shape) 

 

 

def _union1d_dispatcher(ar1, ar2): 

return (ar1, ar2) 

 

 

@array_function_dispatch(_union1d_dispatcher) 

def union1d(ar1, ar2): 

""" 

Find the union of two arrays. 

 

Return the unique, sorted array of values that are in either of the two 

input arrays. 

 

Parameters 

---------- 

ar1, ar2 : array_like 

Input arrays. They are flattened if they are not already 1D. 

 

Returns 

------- 

union1d : ndarray 

Unique, sorted union of the input arrays. 

 

See Also 

-------- 

numpy.lib.arraysetops : Module with a number of other functions for 

performing set operations on arrays. 

 

Examples 

-------- 

>>> np.union1d([-1, 0, 1], [-2, 0, 2]) 

array([-2, -1, 0, 1, 2]) 

 

To find the union of more than two arrays, use functools.reduce: 

 

>>> from functools import reduce 

>>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2])) 

array([1, 2, 3, 4, 6]) 

""" 

return unique(np.concatenate((ar1, ar2), axis=None)) 

 

 

def _setdiff1d_dispatcher(ar1, ar2, assume_unique=None): 

return (ar1, ar2) 

 

 

@array_function_dispatch(_setdiff1d_dispatcher) 

def setdiff1d(ar1, ar2, assume_unique=False): 

""" 

Find the set difference of two arrays. 

 

Return the unique values in `ar1` that are not in `ar2`. 

 

Parameters 

---------- 

ar1 : array_like 

Input array. 

ar2 : array_like 

Input comparison array. 

assume_unique : bool 

If True, the input arrays are both assumed to be unique, which 

can speed up the calculation. Default is False. 

 

Returns 

------- 

setdiff1d : ndarray 

1D array of values in `ar1` that are not in `ar2`. The result 

is sorted when `assume_unique=False`, but otherwise only sorted 

if the input is sorted. 

 

See Also 

-------- 

numpy.lib.arraysetops : Module with a number of other functions for 

performing set operations on arrays. 

 

Examples 

-------- 

>>> a = np.array([1, 2, 3, 2, 4, 1]) 

>>> b = np.array([3, 4, 5, 6]) 

>>> np.setdiff1d(a, b) 

array([1, 2]) 

 

""" 

if assume_unique: 

ar1 = np.asarray(ar1).ravel() 

else: 

ar1 = unique(ar1) 

ar2 = unique(ar2) 

return ar1[in1d(ar1, ar2, assume_unique=True, invert=True)]