1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574

3575

3576

3577

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

3626

3627

3628

3629

3630

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

3655

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

3667

3668

3669

3670

3671

3672

3673

3674

3675

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

3701

3702

3703

3704

3705

3706

3707

3708

3709

3710

3711

3712

3713

3714

3715

3716

3717

3718

3719

3720

3721

3722

3723

3724

3725

3726

3727

3728

3729

3730

3731

3732

3733

3734

3735

3736

3737

3738

3739

3740

3741

3742

3743

3744

3745

3746

3747

3748

3749

3750

3751

3752

3753

3754

3755

3756

3757

3758

3759

3760

3761

3762

3763

3764

3765

3766

3767

3768

3769

3770

3771

3772

3773

3774

3775

3776

3777

3778

3779

3780

3781

3782

3783

3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

3796

3797

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3817

3818

3819

3820

3821

3822

3823

3824

3825

3826

3827

3828

3829

3830

3831

3832

3833

3834

3835

3836

3837

3838

3839

3840

3841

3842

3843

3844

3845

3846

3847

3848

3849

3850

3851

3852

3853

3854

3855

3856

3857

3858

3859

3860

3861

3862

3863

3864

3865

3866

3867

3868

3869

3870

3871

3872

3873

3874

3875

3876

3877

3878

3879

3880

3881

3882

3883

3884

3885

3886

3887

3888

3889

3890

3891

3892

3893

3894

3895

3896

3897

3898

3899

3900

3901

3902

3903

3904

3905

3906

3907

3908

3909

3910

3911

3912

3913

3914

3915

3916

3917

3918

3919

3920

3921

3922

3923

3924

3925

3926

3927

3928

3929

3930

3931

3932

3933

3934

3935

3936

3937

3938

3939

3940

3941

3942

3943

3944

3945

3946

3947

3948

3949

3950

3951

3952

3953

3954

3955

3956

3957

3958

3959

3960

3961

3962

3963

3964

3965

3966

3967

3968

3969

3970

3971

3972

3973

3974

3975

3976

3977

3978

3979

3980

3981

3982

3983

3984

3985

3986

3987

3988

3989

3990

3991

3992

3993

3994

3995

3996

3997

3998

3999

4000

4001

4002

4003

4004

4005

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015

4016

4017

4018

4019

4020

4021

4022

4023

4024

4025

4026

4027

4028

4029

4030

4031

4032

4033

4034

4035

4036

4037

4038

4039

4040

4041

4042

4043

4044

4045

4046

4047

4048

4049

4050

4051

4052

4053

4054

4055

4056

4057

4058

4059

4060

4061

4062

4063

4064

4065

4066

4067

4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

4080

4081

4082

4083

4084

4085

4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

4101

4102

4103

4104

4105

4106

4107

4108

4109

4110

4111

4112

4113

4114

4115

4116

4117

4118

4119

4120

4121

4122

4123

4124

4125

4126

4127

4128

4129

4130

4131

4132

4133

4134

4135

4136

4137

4138

4139

4140

4141

4142

4143

4144

4145

4146

4147

4148

4149

4150

4151

4152

4153

4154

4155

4156

4157

4158

4159

4160

4161

4162

4163

4164

4165

4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

4177

4178

4179

4180

4181

4182

4183

4184

4185

4186

4187

4188

4189

4190

4191

4192

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

4204

4205

4206

4207

4208

4209

4210

4211

4212

4213

4214

4215

4216

4217

4218

4219

4220

4221

4222

4223

4224

4225

4226

4227

4228

4229

4230

4231

4232

4233

4234

4235

4236

4237

4238

4239

4240

4241

4242

4243

4244

4245

4246

4247

4248

4249

4250

4251

4252

4253

4254

4255

4256

4257

4258

4259

4260

4261

4262

4263

4264

4265

4266

4267

4268

4269

4270

4271

4272

4273

4274

4275

4276

4277

4278

4279

4280

4281

4282

4283

4284

4285

4286

4287

4288

4289

4290

4291

4292

4293

4294

4295

4296

4297

4298

4299

4300

4301

4302

4303

4304

4305

4306

4307

4308

4309

4310

4311

4312

4313

4314

4315

4316

4317

4318

4319

4320

4321

4322

4323

4324

4325

4326

4327

4328

4329

4330

4331

4332

4333

4334

4335

4336

4337

4338

4339

4340

4341

4342

4343

4344

4345

4346

4347

4348

4349

4350

4351

4352

4353

4354

4355

4356

4357

4358

4359

4360

4361

4362

4363

4364

4365

4366

4367

4368

4369

4370

4371

4372

4373

4374

4375

4376

4377

4378

4379

4380

4381

4382

4383

4384

4385

4386

4387

4388

4389

4390

4391

4392

4393

4394

4395

4396

4397

4398

4399

4400

4401

4402

4403

4404

4405

4406

4407

4408

4409

4410

4411

4412

4413

4414

4415

4416

4417

4418

4419

4420

4421

4422

4423

4424

4425

4426

4427

4428

4429

4430

4431

4432

4433

4434

4435

4436

4437

4438

4439

4440

4441

4442

4443

4444

4445

4446

4447

4448

4449

4450

4451

4452

4453

4454

4455

4456

4457

4458

4459

4460

4461

4462

4463

4464

4465

4466

4467

4468

4469

4470

4471

4472

4473

4474

4475

4476

4477

4478

4479

4480

4481

4482

4483

4484

4485

4486

4487

4488

4489

4490

4491

4492

4493

4494

4495

4496

4497

4498

4499

4500

4501

4502

4503

4504

4505

4506

4507

4508

4509

4510

4511

4512

4513

4514

4515

4516

4517

4518

4519

4520

4521

4522

4523

4524

4525

4526

4527

4528

4529

4530

4531

4532

4533

4534

4535

4536

4537

4538

4539

4540

4541

4542

4543

4544

4545

4546

4547

4548

4549

4550

4551

4552

4553

4554

4555

4556

4557

4558

4559

4560

4561

4562

4563

4564

4565

4566

4567

4568

4569

4570

4571

4572

4573

4574

4575

4576

4577

4578

4579

4580

4581

4582

4583

4584

4585

4586

4587

4588

4589

4590

4591

4592

4593

4594

4595

4596

4597

4598

4599

4600

4601

4602

4603

4604

4605

4606

4607

4608

4609

4610

4611

4612

4613

4614

4615

4616

4617

4618

4619

4620

4621

4622

4623

4624

4625

4626

4627

4628

4629

4630

4631

4632

4633

4634

4635

4636

4637

4638

4639

4640

4641

4642

4643

4644

4645

4646

4647

4648

4649

4650

4651

4652

4653

4654

4655

4656

4657

4658

4659

4660

4661

4662

4663

4664

4665

4666

4667

4668

4669

4670

4671

4672

4673

4674

4675

4676

4677

4678

4679

4680

4681

4682

4683

4684

4685

4686

4687

4688

4689

4690

4691

4692

4693

4694

4695

4696

4697

4698

4699

4700

4701

4702

4703

4704

4705

4706

4707

4708

4709

4710

4711

4712

4713

4714

4715

4716

4717

4718

4719

4720

4721

4722

4723

4724

4725

4726

4727

4728

4729

4730

4731

4732

4733

4734

4735

4736

4737

4738

4739

4740

4741

4742

4743

4744

4745

4746

4747

4748

4749

4750

4751

4752

4753

4754

4755

4756

4757

4758

4759

4760

4761

4762

4763

4764

4765

4766

4767

4768

4769

4770

4771

4772

4773

4774

4775

4776

4777

4778

4779

4780

4781

4782

4783

4784

4785

4786

4787

4788

4789

4790

4791

4792

4793

4794

4795

4796

4797

4798

4799

4800

4801

4802

4803

4804

4805

4806

4807

4808

4809

from __future__ import division, absolute_import, print_function 

 

try: 

# Accessing collections abstact classes from collections 

# has been deprecated since Python 3.3 

import collections.abc as collections_abc 

except ImportError: 

import collections as collections_abc 

import functools 

import re 

import sys 

import warnings 

 

import numpy as np 

import numpy.core.numeric as _nx 

from numpy.core import atleast_1d, transpose 

from numpy.core.numeric import ( 

ones, zeros, arange, concatenate, array, asarray, asanyarray, empty, 

empty_like, ndarray, around, floor, ceil, take, dot, where, intp, 

integer, isscalar, absolute 

) 

from numpy.core.umath import ( 

pi, add, arctan2, frompyfunc, cos, less_equal, sqrt, sin, 

mod, exp, not_equal, subtract 

) 

from numpy.core.fromnumeric import ( 

ravel, nonzero, partition, mean, any, sum 

) 

from numpy.core.numerictypes import typecodes 

from numpy.core.overrides import set_module 

from numpy.core import overrides 

from numpy.core.function_base import add_newdoc 

from numpy.lib.twodim_base import diag 

from .utils import deprecate 

from numpy.core.multiarray import ( 

_insert, add_docstring, bincount, normalize_axis_index, _monotonicity, 

interp as compiled_interp, interp_complex as compiled_interp_complex 

) 

from numpy.core.umath import _add_newdoc_ufunc as add_newdoc_ufunc 

from numpy.compat import long 

 

if sys.version_info[0] < 3: 

# Force range to be a generator, for np.delete's usage. 

range = xrange 

import __builtin__ as builtins 

else: 

import builtins 

 

 

array_function_dispatch = functools.partial( 

overrides.array_function_dispatch, module='numpy') 

 

 

# needed in this module for compatibility 

from numpy.lib.histograms import histogram, histogramdd 

 

__all__ = [ 

'select', 'piecewise', 'trim_zeros', 'copy', 'iterable', 'percentile', 

'diff', 'gradient', 'angle', 'unwrap', 'sort_complex', 'disp', 'flip', 

'rot90', 'extract', 'place', 'vectorize', 'asarray_chkfinite', 'average', 

'bincount', 'digitize', 'cov', 'corrcoef', 

'msort', 'median', 'sinc', 'hamming', 'hanning', 'bartlett', 

'blackman', 'kaiser', 'trapz', 'i0', 'add_newdoc', 'add_docstring', 

'meshgrid', 'delete', 'insert', 'append', 'interp', 'add_newdoc_ufunc', 

'quantile' 

] 

 

 

def _rot90_dispatcher(m, k=None, axes=None): 

return (m,) 

 

 

@array_function_dispatch(_rot90_dispatcher) 

def rot90(m, k=1, axes=(0,1)): 

""" 

Rotate an array by 90 degrees in the plane specified by axes. 

 

Rotation direction is from the first towards the second axis. 

 

Parameters 

---------- 

m : array_like 

Array of two or more dimensions. 

k : integer 

Number of times the array is rotated by 90 degrees. 

axes: (2,) array_like 

The array is rotated in the plane defined by the axes. 

Axes must be different. 

 

.. versionadded:: 1.12.0 

 

Returns 

------- 

y : ndarray 

A rotated view of `m`. 

 

See Also 

-------- 

flip : Reverse the order of elements in an array along the given axis. 

fliplr : Flip an array horizontally. 

flipud : Flip an array vertically. 

 

Notes 

----- 

rot90(m, k=1, axes=(1,0)) is the reverse of rot90(m, k=1, axes=(0,1)) 

rot90(m, k=1, axes=(1,0)) is equivalent to rot90(m, k=-1, axes=(0,1)) 

 

Examples 

-------- 

>>> m = np.array([[1,2],[3,4]], int) 

>>> m 

array([[1, 2], 

[3, 4]]) 

>>> np.rot90(m) 

array([[2, 4], 

[1, 3]]) 

>>> np.rot90(m, 2) 

array([[4, 3], 

[2, 1]]) 

>>> m = np.arange(8).reshape((2,2,2)) 

>>> np.rot90(m, 1, (1,2)) 

array([[[1, 3], 

[0, 2]], 

[[5, 7], 

[4, 6]]]) 

 

""" 

axes = tuple(axes) 

if len(axes) != 2: 

raise ValueError("len(axes) must be 2.") 

 

m = asanyarray(m) 

 

if axes[0] == axes[1] or absolute(axes[0] - axes[1]) == m.ndim: 

raise ValueError("Axes must be different.") 

 

if (axes[0] >= m.ndim or axes[0] < -m.ndim 

or axes[1] >= m.ndim or axes[1] < -m.ndim): 

raise ValueError("Axes={} out of range for array of ndim={}." 

.format(axes, m.ndim)) 

 

k %= 4 

 

if k == 0: 

return m[:] 

if k == 2: 

return flip(flip(m, axes[0]), axes[1]) 

 

axes_list = arange(0, m.ndim) 

(axes_list[axes[0]], axes_list[axes[1]]) = (axes_list[axes[1]], 

axes_list[axes[0]]) 

 

if k == 1: 

return transpose(flip(m,axes[1]), axes_list) 

else: 

# k == 3 

return flip(transpose(m, axes_list), axes[1]) 

 

 

def _flip_dispatcher(m, axis=None): 

return (m,) 

 

 

@array_function_dispatch(_flip_dispatcher) 

def flip(m, axis=None): 

""" 

Reverse the order of elements in an array along the given axis. 

 

The shape of the array is preserved, but the elements are reordered. 

 

.. versionadded:: 1.12.0 

 

Parameters 

---------- 

m : array_like 

Input array. 

axis : None or int or tuple of ints, optional 

Axis or axes along which to flip over. The default, 

axis=None, will flip over all of the axes of the input array. 

If axis is negative it counts from the last to the first axis. 

 

If axis is a tuple of ints, flipping is performed on all of the axes 

specified in the tuple. 

 

.. versionchanged:: 1.15.0 

None and tuples of axes are supported 

 

Returns 

------- 

out : array_like 

A view of `m` with the entries of axis reversed. Since a view is 

returned, this operation is done in constant time. 

 

See Also 

-------- 

flipud : Flip an array vertically (axis=0). 

fliplr : Flip an array horizontally (axis=1). 

 

Notes 

----- 

flip(m, 0) is equivalent to flipud(m). 

 

flip(m, 1) is equivalent to fliplr(m). 

 

flip(m, n) corresponds to ``m[...,::-1,...]`` with ``::-1`` at position n. 

 

flip(m) corresponds to ``m[::-1,::-1,...,::-1]`` with ``::-1`` at all 

positions. 

 

flip(m, (0, 1)) corresponds to ``m[::-1,::-1,...]`` with ``::-1`` at 

position 0 and position 1. 

 

Examples 

-------- 

>>> A = np.arange(8).reshape((2,2,2)) 

>>> A 

array([[[0, 1], 

[2, 3]], 

[[4, 5], 

[6, 7]]]) 

>>> flip(A, 0) 

array([[[4, 5], 

[6, 7]], 

[[0, 1], 

[2, 3]]]) 

>>> flip(A, 1) 

array([[[2, 3], 

[0, 1]], 

[[6, 7], 

[4, 5]]]) 

>>> np.flip(A) 

array([[[7, 6], 

[5, 4]], 

[[3, 2], 

[1, 0]]]) 

>>> np.flip(A, (0, 2)) 

array([[[5, 4], 

[7, 6]], 

[[1, 0], 

[3, 2]]]) 

>>> A = np.random.randn(3,4,5) 

>>> np.all(flip(A,2) == A[:,:,::-1,...]) 

True 

""" 

if not hasattr(m, 'ndim'): 

m = asarray(m) 

if axis is None: 

indexer = (np.s_[::-1],) * m.ndim 

else: 

axis = _nx.normalize_axis_tuple(axis, m.ndim) 

indexer = [np.s_[:]] * m.ndim 

for ax in axis: 

indexer[ax] = np.s_[::-1] 

indexer = tuple(indexer) 

return m[indexer] 

 

 

@set_module('numpy') 

def iterable(y): 

""" 

Check whether or not an object can be iterated over. 

 

Parameters 

---------- 

y : object 

Input object. 

 

Returns 

------- 

b : bool 

Return ``True`` if the object has an iterator method or is a 

sequence and ``False`` otherwise. 

 

 

Examples 

-------- 

>>> np.iterable([1, 2, 3]) 

True 

>>> np.iterable(2) 

False 

 

""" 

try: 

iter(y) 

except TypeError: 

return False 

return True 

 

 

def _average_dispatcher(a, axis=None, weights=None, returned=None): 

return (a, weights) 

 

 

@array_function_dispatch(_average_dispatcher) 

def average(a, axis=None, weights=None, returned=False): 

""" 

Compute the weighted average along the specified axis. 

 

Parameters 

---------- 

a : array_like 

Array containing data to be averaged. If `a` is not an array, a 

conversion is attempted. 

axis : None or int or tuple of ints, optional 

Axis or axes along which to average `a`. The default, 

axis=None, will average over all of the elements of the input array. 

If axis is negative it counts from the last to the first axis. 

 

.. versionadded:: 1.7.0 

 

If axis is a tuple of ints, averaging is performed on all of the axes 

specified in the tuple instead of a single axis or all the axes as 

before. 

weights : array_like, optional 

An array of weights associated with the values in `a`. Each value in 

`a` contributes to the average according to its associated weight. 

The weights array can either be 1-D (in which case its length must be 

the size of `a` along the given axis) or of the same shape as `a`. 

If `weights=None`, then all data in `a` are assumed to have a 

weight equal to one. 

returned : bool, optional 

Default is `False`. If `True`, the tuple (`average`, `sum_of_weights`) 

is returned, otherwise only the average is returned. 

If `weights=None`, `sum_of_weights` is equivalent to the number of 

elements over which the average is taken. 

 

 

Returns 

------- 

retval, [sum_of_weights] : array_type or double 

Return the average along the specified axis. When `returned` is `True`, 

return a tuple with the average as the first element and the sum 

of the weights as the second element. `sum_of_weights` is of the 

same type as `retval`. The result dtype follows a genereal pattern. 

If `weights` is None, the result dtype will be that of `a` , or ``float64`` 

if `a` is integral. Otherwise, if `weights` is not None and `a` is non- 

integral, the result type will be the type of lowest precision capable of 

representing values of both `a` and `weights`. If `a` happens to be 

integral, the previous rules still applies but the result dtype will 

at least be ``float64``. 

 

Raises 

------ 

ZeroDivisionError 

When all weights along axis are zero. See `numpy.ma.average` for a 

version robust to this type of error. 

TypeError 

When the length of 1D `weights` is not the same as the shape of `a` 

along axis. 

 

See Also 

-------- 

mean 

 

ma.average : average for masked arrays -- useful if your data contains 

"missing" values 

numpy.result_type : Returns the type that results from applying the 

numpy type promotion rules to the arguments. 

 

Examples 

-------- 

>>> data = range(1,5) 

>>> data 

[1, 2, 3, 4] 

>>> np.average(data) 

2.5 

>>> np.average(range(1,11), weights=range(10,0,-1)) 

4.0 

 

>>> data = np.arange(6).reshape((3,2)) 

>>> data 

array([[0, 1], 

[2, 3], 

[4, 5]]) 

>>> np.average(data, axis=1, weights=[1./4, 3./4]) 

array([ 0.75, 2.75, 4.75]) 

>>> np.average(data, weights=[1./4, 3./4]) 

 

Traceback (most recent call last): 

... 

TypeError: Axis must be specified when shapes of a and weights differ. 

 

>>> a = np.ones(5, dtype=np.float128) 

>>> w = np.ones(5, dtype=np.complex64) 

>>> avg = np.average(a, weights=w) 

>>> print(avg.dtype) 

complex256 

""" 

a = np.asanyarray(a) 

 

if weights is None: 

avg = a.mean(axis) 

scl = avg.dtype.type(a.size/avg.size) 

else: 

wgt = np.asanyarray(weights) 

 

if issubclass(a.dtype.type, (np.integer, np.bool_)): 

result_dtype = np.result_type(a.dtype, wgt.dtype, 'f8') 

else: 

result_dtype = np.result_type(a.dtype, wgt.dtype) 

 

# Sanity checks 

if a.shape != wgt.shape: 

if axis is None: 

raise TypeError( 

"Axis must be specified when shapes of a and weights " 

"differ.") 

if wgt.ndim != 1: 

raise TypeError( 

"1D weights expected when shapes of a and weights differ.") 

if wgt.shape[0] != a.shape[axis]: 

raise ValueError( 

"Length of weights not compatible with specified axis.") 

 

# setup wgt to broadcast along axis 

wgt = np.broadcast_to(wgt, (a.ndim-1)*(1,) + wgt.shape) 

wgt = wgt.swapaxes(-1, axis) 

 

scl = wgt.sum(axis=axis, dtype=result_dtype) 

if np.any(scl == 0.0): 

raise ZeroDivisionError( 

"Weights sum to zero, can't be normalized") 

 

avg = np.multiply(a, wgt, dtype=result_dtype).sum(axis)/scl 

 

if returned: 

if scl.shape != avg.shape: 

scl = np.broadcast_to(scl, avg.shape).copy() 

return avg, scl 

else: 

return avg 

 

 

@set_module('numpy') 

def asarray_chkfinite(a, dtype=None, order=None): 

"""Convert the input to an array, checking for NaNs or Infs. 

 

Parameters 

---------- 

a : array_like 

Input data, in any form that can be converted to an array. This 

includes lists, lists of tuples, tuples, tuples of tuples, tuples 

of lists and ndarrays. Success requires no NaNs or Infs. 

dtype : data-type, optional 

By default, the data-type is inferred from the input data. 

order : {'C', 'F'}, optional 

Whether to use row-major (C-style) or 

column-major (Fortran-style) memory representation. 

Defaults to 'C'. 

 

Returns 

------- 

out : ndarray 

Array interpretation of `a`. No copy is performed if the input 

is already an ndarray. If `a` is a subclass of ndarray, a base 

class ndarray is returned. 

 

Raises 

------ 

ValueError 

Raises ValueError if `a` contains NaN (Not a Number) or Inf (Infinity). 

 

See Also 

-------- 

asarray : Create and array. 

asanyarray : Similar function which passes through subclasses. 

ascontiguousarray : Convert input to a contiguous array. 

asfarray : Convert input to a floating point ndarray. 

asfortranarray : Convert input to an ndarray with column-major 

memory order. 

fromiter : Create an array from an iterator. 

fromfunction : Construct an array by executing a function on grid 

positions. 

 

Examples 

-------- 

Convert a list into an array. If all elements are finite 

``asarray_chkfinite`` is identical to ``asarray``. 

 

>>> a = [1, 2] 

>>> np.asarray_chkfinite(a, dtype=float) 

array([1., 2.]) 

 

Raises ValueError if array_like contains Nans or Infs. 

 

>>> a = [1, 2, np.inf] 

>>> try: 

... np.asarray_chkfinite(a) 

... except ValueError: 

... print('ValueError') 

... 

ValueError 

 

""" 

a = asarray(a, dtype=dtype, order=order) 

if a.dtype.char in typecodes['AllFloat'] and not np.isfinite(a).all(): 

raise ValueError( 

"array must not contain infs or NaNs") 

return a 

 

 

def _piecewise_dispatcher(x, condlist, funclist, *args, **kw): 

yield x 

# support the undocumented behavior of allowing scalars 

if np.iterable(condlist): 

for c in condlist: 

yield c 

 

 

@array_function_dispatch(_piecewise_dispatcher) 

def piecewise(x, condlist, funclist, *args, **kw): 

""" 

Evaluate a piecewise-defined function. 

 

Given a set of conditions and corresponding functions, evaluate each 

function on the input data wherever its condition is true. 

 

Parameters 

---------- 

x : ndarray or scalar 

The input domain. 

condlist : list of bool arrays or bool scalars 

Each boolean array corresponds to a function in `funclist`. Wherever 

`condlist[i]` is True, `funclist[i](x)` is used as the output value. 

 

Each boolean array in `condlist` selects a piece of `x`, 

and should therefore be of the same shape as `x`. 

 

The length of `condlist` must correspond to that of `funclist`. 

If one extra function is given, i.e. if 

``len(funclist) == len(condlist) + 1``, then that extra function 

is the default value, used wherever all conditions are false. 

funclist : list of callables, f(x,*args,**kw), or scalars 

Each function is evaluated over `x` wherever its corresponding 

condition is True. It should take a 1d array as input and give an 1d 

array or a scalar value as output. If, instead of a callable, 

a scalar is provided then a constant function (``lambda x: scalar``) is 

assumed. 

args : tuple, optional 

Any further arguments given to `piecewise` are passed to the functions 

upon execution, i.e., if called ``piecewise(..., ..., 1, 'a')``, then 

each function is called as ``f(x, 1, 'a')``. 

kw : dict, optional 

Keyword arguments used in calling `piecewise` are passed to the 

functions upon execution, i.e., if called 

``piecewise(..., ..., alpha=1)``, then each function is called as 

``f(x, alpha=1)``. 

 

Returns 

------- 

out : ndarray 

The output is the same shape and type as x and is found by 

calling the functions in `funclist` on the appropriate portions of `x`, 

as defined by the boolean arrays in `condlist`. Portions not covered 

by any condition have a default value of 0. 

 

 

See Also 

-------- 

choose, select, where 

 

Notes 

----- 

This is similar to choose or select, except that functions are 

evaluated on elements of `x` that satisfy the corresponding condition from 

`condlist`. 

 

The result is:: 

 

|-- 

|funclist[0](x[condlist[0]]) 

out = |funclist[1](x[condlist[1]]) 

|... 

|funclist[n2](x[condlist[n2]]) 

|-- 

 

Examples 

-------- 

Define the sigma function, which is -1 for ``x < 0`` and +1 for ``x >= 0``. 

 

>>> x = np.linspace(-2.5, 2.5, 6) 

>>> np.piecewise(x, [x < 0, x >= 0], [-1, 1]) 

array([-1., -1., -1., 1., 1., 1.]) 

 

Define the absolute value, which is ``-x`` for ``x <0`` and ``x`` for 

``x >= 0``. 

 

>>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x]) 

array([ 2.5, 1.5, 0.5, 0.5, 1.5, 2.5]) 

 

Apply the same function to a scalar value. 

 

>>> y = -2 

>>> np.piecewise(y, [y < 0, y >= 0], [lambda x: -x, lambda x: x]) 

array(2) 

 

""" 

x = asanyarray(x) 

n2 = len(funclist) 

 

# undocumented: single condition is promoted to a list of one condition 

if isscalar(condlist) or ( 

not isinstance(condlist[0], (list, ndarray)) and x.ndim != 0): 

condlist = [condlist] 

 

condlist = array(condlist, dtype=bool) 

n = len(condlist) 

 

if n == n2 - 1: # compute the "otherwise" condition. 

condelse = ~np.any(condlist, axis=0, keepdims=True) 

condlist = np.concatenate([condlist, condelse], axis=0) 

n += 1 

elif n != n2: 

raise ValueError( 

"with {} condition(s), either {} or {} functions are expected" 

.format(n, n, n+1) 

) 

 

y = zeros(x.shape, x.dtype) 

for k in range(n): 

item = funclist[k] 

if not isinstance(item, collections_abc.Callable): 

y[condlist[k]] = item 

else: 

vals = x[condlist[k]] 

if vals.size > 0: 

y[condlist[k]] = item(vals, *args, **kw) 

 

return y 

 

 

def _select_dispatcher(condlist, choicelist, default=None): 

for c in condlist: 

yield c 

for c in choicelist: 

yield c 

 

 

@array_function_dispatch(_select_dispatcher) 

def select(condlist, choicelist, default=0): 

""" 

Return an array drawn from elements in choicelist, depending on conditions. 

 

Parameters 

---------- 

condlist : list of bool ndarrays 

The list of conditions which determine from which array in `choicelist` 

the output elements are taken. When multiple conditions are satisfied, 

the first one encountered in `condlist` is used. 

choicelist : list of ndarrays 

The list of arrays from which the output elements are taken. It has 

to be of the same length as `condlist`. 

default : scalar, optional 

The element inserted in `output` when all conditions evaluate to False. 

 

Returns 

------- 

output : ndarray 

The output at position m is the m-th element of the array in 

`choicelist` where the m-th element of the corresponding array in 

`condlist` is True. 

 

See Also 

-------- 

where : Return elements from one of two arrays depending on condition. 

take, choose, compress, diag, diagonal 

 

Examples 

-------- 

>>> x = np.arange(10) 

>>> condlist = [x<3, x>5] 

>>> choicelist = [x, x**2] 

>>> np.select(condlist, choicelist) 

array([ 0, 1, 2, 0, 0, 0, 36, 49, 64, 81]) 

 

""" 

# Check the size of condlist and choicelist are the same, or abort. 

if len(condlist) != len(choicelist): 

raise ValueError( 

'list of cases must be same length as list of conditions') 

 

# Now that the dtype is known, handle the deprecated select([], []) case 

if len(condlist) == 0: 

# 2014-02-24, 1.9 

warnings.warn("select with an empty condition list is not possible" 

"and will be deprecated", 

DeprecationWarning, stacklevel=2) 

return np.asarray(default)[()] 

 

choicelist = [np.asarray(choice) for choice in choicelist] 

choicelist.append(np.asarray(default)) 

 

# need to get the result type before broadcasting for correct scalar 

# behaviour 

dtype = np.result_type(*choicelist) 

 

# Convert conditions to arrays and broadcast conditions and choices 

# as the shape is needed for the result. Doing it separately optimizes 

# for example when all choices are scalars. 

condlist = np.broadcast_arrays(*condlist) 

choicelist = np.broadcast_arrays(*choicelist) 

 

# If cond array is not an ndarray in boolean format or scalar bool, abort. 

deprecated_ints = False 

for i in range(len(condlist)): 

cond = condlist[i] 

if cond.dtype.type is not np.bool_: 

if np.issubdtype(cond.dtype, np.integer): 

# A previous implementation accepted int ndarrays accidentally. 

# Supported here deliberately, but deprecated. 

condlist[i] = condlist[i].astype(bool) 

deprecated_ints = True 

else: 

raise ValueError( 

'invalid entry {} in condlist: should be boolean ndarray'.format(i)) 

 

if deprecated_ints: 

# 2014-02-24, 1.9 

msg = "select condlists containing integer ndarrays is deprecated " \ 

"and will be removed in the future. Use `.astype(bool)` to " \ 

"convert to bools." 

warnings.warn(msg, DeprecationWarning, stacklevel=2) 

 

if choicelist[0].ndim == 0: 

# This may be common, so avoid the call. 

result_shape = condlist[0].shape 

else: 

result_shape = np.broadcast_arrays(condlist[0], choicelist[0])[0].shape 

 

result = np.full(result_shape, choicelist[-1], dtype) 

 

# Use np.copyto to burn each choicelist array onto result, using the 

# corresponding condlist as a boolean mask. This is done in reverse 

# order since the first choice should take precedence. 

choicelist = choicelist[-2::-1] 

condlist = condlist[::-1] 

for choice, cond in zip(choicelist, condlist): 

np.copyto(result, choice, where=cond) 

 

return result 

 

 

def _copy_dispatcher(a, order=None): 

return (a,) 

 

 

@array_function_dispatch(_copy_dispatcher) 

def copy(a, order='K'): 

""" 

Return an array copy of the given object. 

 

Parameters 

---------- 

a : array_like 

Input data. 

order : {'C', 'F', 'A', 'K'}, optional 

Controls the memory layout of the copy. 'C' means C-order, 

'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, 

'C' otherwise. 'K' means match the layout of `a` as closely 

as possible. (Note that this function and :meth:`ndarray.copy` are very 

similar, but have different default values for their order= 

arguments.) 

 

Returns 

------- 

arr : ndarray 

Array interpretation of `a`. 

 

Notes 

----- 

This is equivalent to: 

 

>>> np.array(a, copy=True) #doctest: +SKIP 

 

Examples 

-------- 

Create an array x, with a reference y and a copy z: 

 

>>> x = np.array([1, 2, 3]) 

>>> y = x 

>>> z = np.copy(x) 

 

Note that, when we modify x, y changes, but not z: 

 

>>> x[0] = 10 

>>> x[0] == y[0] 

True 

>>> x[0] == z[0] 

False 

 

""" 

return array(a, order=order, copy=True) 

 

# Basic operations 

 

 

def _gradient_dispatcher(f, *varargs, **kwargs): 

yield f 

for v in varargs: 

yield v 

 

 

@array_function_dispatch(_gradient_dispatcher) 

def gradient(f, *varargs, **kwargs): 

""" 

Return the gradient of an N-dimensional array. 

 

The gradient is computed using second order accurate central differences 

in the interior points and either first or second order accurate one-sides 

(forward or backwards) differences at the boundaries. 

The returned gradient hence has the same shape as the input array. 

 

Parameters 

---------- 

f : array_like 

An N-dimensional array containing samples of a scalar function. 

varargs : list of scalar or array, optional 

Spacing between f values. Default unitary spacing for all dimensions. 

Spacing can be specified using: 

 

1. single scalar to specify a sample distance for all dimensions. 

2. N scalars to specify a constant sample distance for each dimension. 

i.e. `dx`, `dy`, `dz`, ... 

3. N arrays to specify the coordinates of the values along each 

dimension of F. The length of the array must match the size of 

the corresponding dimension 

4. Any combination of N scalars/arrays with the meaning of 2. and 3. 

 

If `axis` is given, the number of varargs must equal the number of axes. 

Default: 1. 

 

edge_order : {1, 2}, optional 

Gradient is calculated using N-th order accurate differences 

at the boundaries. Default: 1. 

 

.. versionadded:: 1.9.1 

 

axis : None or int or tuple of ints, optional 

Gradient is calculated only along the given axis or axes 

The default (axis = None) is to calculate the gradient for all the axes 

of the input array. axis may be negative, in which case it counts from 

the last to the first axis. 

 

.. versionadded:: 1.11.0 

 

Returns 

------- 

gradient : ndarray or list of ndarray 

A set of ndarrays (or a single ndarray if there is only one dimension) 

corresponding to the derivatives of f with respect to each dimension. 

Each derivative has the same shape as f. 

 

Examples 

-------- 

>>> f = np.array([1, 2, 4, 7, 11, 16], dtype=float) 

>>> np.gradient(f) 

array([ 1. , 1.5, 2.5, 3.5, 4.5, 5. ]) 

>>> np.gradient(f, 2) 

array([ 0.5 , 0.75, 1.25, 1.75, 2.25, 2.5 ]) 

 

Spacing can be also specified with an array that represents the coordinates 

of the values F along the dimensions. 

For instance a uniform spacing: 

 

>>> x = np.arange(f.size) 

>>> np.gradient(f, x) 

array([ 1. , 1.5, 2.5, 3.5, 4.5, 5. ]) 

 

Or a non uniform one: 

 

>>> x = np.array([0., 1., 1.5, 3.5, 4., 6.], dtype=float) 

>>> np.gradient(f, x) 

array([ 1. , 3. , 3.5, 6.7, 6.9, 2.5]) 

 

For two dimensional arrays, the return will be two arrays ordered by 

axis. In this example the first array stands for the gradient in 

rows and the second one in columns direction: 

 

>>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=float)) 

[array([[ 2., 2., -1.], 

[ 2., 2., -1.]]), array([[ 1. , 2.5, 4. ], 

[ 1. , 1. , 1. ]])] 

 

In this example the spacing is also specified: 

uniform for axis=0 and non uniform for axis=1 

 

>>> dx = 2. 

>>> y = [1., 1.5, 3.5] 

>>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=float), dx, y) 

[array([[ 1. , 1. , -0.5], 

[ 1. , 1. , -0.5]]), array([[ 2. , 2. , 2. ], 

[ 2. , 1.7, 0.5]])] 

 

It is possible to specify how boundaries are treated using `edge_order` 

 

>>> x = np.array([0, 1, 2, 3, 4]) 

>>> f = x**2 

>>> np.gradient(f, edge_order=1) 

array([ 1., 2., 4., 6., 7.]) 

>>> np.gradient(f, edge_order=2) 

array([-0., 2., 4., 6., 8.]) 

 

The `axis` keyword can be used to specify a subset of axes of which the 

gradient is calculated 

 

>>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=float), axis=0) 

array([[ 2., 2., -1.], 

[ 2., 2., -1.]]) 

 

Notes 

----- 

Assuming that :math:`f\\in C^{3}` (i.e., :math:`f` has at least 3 continuous 

derivatives) and let :math:`h_{*}` be a non-homogeneous stepsize, we 

minimize the "consistency error" :math:`\\eta_{i}` between the true gradient 

and its estimate from a linear combination of the neighboring grid-points: 

 

.. math:: 

 

\\eta_{i} = f_{i}^{\\left(1\\right)} - 

\\left[ \\alpha f\\left(x_{i}\\right) + 

\\beta f\\left(x_{i} + h_{d}\\right) + 

\\gamma f\\left(x_{i}-h_{s}\\right) 

\\right] 

 

By substituting :math:`f(x_{i} + h_{d})` and :math:`f(x_{i} - h_{s})` 

with their Taylor series expansion, this translates into solving 

the following the linear system: 

 

.. math:: 

 

\\left\\{ 

\\begin{array}{r} 

\\alpha+\\beta+\\gamma=0 \\\\ 

\\beta h_{d}-\\gamma h_{s}=1 \\\\ 

\\beta h_{d}^{2}+\\gamma h_{s}^{2}=0 

\\end{array} 

\\right. 

 

The resulting approximation of :math:`f_{i}^{(1)}` is the following: 

 

.. math:: 

 

\\hat f_{i}^{(1)} = 

\\frac{ 

h_{s}^{2}f\\left(x_{i} + h_{d}\\right) 

+ \\left(h_{d}^{2} - h_{s}^{2}\\right)f\\left(x_{i}\\right) 

- h_{d}^{2}f\\left(x_{i}-h_{s}\\right)} 

{ h_{s}h_{d}\\left(h_{d} + h_{s}\\right)} 

+ \\mathcal{O}\\left(\\frac{h_{d}h_{s}^{2} 

+ h_{s}h_{d}^{2}}{h_{d} 

+ h_{s}}\\right) 

 

It is worth noting that if :math:`h_{s}=h_{d}` 

(i.e., data are evenly spaced) 

we find the standard second order approximation: 

 

.. math:: 

 

\\hat f_{i}^{(1)}= 

\\frac{f\\left(x_{i+1}\\right) - f\\left(x_{i-1}\\right)}{2h} 

+ \\mathcal{O}\\left(h^{2}\\right) 

 

With a similar procedure the forward/backward approximations used for 

boundaries can be derived. 

 

References 

---------- 

.. [1] Quarteroni A., Sacco R., Saleri F. (2007) Numerical Mathematics 

(Texts in Applied Mathematics). New York: Springer. 

.. [2] Durran D. R. (1999) Numerical Methods for Wave Equations 

in Geophysical Fluid Dynamics. New York: Springer. 

.. [3] Fornberg B. (1988) Generation of Finite Difference Formulas on 

Arbitrarily Spaced Grids, 

Mathematics of Computation 51, no. 184 : 699-706. 

`PDF <http://www.ams.org/journals/mcom/1988-51-184/ 

S0025-5718-1988-0935077-0/S0025-5718-1988-0935077-0.pdf>`_. 

""" 

f = np.asanyarray(f) 

N = f.ndim # number of dimensions 

 

axes = kwargs.pop('axis', None) 

if axes is None: 

axes = tuple(range(N)) 

else: 

axes = _nx.normalize_axis_tuple(axes, N) 

 

len_axes = len(axes) 

n = len(varargs) 

if n == 0: 

# no spacing argument - use 1 in all axes 

dx = [1.0] * len_axes 

elif n == 1 and np.ndim(varargs[0]) == 0: 

# single scalar for all axes 

dx = varargs * len_axes 

elif n == len_axes: 

# scalar or 1d array for each axis 

dx = list(varargs) 

for i, distances in enumerate(dx): 

if np.ndim(distances) == 0: 

continue 

elif np.ndim(distances) != 1: 

raise ValueError("distances must be either scalars or 1d") 

if len(distances) != f.shape[axes[i]]: 

raise ValueError("when 1d, distances must match " 

"the length of the corresponding dimension") 

diffx = np.diff(distances) 

# if distances are constant reduce to the scalar case 

# since it brings a consistent speedup 

if (diffx == diffx[0]).all(): 

diffx = diffx[0] 

dx[i] = diffx 

else: 

raise TypeError("invalid number of arguments") 

 

edge_order = kwargs.pop('edge_order', 1) 

if kwargs: 

raise TypeError('"{}" are not valid keyword arguments.'.format( 

'", "'.join(kwargs.keys()))) 

if edge_order > 2: 

raise ValueError("'edge_order' greater than 2 not supported") 

 

# use central differences on interior and one-sided differences on the 

# endpoints. This preserves second order-accuracy over the full domain. 

 

outvals = [] 

 

# create slice objects --- initially all are [:, :, ..., :] 

slice1 = [slice(None)]*N 

slice2 = [slice(None)]*N 

slice3 = [slice(None)]*N 

slice4 = [slice(None)]*N 

 

otype = f.dtype 

if otype.type is np.datetime64: 

# the timedelta dtype with the same unit information 

otype = np.dtype(otype.name.replace('datetime', 'timedelta')) 

# view as timedelta to allow addition 

f = f.view(otype) 

elif otype.type is np.timedelta64: 

pass 

elif np.issubdtype(otype, np.inexact): 

pass 

else: 

# all other types convert to floating point 

otype = np.double 

 

for axis, ax_dx in zip(axes, dx): 

if f.shape[axis] < edge_order + 1: 

raise ValueError( 

"Shape of array too small to calculate a numerical gradient, " 

"at least (edge_order + 1) elements are required.") 

# result allocation 

out = np.empty_like(f, dtype=otype) 

 

# spacing for the current axis 

uniform_spacing = np.ndim(ax_dx) == 0 

 

# Numerical differentiation: 2nd order interior 

slice1[axis] = slice(1, -1) 

slice2[axis] = slice(None, -2) 

slice3[axis] = slice(1, -1) 

slice4[axis] = slice(2, None) 

 

if uniform_spacing: 

out[tuple(slice1)] = (f[tuple(slice4)] - f[tuple(slice2)]) / (2. * ax_dx) 

else: 

dx1 = ax_dx[0:-1] 

dx2 = ax_dx[1:] 

a = -(dx2)/(dx1 * (dx1 + dx2)) 

b = (dx2 - dx1) / (dx1 * dx2) 

c = dx1 / (dx2 * (dx1 + dx2)) 

# fix the shape for broadcasting 

shape = np.ones(N, dtype=int) 

shape[axis] = -1 

a.shape = b.shape = c.shape = shape 

# 1D equivalent -- out[1:-1] = a * f[:-2] + b * f[1:-1] + c * f[2:] 

out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)] 

 

# Numerical differentiation: 1st order edges 

if edge_order == 1: 

slice1[axis] = 0 

slice2[axis] = 1 

slice3[axis] = 0 

dx_0 = ax_dx if uniform_spacing else ax_dx[0] 

# 1D equivalent -- out[0] = (f[1] - f[0]) / (x[1] - x[0]) 

out[tuple(slice1)] = (f[tuple(slice2)] - f[tuple(slice3)]) / dx_0 

 

slice1[axis] = -1 

slice2[axis] = -1 

slice3[axis] = -2 

dx_n = ax_dx if uniform_spacing else ax_dx[-1] 

# 1D equivalent -- out[-1] = (f[-1] - f[-2]) / (x[-1] - x[-2]) 

out[tuple(slice1)] = (f[tuple(slice2)] - f[tuple(slice3)]) / dx_n 

 

# Numerical differentiation: 2nd order edges 

else: 

slice1[axis] = 0 

slice2[axis] = 0 

slice3[axis] = 1 

slice4[axis] = 2 

if uniform_spacing: 

a = -1.5 / ax_dx 

b = 2. / ax_dx 

c = -0.5 / ax_dx 

else: 

dx1 = ax_dx[0] 

dx2 = ax_dx[1] 

a = -(2. * dx1 + dx2)/(dx1 * (dx1 + dx2)) 

b = (dx1 + dx2) / (dx1 * dx2) 

c = - dx1 / (dx2 * (dx1 + dx2)) 

# 1D equivalent -- out[0] = a * f[0] + b * f[1] + c * f[2] 

out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)] 

 

slice1[axis] = -1 

slice2[axis] = -3 

slice3[axis] = -2 

slice4[axis] = -1 

if uniform_spacing: 

a = 0.5 / ax_dx 

b = -2. / ax_dx 

c = 1.5 / ax_dx 

else: 

dx1 = ax_dx[-2] 

dx2 = ax_dx[-1] 

a = (dx2) / (dx1 * (dx1 + dx2)) 

b = - (dx2 + dx1) / (dx1 * dx2) 

c = (2. * dx2 + dx1) / (dx2 * (dx1 + dx2)) 

# 1D equivalent -- out[-1] = a * f[-3] + b * f[-2] + c * f[-1] 

out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)] 

 

outvals.append(out) 

 

# reset the slice object in this dimension to ":" 

slice1[axis] = slice(None) 

slice2[axis] = slice(None) 

slice3[axis] = slice(None) 

slice4[axis] = slice(None) 

 

if len_axes == 1: 

return outvals[0] 

else: 

return outvals 

 

 

def _diff_dispatcher(a, n=None, axis=None, prepend=None, append=None): 

return (a, prepend, append) 

 

 

@array_function_dispatch(_diff_dispatcher) 

def diff(a, n=1, axis=-1, prepend=np._NoValue, append=np._NoValue): 

""" 

Calculate the n-th discrete difference along the given axis. 

 

The first difference is given by ``out[n] = a[n+1] - a[n]`` along 

the given axis, higher differences are calculated by using `diff` 

recursively. 

 

Parameters 

---------- 

a : array_like 

Input array 

n : int, optional 

The number of times values are differenced. If zero, the input 

is returned as-is. 

axis : int, optional 

The axis along which the difference is taken, default is the 

last axis. 

prepend, append : array_like, optional 

Values to prepend or append to "a" along axis prior to 

performing the difference. Scalar values are expanded to 

arrays with length 1 in the direction of axis and the shape 

of the input array in along all other axes. Otherwise the 

dimension and shape must match "a" except along axis. 

 

Returns 

------- 

diff : ndarray 

The n-th differences. The shape of the output is the same as `a` 

except along `axis` where the dimension is smaller by `n`. The 

type of the output is the same as the type of the difference 

between any two elements of `a`. This is the same as the type of 

`a` in most cases. A notable exception is `datetime64`, which 

results in a `timedelta64` output array. 

 

See Also 

-------- 

gradient, ediff1d, cumsum 

 

Notes 

----- 

Type is preserved for boolean arrays, so the result will contain 

`False` when consecutive elements are the same and `True` when they 

differ. 

 

For unsigned integer arrays, the results will also be unsigned. This 

should not be surprising, as the result is consistent with 

calculating the difference directly: 

 

>>> u8_arr = np.array([1, 0], dtype=np.uint8) 

>>> np.diff(u8_arr) 

array([255], dtype=uint8) 

>>> u8_arr[1,...] - u8_arr[0,...] 

array(255, np.uint8) 

 

If this is not desirable, then the array should be cast to a larger 

integer type first: 

 

>>> i16_arr = u8_arr.astype(np.int16) 

>>> np.diff(i16_arr) 

array([-1], dtype=int16) 

 

Examples 

-------- 

>>> x = np.array([1, 2, 4, 7, 0]) 

>>> np.diff(x) 

array([ 1, 2, 3, -7]) 

>>> np.diff(x, n=2) 

array([ 1, 1, -10]) 

 

>>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]]) 

>>> np.diff(x) 

array([[2, 3, 4], 

[5, 1, 2]]) 

>>> np.diff(x, axis=0) 

array([[-1, 2, 0, -2]]) 

 

>>> x = np.arange('1066-10-13', '1066-10-16', dtype=np.datetime64) 

>>> np.diff(x) 

array([1, 1], dtype='timedelta64[D]') 

 

""" 

if n == 0: 

return a 

if n < 0: 

raise ValueError( 

"order must be non-negative but got " + repr(n)) 

 

a = asanyarray(a) 

nd = a.ndim 

axis = normalize_axis_index(axis, nd) 

 

combined = [] 

if prepend is not np._NoValue: 

prepend = np.asanyarray(prepend) 

if prepend.ndim == 0: 

shape = list(a.shape) 

shape[axis] = 1 

prepend = np.broadcast_to(prepend, tuple(shape)) 

combined.append(prepend) 

 

combined.append(a) 

 

if append is not np._NoValue: 

append = np.asanyarray(append) 

if append.ndim == 0: 

shape = list(a.shape) 

shape[axis] = 1 

append = np.broadcast_to(append, tuple(shape)) 

combined.append(append) 

 

if len(combined) > 1: 

a = np.concatenate(combined, axis) 

 

slice1 = [slice(None)] * nd 

slice2 = [slice(None)] * nd 

slice1[axis] = slice(1, None) 

slice2[axis] = slice(None, -1) 

slice1 = tuple(slice1) 

slice2 = tuple(slice2) 

 

op = not_equal if a.dtype == np.bool_ else subtract 

for _ in range(n): 

a = op(a[slice1], a[slice2]) 

 

return a 

 

 

def _interp_dispatcher(x, xp, fp, left=None, right=None, period=None): 

return (x, xp, fp) 

 

 

@array_function_dispatch(_interp_dispatcher) 

def interp(x, xp, fp, left=None, right=None, period=None): 

""" 

One-dimensional linear interpolation. 

 

Returns the one-dimensional piecewise linear interpolant to a function 

with given discrete data points (`xp`, `fp`), evaluated at `x`. 

 

Parameters 

---------- 

x : array_like 

The x-coordinates at which to evaluate the interpolated values. 

 

xp : 1-D sequence of floats 

The x-coordinates of the data points, must be increasing if argument 

`period` is not specified. Otherwise, `xp` is internally sorted after 

normalizing the periodic boundaries with ``xp = xp % period``. 

 

fp : 1-D sequence of float or complex 

The y-coordinates of the data points, same length as `xp`. 

 

left : optional float or complex corresponding to fp 

Value to return for `x < xp[0]`, default is `fp[0]`. 

 

right : optional float or complex corresponding to fp 

Value to return for `x > xp[-1]`, default is `fp[-1]`. 

 

period : None or float, optional 

A period for the x-coordinates. This parameter allows the proper 

interpolation of angular x-coordinates. Parameters `left` and `right` 

are ignored if `period` is specified. 

 

.. versionadded:: 1.10.0 

 

Returns 

------- 

y : float or complex (corresponding to fp) or ndarray 

The interpolated values, same shape as `x`. 

 

Raises 

------ 

ValueError 

If `xp` and `fp` have different length 

If `xp` or `fp` are not 1-D sequences 

If `period == 0` 

 

Notes 

----- 

Does not check that the x-coordinate sequence `xp` is increasing. 

If `xp` is not increasing, the results are nonsense. 

A simple check for increasing is:: 

 

np.all(np.diff(xp) > 0) 

 

Examples 

-------- 

>>> xp = [1, 2, 3] 

>>> fp = [3, 2, 0] 

>>> np.interp(2.5, xp, fp) 

1.0 

>>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp) 

array([ 3. , 3. , 2.5 , 0.56, 0. ]) 

>>> UNDEF = -99.0 

>>> np.interp(3.14, xp, fp, right=UNDEF) 

-99.0 

 

Plot an interpolant to the sine function: 

 

>>> x = np.linspace(0, 2*np.pi, 10) 

>>> y = np.sin(x) 

>>> xvals = np.linspace(0, 2*np.pi, 50) 

>>> yinterp = np.interp(xvals, x, y) 

>>> import matplotlib.pyplot as plt 

>>> plt.plot(x, y, 'o') 

[<matplotlib.lines.Line2D object at 0x...>] 

>>> plt.plot(xvals, yinterp, '-x') 

[<matplotlib.lines.Line2D object at 0x...>] 

>>> plt.show() 

 

Interpolation with periodic x-coordinates: 

 

>>> x = [-180, -170, -185, 185, -10, -5, 0, 365] 

>>> xp = [190, -190, 350, -350] 

>>> fp = [5, 10, 3, 4] 

>>> np.interp(x, xp, fp, period=360) 

array([7.5, 5., 8.75, 6.25, 3., 3.25, 3.5, 3.75]) 

 

Complex interpolation: 

 

>>> x = [1.5, 4.0] 

>>> xp = [2,3,5] 

>>> fp = [1.0j, 0, 2+3j] 

>>> np.interp(x, xp, fp) 

array([ 0.+1.j , 1.+1.5j]) 

 

""" 

 

fp = np.asarray(fp) 

 

if np.iscomplexobj(fp): 

interp_func = compiled_interp_complex 

input_dtype = np.complex128 

else: 

interp_func = compiled_interp 

input_dtype = np.float64 

 

if period is not None: 

if period == 0: 

raise ValueError("period must be a non-zero value") 

period = abs(period) 

left = None 

right = None 

 

x = np.asarray(x, dtype=np.float64) 

xp = np.asarray(xp, dtype=np.float64) 

fp = np.asarray(fp, dtype=input_dtype) 

 

if xp.ndim != 1 or fp.ndim != 1: 

raise ValueError("Data points must be 1-D sequences") 

if xp.shape[0] != fp.shape[0]: 

raise ValueError("fp and xp are not of the same length") 

# normalizing periodic boundaries 

x = x % period 

xp = xp % period 

asort_xp = np.argsort(xp) 

xp = xp[asort_xp] 

fp = fp[asort_xp] 

xp = np.concatenate((xp[-1:]-period, xp, xp[0:1]+period)) 

fp = np.concatenate((fp[-1:], fp, fp[0:1])) 

 

return interp_func(x, xp, fp, left, right) 

 

 

def _angle_dispatcher(z, deg=None): 

return (z,) 

 

 

@array_function_dispatch(_angle_dispatcher) 

def angle(z, deg=False): 

""" 

Return the angle of the complex argument. 

 

Parameters 

---------- 

z : array_like 

A complex number or sequence of complex numbers. 

deg : bool, optional 

Return angle in degrees if True, radians if False (default). 

 

Returns 

------- 

angle : ndarray or scalar 

The counterclockwise angle from the positive real axis on 

the complex plane, with dtype as numpy.float64. 

 

..versionchanged:: 1.16.0 

This function works on subclasses of ndarray like `ma.array`. 

 

See Also 

-------- 

arctan2 

absolute 

 

Examples 

-------- 

>>> np.angle([1.0, 1.0j, 1+1j]) # in radians 

array([ 0. , 1.57079633, 0.78539816]) 

>>> np.angle(1+1j, deg=True) # in degrees 

45.0 

 

""" 

z = asanyarray(z) 

if issubclass(z.dtype.type, _nx.complexfloating): 

zimag = z.imag 

zreal = z.real 

else: 

zimag = 0 

zreal = z 

 

a = arctan2(zimag, zreal) 

if deg: 

a *= 180/pi 

return a 

 

 

def _unwrap_dispatcher(p, discont=None, axis=None): 

return (p,) 

 

 

@array_function_dispatch(_unwrap_dispatcher) 

def unwrap(p, discont=pi, axis=-1): 

""" 

Unwrap by changing deltas between values to 2*pi complement. 

 

Unwrap radian phase `p` by changing absolute jumps greater than 

`discont` to their 2*pi complement along the given axis. 

 

Parameters 

---------- 

p : array_like 

Input array. 

discont : float, optional 

Maximum discontinuity between values, default is ``pi``. 

axis : int, optional 

Axis along which unwrap will operate, default is the last axis. 

 

Returns 

------- 

out : ndarray 

Output array. 

 

See Also 

-------- 

rad2deg, deg2rad 

 

Notes 

----- 

If the discontinuity in `p` is smaller than ``pi``, but larger than 

`discont`, no unwrapping is done because taking the 2*pi complement 

would only make the discontinuity larger. 

 

Examples 

-------- 

>>> phase = np.linspace(0, np.pi, num=5) 

>>> phase[3:] += np.pi 

>>> phase 

array([ 0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531]) 

>>> np.unwrap(phase) 

array([ 0. , 0.78539816, 1.57079633, -0.78539816, 0. ]) 

 

""" 

p = asarray(p) 

nd = p.ndim 

dd = diff(p, axis=axis) 

slice1 = [slice(None, None)]*nd # full slices 

slice1[axis] = slice(1, None) 

slice1 = tuple(slice1) 

ddmod = mod(dd + pi, 2*pi) - pi 

_nx.copyto(ddmod, pi, where=(ddmod == -pi) & (dd > 0)) 

ph_correct = ddmod - dd 

_nx.copyto(ph_correct, 0, where=abs(dd) < discont) 

up = array(p, copy=True, dtype='d') 

up[slice1] = p[slice1] + ph_correct.cumsum(axis) 

return up 

 

 

def _sort_complex(a): 

return (a,) 

 

 

@array_function_dispatch(_sort_complex) 

def sort_complex(a): 

""" 

Sort a complex array using the real part first, then the imaginary part. 

 

Parameters 

---------- 

a : array_like 

Input array 

 

Returns 

------- 

out : complex ndarray 

Always returns a sorted complex array. 

 

Examples 

-------- 

>>> np.sort_complex([5, 3, 6, 2, 1]) 

array([ 1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j]) 

 

>>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j]) 

array([ 1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j]) 

 

""" 

b = array(a, copy=True) 

b.sort() 

if not issubclass(b.dtype.type, _nx.complexfloating): 

if b.dtype.char in 'bhBH': 

return b.astype('F') 

elif b.dtype.char == 'g': 

return b.astype('G') 

else: 

return b.astype('D') 

else: 

return b 

 

 

def _trim_zeros(filt, trim=None): 

return (filt,) 

 

 

@array_function_dispatch(_trim_zeros) 

def trim_zeros(filt, trim='fb'): 

""" 

Trim the leading and/or trailing zeros from a 1-D array or sequence. 

 

Parameters 

---------- 

filt : 1-D array or sequence 

Input array. 

trim : str, optional 

A string with 'f' representing trim from front and 'b' to trim from 

back. Default is 'fb', trim zeros from both front and back of the 

array. 

 

Returns 

------- 

trimmed : 1-D array or sequence 

The result of trimming the input. The input data type is preserved. 

 

Examples 

-------- 

>>> a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0)) 

>>> np.trim_zeros(a) 

array([1, 2, 3, 0, 2, 1]) 

 

>>> np.trim_zeros(a, 'b') 

array([0, 0, 0, 1, 2, 3, 0, 2, 1]) 

 

The input data type is preserved, list/tuple in means list/tuple out. 

 

>>> np.trim_zeros([0, 1, 2, 0]) 

[1, 2] 

 

""" 

first = 0 

trim = trim.upper() 

if 'F' in trim: 

for i in filt: 

if i != 0.: 

break 

else: 

first = first + 1 

last = len(filt) 

if 'B' in trim: 

for i in filt[::-1]: 

if i != 0.: 

break 

else: 

last = last - 1 

return filt[first:last] 

 

def _extract_dispatcher(condition, arr): 

return (condition, arr) 

 

 

@array_function_dispatch(_extract_dispatcher) 

def extract(condition, arr): 

""" 

Return the elements of an array that satisfy some condition. 

 

This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If 

`condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``. 

 

Note that `place` does the exact opposite of `extract`. 

 

Parameters 

---------- 

condition : array_like 

An array whose nonzero or True entries indicate the elements of `arr` 

to extract. 

arr : array_like 

Input array of the same size as `condition`. 

 

Returns 

------- 

extract : ndarray 

Rank 1 array of values from `arr` where `condition` is True. 

 

See Also 

-------- 

take, put, copyto, compress, place 

 

Examples 

-------- 

>>> arr = np.arange(12).reshape((3, 4)) 

>>> arr 

array([[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 

[ 8, 9, 10, 11]]) 

>>> condition = np.mod(arr, 3)==0 

>>> condition 

array([[ True, False, False, True], 

[False, False, True, False], 

[False, True, False, False]]) 

>>> np.extract(condition, arr) 

array([0, 3, 6, 9]) 

 

 

If `condition` is boolean: 

 

>>> arr[condition] 

array([0, 3, 6, 9]) 

 

""" 

return _nx.take(ravel(arr), nonzero(ravel(condition))[0]) 

 

 

def _place_dispatcher(arr, mask, vals): 

return (arr, mask, vals) 

 

 

@array_function_dispatch(_place_dispatcher) 

def place(arr, mask, vals): 

""" 

Change elements of an array based on conditional and input values. 

 

Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that 

`place` uses the first N elements of `vals`, where N is the number of 

True values in `mask`, while `copyto` uses the elements where `mask` 

is True. 

 

Note that `extract` does the exact opposite of `place`. 

 

Parameters 

---------- 

arr : ndarray 

Array to put data into. 

mask : array_like 

Boolean mask array. Must have the same size as `a`. 

vals : 1-D sequence 

Values to put into `a`. Only the first N elements are used, where 

N is the number of True values in `mask`. If `vals` is smaller 

than N, it will be repeated, and if elements of `a` are to be masked, 

this sequence must be non-empty. 

 

See Also 

-------- 

copyto, put, take, extract 

 

Examples 

-------- 

>>> arr = np.arange(6).reshape(2, 3) 

>>> np.place(arr, arr>2, [44, 55]) 

>>> arr 

array([[ 0, 1, 2], 

[44, 55, 44]]) 

 

""" 

if not isinstance(arr, np.ndarray): 

raise TypeError("argument 1 must be numpy.ndarray, " 

"not {name}".format(name=type(arr).__name__)) 

 

return _insert(arr, mask, vals) 

 

 

def disp(mesg, device=None, linefeed=True): 

""" 

Display a message on a device. 

 

Parameters 

---------- 

mesg : str 

Message to display. 

device : object 

Device to write message. If None, defaults to ``sys.stdout`` which is 

very similar to ``print``. `device` needs to have ``write()`` and 

``flush()`` methods. 

linefeed : bool, optional 

Option whether to print a line feed or not. Defaults to True. 

 

Raises 

------ 

AttributeError 

If `device` does not have a ``write()`` or ``flush()`` method. 

 

Examples 

-------- 

Besides ``sys.stdout``, a file-like object can also be used as it has 

both required methods: 

 

>>> from io import StringIO 

>>> buf = StringIO() 

>>> np.disp(u'"Display" in a file', device=buf) 

>>> buf.getvalue() 

'"Display" in a file\\n' 

 

""" 

if device is None: 

device = sys.stdout 

if linefeed: 

device.write('%s\n' % mesg) 

else: 

device.write('%s' % mesg) 

device.flush() 

return 

 

 

# See https://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html 

_DIMENSION_NAME = r'\w+' 

_CORE_DIMENSION_LIST = '(?:{0:}(?:,{0:})*)?'.format(_DIMENSION_NAME) 

_ARGUMENT = r'\({}\)'.format(_CORE_DIMENSION_LIST) 

_ARGUMENT_LIST = '{0:}(?:,{0:})*'.format(_ARGUMENT) 

_SIGNATURE = '^{0:}->{0:}$'.format(_ARGUMENT_LIST) 

 

 

def _parse_gufunc_signature(signature): 

""" 

Parse string signatures for a generalized universal function. 

 

Arguments 

--------- 

signature : string 

Generalized universal function signature, e.g., ``(m,n),(n,p)->(m,p)`` 

for ``np.matmul``. 

 

Returns 

------- 

Tuple of input and output core dimensions parsed from the signature, each 

of the form List[Tuple[str, ...]]. 

""" 

if not re.match(_SIGNATURE, signature): 

raise ValueError( 

'not a valid gufunc signature: {}'.format(signature)) 

return tuple([tuple(re.findall(_DIMENSION_NAME, arg)) 

for arg in re.findall(_ARGUMENT, arg_list)] 

for arg_list in signature.split('->')) 

 

 

def _update_dim_sizes(dim_sizes, arg, core_dims): 

""" 

Incrementally check and update core dimension sizes for a single argument. 

 

Arguments 

--------- 

dim_sizes : Dict[str, int] 

Sizes of existing core dimensions. Will be updated in-place. 

arg : ndarray 

Argument to examine. 

core_dims : Tuple[str, ...] 

Core dimensions for this argument. 

""" 

if not core_dims: 

return 

 

num_core_dims = len(core_dims) 

if arg.ndim < num_core_dims: 

raise ValueError( 

'%d-dimensional argument does not have enough ' 

'dimensions for all core dimensions %r' 

% (arg.ndim, core_dims)) 

 

core_shape = arg.shape[-num_core_dims:] 

for dim, size in zip(core_dims, core_shape): 

if dim in dim_sizes: 

if size != dim_sizes[dim]: 

raise ValueError( 

'inconsistent size for core dimension %r: %r vs %r' 

% (dim, size, dim_sizes[dim])) 

else: 

dim_sizes[dim] = size 

 

 

def _parse_input_dimensions(args, input_core_dims): 

""" 

Parse broadcast and core dimensions for vectorize with a signature. 

 

Arguments 

--------- 

args : Tuple[ndarray, ...] 

Tuple of input arguments to examine. 

input_core_dims : List[Tuple[str, ...]] 

List of core dimensions corresponding to each input. 

 

Returns 

------- 

broadcast_shape : Tuple[int, ...] 

Common shape to broadcast all non-core dimensions to. 

dim_sizes : Dict[str, int] 

Common sizes for named core dimensions. 

""" 

broadcast_args = [] 

dim_sizes = {} 

for arg, core_dims in zip(args, input_core_dims): 

_update_dim_sizes(dim_sizes, arg, core_dims) 

ndim = arg.ndim - len(core_dims) 

dummy_array = np.lib.stride_tricks.as_strided(0, arg.shape[:ndim]) 

broadcast_args.append(dummy_array) 

broadcast_shape = np.lib.stride_tricks._broadcast_shape(*broadcast_args) 

return broadcast_shape, dim_sizes 

 

 

def _calculate_shapes(broadcast_shape, dim_sizes, list_of_core_dims): 

"""Helper for calculating broadcast shapes with core dimensions.""" 

return [broadcast_shape + tuple(dim_sizes[dim] for dim in core_dims) 

for core_dims in list_of_core_dims] 

 

 

def _create_arrays(broadcast_shape, dim_sizes, list_of_core_dims, dtypes): 

"""Helper for creating output arrays in vectorize.""" 

shapes = _calculate_shapes(broadcast_shape, dim_sizes, list_of_core_dims) 

arrays = tuple(np.empty(shape, dtype=dtype) 

for shape, dtype in zip(shapes, dtypes)) 

return arrays 

 

 

@set_module('numpy') 

class vectorize(object): 

""" 

vectorize(pyfunc, otypes=None, doc=None, excluded=None, cache=False, 

signature=None) 

 

Generalized function class. 

 

Define a vectorized function which takes a nested sequence of objects or 

numpy arrays as inputs and returns a single numpy array or a tuple of numpy 

arrays. The vectorized function evaluates `pyfunc` over successive tuples 

of the input arrays like the python map function, except it uses the 

broadcasting rules of numpy. 

 

The data type of the output of `vectorized` is determined by calling 

the function with the first element of the input. This can be avoided 

by specifying the `otypes` argument. 

 

Parameters 

---------- 

pyfunc : callable 

A python function or method. 

otypes : str or list of dtypes, optional 

The output data type. It must be specified as either a string of 

typecode characters or a list of data type specifiers. There should 

be one data type specifier for each output. 

doc : str, optional 

The docstring for the function. If `None`, the docstring will be the 

``pyfunc.__doc__``. 

excluded : set, optional 

Set of strings or integers representing the positional or keyword 

arguments for which the function will not be vectorized. These will be 

passed directly to `pyfunc` unmodified. 

 

.. versionadded:: 1.7.0 

 

cache : bool, optional 

If `True`, then cache the first function call that determines the number 

of outputs if `otypes` is not provided. 

 

.. versionadded:: 1.7.0 

 

signature : string, optional 

Generalized universal function signature, e.g., ``(m,n),(n)->(m)`` for 

vectorized matrix-vector multiplication. If provided, ``pyfunc`` will 

be called with (and expected to return) arrays with shapes given by the 

size of corresponding core dimensions. By default, ``pyfunc`` is 

assumed to take scalars as input and output. 

 

.. versionadded:: 1.12.0 

 

Returns 

------- 

vectorized : callable 

Vectorized function. 

 

Examples 

-------- 

>>> def myfunc(a, b): 

... "Return a-b if a>b, otherwise return a+b" 

... if a > b: 

... return a - b 

... else: 

... return a + b 

 

>>> vfunc = np.vectorize(myfunc) 

>>> vfunc([1, 2, 3, 4], 2) 

array([3, 4, 1, 2]) 

 

The docstring is taken from the input function to `vectorize` unless it 

is specified: 

 

>>> vfunc.__doc__ 

'Return a-b if a>b, otherwise return a+b' 

>>> vfunc = np.vectorize(myfunc, doc='Vectorized `myfunc`') 

>>> vfunc.__doc__ 

'Vectorized `myfunc`' 

 

The output type is determined by evaluating the first element of the input, 

unless it is specified: 

 

>>> out = vfunc([1, 2, 3, 4], 2) 

>>> type(out[0]) 

<type 'numpy.int32'> 

>>> vfunc = np.vectorize(myfunc, otypes=[float]) 

>>> out = vfunc([1, 2, 3, 4], 2) 

>>> type(out[0]) 

<type 'numpy.float64'> 

 

The `excluded` argument can be used to prevent vectorizing over certain 

arguments. This can be useful for array-like arguments of a fixed length 

such as the coefficients for a polynomial as in `polyval`: 

 

>>> def mypolyval(p, x): 

... _p = list(p) 

... res = _p.pop(0) 

... while _p: 

... res = res*x + _p.pop(0) 

... return res 

>>> vpolyval = np.vectorize(mypolyval, excluded=['p']) 

>>> vpolyval(p=[1, 2, 3], x=[0, 1]) 

array([3, 6]) 

 

Positional arguments may also be excluded by specifying their position: 

 

>>> vpolyval.excluded.add(0) 

>>> vpolyval([1, 2, 3], x=[0, 1]) 

array([3, 6]) 

 

The `signature` argument allows for vectorizing functions that act on 

non-scalar arrays of fixed length. For example, you can use it for a 

vectorized calculation of Pearson correlation coefficient and its p-value: 

 

>>> import scipy.stats 

>>> pearsonr = np.vectorize(scipy.stats.pearsonr, 

... signature='(n),(n)->(),()') 

>>> pearsonr([[0, 1, 2, 3]], [[1, 2, 3, 4], [4, 3, 2, 1]]) 

(array([ 1., -1.]), array([ 0., 0.])) 

 

Or for a vectorized convolution: 

 

>>> convolve = np.vectorize(np.convolve, signature='(n),(m)->(k)') 

>>> convolve(np.eye(4), [1, 2, 1]) 

array([[ 1., 2., 1., 0., 0., 0.], 

[ 0., 1., 2., 1., 0., 0.], 

[ 0., 0., 1., 2., 1., 0.], 

[ 0., 0., 0., 1., 2., 1.]]) 

 

See Also 

-------- 

frompyfunc : Takes an arbitrary Python function and returns a ufunc 

 

Notes 

----- 

The `vectorize` function is provided primarily for convenience, not for 

performance. The implementation is essentially a for loop. 

 

If `otypes` is not specified, then a call to the function with the 

first argument will be used to determine the number of outputs. The 

results of this call will be cached if `cache` is `True` to prevent 

calling the function twice. However, to implement the cache, the 

original function must be wrapped which will slow down subsequent 

calls, so only do this if your function is expensive. 

 

The new keyword argument interface and `excluded` argument support 

further degrades performance. 

 

References 

---------- 

.. [1] NumPy Reference, section `Generalized Universal Function API 

<https://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html>`_. 

""" 

 

def __init__(self, pyfunc, otypes=None, doc=None, excluded=None, 

cache=False, signature=None): 

self.pyfunc = pyfunc 

self.cache = cache 

self.signature = signature 

self._ufunc = None # Caching to improve default performance 

 

if doc is None: 

self.__doc__ = pyfunc.__doc__ 

else: 

self.__doc__ = doc 

 

if isinstance(otypes, str): 

for char in otypes: 

if char not in typecodes['All']: 

raise ValueError("Invalid otype specified: %s" % (char,)) 

elif iterable(otypes): 

otypes = ''.join([_nx.dtype(x).char for x in otypes]) 

elif otypes is not None: 

raise ValueError("Invalid otype specification") 

self.otypes = otypes 

 

# Excluded variable support 

if excluded is None: 

excluded = set() 

self.excluded = set(excluded) 

 

if signature is not None: 

self._in_and_out_core_dims = _parse_gufunc_signature(signature) 

else: 

self._in_and_out_core_dims = None 

 

def __call__(self, *args, **kwargs): 

""" 

Return arrays with the results of `pyfunc` broadcast (vectorized) over 

`args` and `kwargs` not in `excluded`. 

""" 

excluded = self.excluded 

if not kwargs and not excluded: 

func = self.pyfunc 

vargs = args 

else: 

# The wrapper accepts only positional arguments: we use `names` and 

# `inds` to mutate `the_args` and `kwargs` to pass to the original 

# function. 

nargs = len(args) 

 

names = [_n for _n in kwargs if _n not in excluded] 

inds = [_i for _i in range(nargs) if _i not in excluded] 

the_args = list(args) 

 

def func(*vargs): 

for _n, _i in enumerate(inds): 

the_args[_i] = vargs[_n] 

kwargs.update(zip(names, vargs[len(inds):])) 

return self.pyfunc(*the_args, **kwargs) 

 

vargs = [args[_i] for _i in inds] 

vargs.extend([kwargs[_n] for _n in names]) 

 

return self._vectorize_call(func=func, args=vargs) 

 

def _get_ufunc_and_otypes(self, func, args): 

"""Return (ufunc, otypes).""" 

# frompyfunc will fail if args is empty 

if not args: 

raise ValueError('args can not be empty') 

 

if self.otypes is not None: 

otypes = self.otypes 

nout = len(otypes) 

 

# Note logic here: We only *use* self._ufunc if func is self.pyfunc 

# even though we set self._ufunc regardless. 

if func is self.pyfunc and self._ufunc is not None: 

ufunc = self._ufunc 

else: 

ufunc = self._ufunc = frompyfunc(func, len(args), nout) 

else: 

# Get number of outputs and output types by calling the function on 

# the first entries of args. We also cache the result to prevent 

# the subsequent call when the ufunc is evaluated. 

# Assumes that ufunc first evaluates the 0th elements in the input 

# arrays (the input values are not checked to ensure this) 

args = [asarray(arg) for arg in args] 

if builtins.any(arg.size == 0 for arg in args): 

raise ValueError('cannot call `vectorize` on size 0 inputs ' 

'unless `otypes` is set') 

 

inputs = [arg.flat[0] for arg in args] 

outputs = func(*inputs) 

 

# Performance note: profiling indicates that -- for simple 

# functions at least -- this wrapping can almost double the 

# execution time. 

# Hence we make it optional. 

if self.cache: 

_cache = [outputs] 

 

def _func(*vargs): 

if _cache: 

return _cache.pop() 

else: 

return func(*vargs) 

else: 

_func = func 

 

if isinstance(outputs, tuple): 

nout = len(outputs) 

else: 

nout = 1 

outputs = (outputs,) 

 

otypes = ''.join([asarray(outputs[_k]).dtype.char 

for _k in range(nout)]) 

 

# Performance note: profiling indicates that creating the ufunc is 

# not a significant cost compared with wrapping so it seems not 

# worth trying to cache this. 

ufunc = frompyfunc(_func, len(args), nout) 

 

return ufunc, otypes 

 

def _vectorize_call(self, func, args): 

"""Vectorized call to `func` over positional `args`.""" 

if self.signature is not None: 

res = self._vectorize_call_with_signature(func, args) 

elif not args: 

res = func() 

else: 

ufunc, otypes = self._get_ufunc_and_otypes(func=func, args=args) 

 

# Convert args to object arrays first 

inputs = [array(a, copy=False, subok=True, dtype=object) 

for a in args] 

 

outputs = ufunc(*inputs) 

 

if ufunc.nout == 1: 

res = array(outputs, copy=False, subok=True, dtype=otypes[0]) 

else: 

res = tuple([array(x, copy=False, subok=True, dtype=t) 

for x, t in zip(outputs, otypes)]) 

return res 

 

def _vectorize_call_with_signature(self, func, args): 

"""Vectorized call over positional arguments with a signature.""" 

input_core_dims, output_core_dims = self._in_and_out_core_dims 

 

if len(args) != len(input_core_dims): 

raise TypeError('wrong number of positional arguments: ' 

'expected %r, got %r' 

% (len(input_core_dims), len(args))) 

args = tuple(asanyarray(arg) for arg in args) 

 

broadcast_shape, dim_sizes = _parse_input_dimensions( 

args, input_core_dims) 

input_shapes = _calculate_shapes(broadcast_shape, dim_sizes, 

input_core_dims) 

args = [np.broadcast_to(arg, shape, subok=True) 

for arg, shape in zip(args, input_shapes)] 

 

outputs = None 

otypes = self.otypes 

nout = len(output_core_dims) 

 

for index in np.ndindex(*broadcast_shape): 

results = func(*(arg[index] for arg in args)) 

 

n_results = len(results) if isinstance(results, tuple) else 1 

 

if nout != n_results: 

raise ValueError( 

'wrong number of outputs from pyfunc: expected %r, got %r' 

% (nout, n_results)) 

 

if nout == 1: 

results = (results,) 

 

if outputs is None: 

for result, core_dims in zip(results, output_core_dims): 

_update_dim_sizes(dim_sizes, result, core_dims) 

 

if otypes is None: 

otypes = [asarray(result).dtype for result in results] 

 

outputs = _create_arrays(broadcast_shape, dim_sizes, 

output_core_dims, otypes) 

 

for output, result in zip(outputs, results): 

output[index] = result 

 

if outputs is None: 

# did not call the function even once 

if otypes is None: 

raise ValueError('cannot call `vectorize` on size 0 inputs ' 

'unless `otypes` is set') 

if builtins.any(dim not in dim_sizes 

for dims in output_core_dims 

for dim in dims): 

raise ValueError('cannot call `vectorize` with a signature ' 

'including new output dimensions on size 0 ' 

'inputs') 

outputs = _create_arrays(broadcast_shape, dim_sizes, 

output_core_dims, otypes) 

 

return outputs[0] if nout == 1 else outputs 

 

 

def _cov_dispatcher(m, y=None, rowvar=None, bias=None, ddof=None, 

fweights=None, aweights=None): 

return (m, y, fweights, aweights) 

 

 

@array_function_dispatch(_cov_dispatcher) 

def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, 

aweights=None): 

""" 

Estimate a covariance matrix, given data and weights. 

 

Covariance indicates the level to which two variables vary together. 

If we examine N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]^T`, 

then the covariance matrix element :math:`C_{ij}` is the covariance of 

:math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance 

of :math:`x_i`. 

 

See the notes for an outline of the algorithm. 

 

Parameters 

---------- 

m : array_like 

A 1-D or 2-D array containing multiple variables and observations. 

Each row of `m` represents a variable, and each column a single 

observation of all those variables. Also see `rowvar` below. 

y : array_like, optional 

An additional set of variables and observations. `y` has the same form 

as that of `m`. 

rowvar : bool, optional 

If `rowvar` is True (default), then each row represents a 

variable, with observations in the columns. Otherwise, the relationship 

is transposed: each column represents a variable, while the rows 

contain observations. 

bias : bool, optional 

Default normalization (False) is by ``(N - 1)``, where ``N`` is the 

number of observations given (unbiased estimate). If `bias` is True, 

then normalization is by ``N``. These values can be overridden by using 

the keyword ``ddof`` in numpy versions >= 1.5. 

ddof : int, optional 

If not ``None`` the default value implied by `bias` is overridden. 

Note that ``ddof=1`` will return the unbiased estimate, even if both 

`fweights` and `aweights` are specified, and ``ddof=0`` will return 

the simple average. See the notes for the details. The default value 

is ``None``. 

 

.. versionadded:: 1.5 

fweights : array_like, int, optional 

1-D array of integer frequency weights; the number of times each 

observation vector should be repeated. 

 

.. versionadded:: 1.10 

aweights : array_like, optional 

1-D array of observation vector weights. These relative weights are 

typically large for observations considered "important" and smaller for 

observations considered less "important". If ``ddof=0`` the array of 

weights can be used to assign probabilities to observation vectors. 

 

.. versionadded:: 1.10 

 

Returns 

------- 

out : ndarray 

The covariance matrix of the variables. 

 

See Also 

-------- 

corrcoef : Normalized covariance matrix 

 

Notes 

----- 

Assume that the observations are in the columns of the observation 

array `m` and let ``f = fweights`` and ``a = aweights`` for brevity. The 

steps to compute the weighted covariance are as follows:: 

 

>>> w = f * a 

>>> v1 = np.sum(w) 

>>> v2 = np.sum(w * a) 

>>> m -= np.sum(m * w, axis=1, keepdims=True) / v1 

>>> cov = np.dot(m * w, m.T) * v1 / (v1**2 - ddof * v2) 

 

Note that when ``a == 1``, the normalization factor 

``v1 / (v1**2 - ddof * v2)`` goes over to ``1 / (np.sum(f) - ddof)`` 

as it should. 

 

Examples 

-------- 

Consider two variables, :math:`x_0` and :math:`x_1`, which 

correlate perfectly, but in opposite directions: 

 

>>> x = np.array([[0, 2], [1, 1], [2, 0]]).T 

>>> x 

array([[0, 1, 2], 

[2, 1, 0]]) 

 

Note how :math:`x_0` increases while :math:`x_1` decreases. The covariance 

matrix shows this clearly: 

 

>>> np.cov(x) 

array([[ 1., -1.], 

[-1., 1.]]) 

 

Note that element :math:`C_{0,1}`, which shows the correlation between 

:math:`x_0` and :math:`x_1`, is negative. 

 

Further, note how `x` and `y` are combined: 

 

>>> x = [-2.1, -1, 4.3] 

>>> y = [3, 1.1, 0.12] 

>>> X = np.stack((x, y), axis=0) 

>>> print(np.cov(X)) 

[[ 11.71 -4.286 ] 

[ -4.286 2.14413333]] 

>>> print(np.cov(x, y)) 

[[ 11.71 -4.286 ] 

[ -4.286 2.14413333]] 

>>> print(np.cov(x)) 

11.71 

 

""" 

# Check inputs 

if ddof is not None and ddof != int(ddof): 

raise ValueError( 

"ddof must be integer") 

 

# Handles complex arrays too 

m = np.asarray(m) 

if m.ndim > 2: 

raise ValueError("m has more than 2 dimensions") 

 

if y is None: 

dtype = np.result_type(m, np.float64) 

else: 

y = np.asarray(y) 

if y.ndim > 2: 

raise ValueError("y has more than 2 dimensions") 

dtype = np.result_type(m, y, np.float64) 

 

X = array(m, ndmin=2, dtype=dtype) 

if not rowvar and X.shape[0] != 1: 

X = X.T 

if X.shape[0] == 0: 

return np.array([]).reshape(0, 0) 

if y is not None: 

y = array(y, copy=False, ndmin=2, dtype=dtype) 

if not rowvar and y.shape[0] != 1: 

y = y.T 

X = np.concatenate((X, y), axis=0) 

 

if ddof is None: 

if bias == 0: 

ddof = 1 

else: 

ddof = 0 

 

# Get the product of frequencies and weights 

w = None 

if fweights is not None: 

fweights = np.asarray(fweights, dtype=float) 

if not np.all(fweights == np.around(fweights)): 

raise TypeError( 

"fweights must be integer") 

if fweights.ndim > 1: 

raise RuntimeError( 

"cannot handle multidimensional fweights") 

if fweights.shape[0] != X.shape[1]: 

raise RuntimeError( 

"incompatible numbers of samples and fweights") 

if any(fweights < 0): 

raise ValueError( 

"fweights cannot be negative") 

w = fweights 

if aweights is not None: 

aweights = np.asarray(aweights, dtype=float) 

if aweights.ndim > 1: 

raise RuntimeError( 

"cannot handle multidimensional aweights") 

if aweights.shape[0] != X.shape[1]: 

raise RuntimeError( 

"incompatible numbers of samples and aweights") 

if any(aweights < 0): 

raise ValueError( 

"aweights cannot be negative") 

if w is None: 

w = aweights 

else: 

w *= aweights 

 

avg, w_sum = average(X, axis=1, weights=w, returned=True) 

w_sum = w_sum[0] 

 

# Determine the normalization 

if w is None: 

fact = X.shape[1] - ddof 

elif ddof == 0: 

fact = w_sum 

elif aweights is None: 

fact = w_sum - ddof 

else: 

fact = w_sum - ddof*sum(w*aweights)/w_sum 

 

if fact <= 0: 

warnings.warn("Degrees of freedom <= 0 for slice", 

RuntimeWarning, stacklevel=2) 

fact = 0.0 

 

X -= avg[:, None] 

if w is None: 

X_T = X.T 

else: 

X_T = (X*w).T 

c = dot(X, X_T.conj()) 

c *= np.true_divide(1, fact) 

return c.squeeze() 

 

 

def _corrcoef_dispatcher(x, y=None, rowvar=None, bias=None, ddof=None): 

return (x, y) 

 

 

@array_function_dispatch(_corrcoef_dispatcher) 

def corrcoef(x, y=None, rowvar=True, bias=np._NoValue, ddof=np._NoValue): 

""" 

Return Pearson product-moment correlation coefficients. 

 

Please refer to the documentation for `cov` for more detail. The 

relationship between the correlation coefficient matrix, `R`, and the 

covariance matrix, `C`, is 

 

.. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } } 

 

The values of `R` are between -1 and 1, inclusive. 

 

Parameters 

---------- 

x : array_like 

A 1-D or 2-D array containing multiple variables and observations. 

Each row of `x` represents a variable, and each column a single 

observation of all those variables. Also see `rowvar` below. 

y : array_like, optional 

An additional set of variables and observations. `y` has the same 

shape as `x`. 

rowvar : bool, optional 

If `rowvar` is True (default), then each row represents a 

variable, with observations in the columns. Otherwise, the relationship 

is transposed: each column represents a variable, while the rows 

contain observations. 

bias : _NoValue, optional 

Has no effect, do not use. 

 

.. deprecated:: 1.10.0 

ddof : _NoValue, optional 

Has no effect, do not use. 

 

.. deprecated:: 1.10.0 

 

Returns 

------- 

R : ndarray 

The correlation coefficient matrix of the variables. 

 

See Also 

-------- 

cov : Covariance matrix 

 

Notes 

----- 

Due to floating point rounding the resulting array may not be Hermitian, 

the diagonal elements may not be 1, and the elements may not satisfy the 

inequality abs(a) <= 1. The real and imaginary parts are clipped to the 

interval [-1, 1] in an attempt to improve on that situation but is not 

much help in the complex case. 

 

This function accepts but discards arguments `bias` and `ddof`. This is 

for backwards compatibility with previous versions of this function. These 

arguments had no effect on the return values of the function and can be 

safely ignored in this and previous versions of numpy. 

 

""" 

if bias is not np._NoValue or ddof is not np._NoValue: 

# 2015-03-15, 1.10 

warnings.warn('bias and ddof have no effect and are deprecated', 

DeprecationWarning, stacklevel=2) 

c = cov(x, y, rowvar) 

try: 

d = diag(c) 

except ValueError: 

# scalar covariance 

# nan if incorrect value (nan, inf, 0), 1 otherwise 

return c / c 

stddev = sqrt(d.real) 

c /= stddev[:, None] 

c /= stddev[None, :] 

 

# Clip real and imaginary parts to [-1, 1]. This does not guarantee 

# abs(a[i,j]) <= 1 for complex arrays, but is the best we can do without 

# excessive work. 

np.clip(c.real, -1, 1, out=c.real) 

if np.iscomplexobj(c): 

np.clip(c.imag, -1, 1, out=c.imag) 

 

return c 

 

 

@set_module('numpy') 

def blackman(M): 

""" 

Return the Blackman window. 

 

The Blackman window is a taper formed by using the first three 

terms of a summation of cosines. It was designed to have close to the 

minimal leakage possible. It is close to optimal, only slightly worse 

than a Kaiser window. 

 

Parameters 

---------- 

M : int 

Number of points in the output window. If zero or less, an empty 

array is returned. 

 

Returns 

------- 

out : ndarray 

The window, with the maximum value normalized to one (the value one 

appears only if the number of samples is odd). 

 

See Also 

-------- 

bartlett, hamming, hanning, kaiser 

 

Notes 

----- 

The Blackman window is defined as 

 

.. math:: w(n) = 0.42 - 0.5 \\cos(2\\pi n/M) + 0.08 \\cos(4\\pi n/M) 

 

Most references to the Blackman window come from the signal processing 

literature, where it is used as one of many windowing functions for 

smoothing values. It is also known as an apodization (which means 

"removing the foot", i.e. smoothing discontinuities at the beginning 

and end of the sampled signal) or tapering function. It is known as a 

"near optimal" tapering function, almost as good (by some measures) 

as the kaiser window. 

 

References 

---------- 

Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, 

Dover Publications, New York. 

 

Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. 

Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471. 

 

Examples 

-------- 

>>> import matplotlib.pyplot as plt 

>>> np.blackman(12) 

array([ -1.38777878e-17, 3.26064346e-02, 1.59903635e-01, 

4.14397981e-01, 7.36045180e-01, 9.67046769e-01, 

9.67046769e-01, 7.36045180e-01, 4.14397981e-01, 

1.59903635e-01, 3.26064346e-02, -1.38777878e-17]) 

 

 

Plot the window and the frequency response: 

 

>>> from numpy.fft import fft, fftshift 

>>> window = np.blackman(51) 

>>> plt.plot(window) 

[<matplotlib.lines.Line2D object at 0x...>] 

>>> plt.title("Blackman window") 

<matplotlib.text.Text object at 0x...> 

>>> plt.ylabel("Amplitude") 

<matplotlib.text.Text object at 0x...> 

>>> plt.xlabel("Sample") 

<matplotlib.text.Text object at 0x...> 

>>> plt.show() 

 

>>> plt.figure() 

<matplotlib.figure.Figure object at 0x...> 

>>> A = fft(window, 2048) / 25.5 

>>> mag = np.abs(fftshift(A)) 

>>> freq = np.linspace(-0.5, 0.5, len(A)) 

>>> response = 20 * np.log10(mag) 

>>> response = np.clip(response, -100, 100) 

>>> plt.plot(freq, response) 

[<matplotlib.lines.Line2D object at 0x...>] 

>>> plt.title("Frequency response of Blackman window") 

<matplotlib.text.Text object at 0x...> 

>>> plt.ylabel("Magnitude [dB]") 

<matplotlib.text.Text object at 0x...> 

>>> plt.xlabel("Normalized frequency [cycles per sample]") 

<matplotlib.text.Text object at 0x...> 

>>> plt.axis('tight') 

(-0.5, 0.5, -100.0, ...) 

>>> plt.show() 

 

""" 

if M < 1: 

return array([]) 

if M == 1: 

return ones(1, float) 

n = arange(0, M) 

return 0.42 - 0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1)) 

 

 

@set_module('numpy') 

def bartlett(M): 

""" 

Return the Bartlett window. 

 

The Bartlett window is very similar to a triangular window, except 

that the end points are at zero. It is often used in signal 

processing for tapering a signal, without generating too much 

ripple in the frequency domain. 

 

Parameters 

---------- 

M : int 

Number of points in the output window. If zero or less, an 

empty array is returned. 

 

Returns 

------- 

out : array 

The triangular window, with the maximum value normalized to one 

(the value one appears only if the number of samples is odd), with 

the first and last samples equal to zero. 

 

See Also 

-------- 

blackman, hamming, hanning, kaiser 

 

Notes 

----- 

The Bartlett window is defined as 

 

.. math:: w(n) = \\frac{2}{M-1} \\left( 

\\frac{M-1}{2} - \\left|n - \\frac{M-1}{2}\\right| 

\\right) 

 

Most references to the Bartlett window come from the signal 

processing literature, where it is used as one of many windowing 

functions for smoothing values. Note that convolution with this 

window produces linear interpolation. It is also known as an 

apodization (which means"removing the foot", i.e. smoothing 

discontinuities at the beginning and end of the sampled signal) or 

tapering function. The fourier transform of the Bartlett is the product 

of two sinc functions. 

Note the excellent discussion in Kanasewich. 

 

References 

---------- 

.. [1] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra", 

Biometrika 37, 1-16, 1950. 

.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", 

The University of Alberta Press, 1975, pp. 109-110. 

.. [3] A.V. Oppenheim and R.W. Schafer, "Discrete-Time Signal 

Processing", Prentice-Hall, 1999, pp. 468-471. 

.. [4] Wikipedia, "Window function", 

https://en.wikipedia.org/wiki/Window_function 

.. [5] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, 

"Numerical Recipes", Cambridge University Press, 1986, page 429. 

 

Examples 

-------- 

>>> np.bartlett(12) 

array([ 0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273, 

0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636, 

0.18181818, 0. ]) 

 

Plot the window and its frequency response (requires SciPy and matplotlib): 

 

>>> from numpy.fft import fft, fftshift 

>>> window = np.bartlett(51) 

>>> plt.plot(window) 

[<matplotlib.lines.Line2D object at 0x...>] 

>>> plt.title("Bartlett window") 

<matplotlib.text.Text object at 0x...> 

>>> plt.ylabel("Amplitude") 

<matplotlib.text.Text object at 0x...> 

>>> plt.xlabel("Sample") 

<matplotlib.text.Text object at 0x...> 

>>> plt.show() 

 

>>> plt.figure() 

<matplotlib.figure.Figure object at 0x...> 

>>> A = fft(window, 2048) / 25.5 

>>> mag = np.abs(fftshift(A)) 

>>> freq = np.linspace(-0.5, 0.5, len(A)) 

>>> response = 20 * np.log10(mag) 

>>> response = np.clip(response, -100, 100) 

>>> plt.plot(freq, response) 

[<matplotlib.lines.Line2D object at 0x...>] 

>>> plt.title("Frequency response of Bartlett window") 

<matplotlib.text.Text object at 0x...> 

>>> plt.ylabel("Magnitude [dB]") 

<matplotlib.text.Text object at 0x...> 

>>> plt.xlabel("Normalized frequency [cycles per sample]") 

<matplotlib.text.Text object at 0x...> 

>>> plt.axis('tight') 

(-0.5, 0.5, -100.0, ...) 

>>> plt.show() 

 

""" 

if M < 1: 

return array([]) 

if M == 1: 

return ones(1, float) 

n = arange(0, M) 

return where(less_equal(n, (M-1)/2.0), 2.0*n/(M-1), 2.0 - 2.0*n/(M-1)) 

 

 

@set_module('numpy') 

def hanning(M): 

""" 

Return the Hanning window. 

 

The Hanning window is a taper formed by using a weighted cosine. 

 

Parameters 

---------- 

M : int 

Number of points in the output window. If zero or less, an 

empty array is returned. 

 

Returns 

------- 

out : ndarray, shape(M,) 

The window, with the maximum value normalized to one (the value 

one appears only if `M` is odd). 

 

See Also 

-------- 

bartlett, blackman, hamming, kaiser 

 

Notes 

----- 

The Hanning window is defined as 

 

.. math:: w(n) = 0.5 - 0.5cos\\left(\\frac{2\\pi{n}}{M-1}\\right) 

\\qquad 0 \\leq n \\leq M-1 

 

The Hanning was named for Julius von Hann, an Austrian meteorologist. 

It is also known as the Cosine Bell. Some authors prefer that it be 

called a Hann window, to help avoid confusion with the very similar 

Hamming window. 

 

Most references to the Hanning window come from the signal processing 

literature, where it is used as one of many windowing functions for 

smoothing values. It is also known as an apodization (which means 

"removing the foot", i.e. smoothing discontinuities at the beginning 

and end of the sampled signal) or tapering function. 

 

References 

---------- 

.. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power 

spectra, Dover Publications, New York. 

.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", 

The University of Alberta Press, 1975, pp. 106-108. 

.. [3] Wikipedia, "Window function", 

https://en.wikipedia.org/wiki/Window_function 

.. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, 

"Numerical Recipes", Cambridge University Press, 1986, page 425. 

 

Examples 

-------- 

>>> np.hanning(12) 

array([ 0. , 0.07937323, 0.29229249, 0.57115742, 0.82743037, 

0.97974649, 0.97974649, 0.82743037, 0.57115742, 0.29229249, 

0.07937323, 0. ]) 

 

Plot the window and its frequency response: 

 

>>> import matplotlib.pyplot as plt 

>>> from numpy.fft import fft, fftshift 

>>> window = np.hanning(51) 

>>> plt.plot(window) 

[<matplotlib.lines.Line2D object at 0x...>] 

>>> plt.title("Hann window") 

<matplotlib.text.Text object at 0x...> 

>>> plt.ylabel("Amplitude") 

<matplotlib.text.Text object at 0x...> 

>>> plt.xlabel("Sample") 

<matplotlib.text.Text object at 0x...> 

>>> plt.show() 

 

>>> plt.figure() 

<matplotlib.figure.Figure object at 0x...> 

>>> A = fft(window, 2048) / 25.5 

>>> mag = np.abs(fftshift(A)) 

>>> freq = np.linspace(-0.5, 0.5, len(A)) 

>>> response = 20 * np.log10(mag) 

>>> response = np.clip(response, -100, 100) 

>>> plt.plot(freq, response) 

[<matplotlib.lines.Line2D object at 0x...>] 

>>> plt.title("Frequency response of the Hann window") 

<matplotlib.text.Text object at 0x...> 

>>> plt.ylabel("Magnitude [dB]") 

<matplotlib.text.Text object at 0x...> 

>>> plt.xlabel("Normalized frequency [cycles per sample]") 

<matplotlib.text.Text object at 0x...> 

>>> plt.axis('tight') 

(-0.5, 0.5, -100.0, ...) 

>>> plt.show() 

 

""" 

if M < 1: 

return array([]) 

if M == 1: 

return ones(1, float) 

n = arange(0, M) 

return 0.5 - 0.5*cos(2.0*pi*n/(M-1)) 

 

 

@set_module('numpy') 

def hamming(M): 

""" 

Return the Hamming window. 

 

The Hamming window is a taper formed by using a weighted cosine. 

 

Parameters 

---------- 

M : int 

Number of points in the output window. If zero or less, an 

empty array is returned. 

 

Returns 

------- 

out : ndarray 

The window, with the maximum value normalized to one (the value 

one appears only if the number of samples is odd). 

 

See Also 

-------- 

bartlett, blackman, hanning, kaiser 

 

Notes 

----- 

The Hamming window is defined as 

 

.. math:: w(n) = 0.54 - 0.46cos\\left(\\frac{2\\pi{n}}{M-1}\\right) 

\\qquad 0 \\leq n \\leq M-1 

 

The Hamming was named for R. W. Hamming, an associate of J. W. Tukey 

and is described in Blackman and Tukey. It was recommended for 

smoothing the truncated autocovariance function in the time domain. 

Most references to the Hamming window come from the signal processing 

literature, where it is used as one of many windowing functions for 

smoothing values. It is also known as an apodization (which means 

"removing the foot", i.e. smoothing discontinuities at the beginning 

and end of the sampled signal) or tapering function. 

 

References 

---------- 

.. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power 

spectra, Dover Publications, New York. 

.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The 

University of Alberta Press, 1975, pp. 109-110. 

.. [3] Wikipedia, "Window function", 

https://en.wikipedia.org/wiki/Window_function 

.. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, 

"Numerical Recipes", Cambridge University Press, 1986, page 425. 

 

Examples 

-------- 

>>> np.hamming(12) 

array([ 0.08 , 0.15302337, 0.34890909, 0.60546483, 0.84123594, 

0.98136677, 0.98136677, 0.84123594, 0.60546483, 0.34890909, 

0.15302337, 0.08 ]) 

 

Plot the window and the frequency response: 

 

>>> import matplotlib.pyplot as plt 

>>> from numpy.fft import fft, fftshift 

>>> window = np.hamming(51) 

>>> plt.plot(window) 

[<matplotlib.lines.Line2D object at 0x...>] 

>>> plt.title("Hamming window") 

<matplotlib.text.Text object at 0x...> 

>>> plt.ylabel("Amplitude") 

<matplotlib.text.Text object at 0x...> 

>>> plt.xlabel("Sample") 

<matplotlib.text.Text object at 0x...> 

>>> plt.show() 

 

>>> plt.figure() 

<matplotlib.figure.Figure object at 0x...> 

>>> A = fft(window, 2048) / 25.5 

>>> mag = np.abs(fftshift(A)) 

>>> freq = np.linspace(-0.5, 0.5, len(A)) 

>>> response = 20 * np.log10(mag) 

>>> response = np.clip(response, -100, 100) 

>>> plt.plot(freq, response) 

[<matplotlib.lines.Line2D object at 0x...>] 

>>> plt.title("Frequency response of Hamming window") 

<matplotlib.text.Text object at 0x...> 

>>> plt.ylabel("Magnitude [dB]") 

<matplotlib.text.Text object at 0x...> 

>>> plt.xlabel("Normalized frequency [cycles per sample]") 

<matplotlib.text.Text object at 0x...> 

>>> plt.axis('tight') 

(-0.5, 0.5, -100.0, ...) 

>>> plt.show() 

 

""" 

if M < 1: 

return array([]) 

if M == 1: 

return ones(1, float) 

n = arange(0, M) 

return 0.54 - 0.46*cos(2.0*pi*n/(M-1)) 

 

## Code from cephes for i0 

 

_i0A = [ 

-4.41534164647933937950E-18, 

3.33079451882223809783E-17, 

-2.43127984654795469359E-16, 

1.71539128555513303061E-15, 

-1.16853328779934516808E-14, 

7.67618549860493561688E-14, 

-4.85644678311192946090E-13, 

2.95505266312963983461E-12, 

-1.72682629144155570723E-11, 

9.67580903537323691224E-11, 

-5.18979560163526290666E-10, 

2.65982372468238665035E-9, 

-1.30002500998624804212E-8, 

6.04699502254191894932E-8, 

-2.67079385394061173391E-7, 

1.11738753912010371815E-6, 

-4.41673835845875056359E-6, 

1.64484480707288970893E-5, 

-5.75419501008210370398E-5, 

1.88502885095841655729E-4, 

-5.76375574538582365885E-4, 

1.63947561694133579842E-3, 

-4.32430999505057594430E-3, 

1.05464603945949983183E-2, 

-2.37374148058994688156E-2, 

4.93052842396707084878E-2, 

-9.49010970480476444210E-2, 

1.71620901522208775349E-1, 

-3.04682672343198398683E-1, 

6.76795274409476084995E-1 

] 

 

_i0B = [ 

-7.23318048787475395456E-18, 

-4.83050448594418207126E-18, 

4.46562142029675999901E-17, 

3.46122286769746109310E-17, 

-2.82762398051658348494E-16, 

-3.42548561967721913462E-16, 

1.77256013305652638360E-15, 

3.81168066935262242075E-15, 

-9.55484669882830764870E-15, 

-4.15056934728722208663E-14, 

1.54008621752140982691E-14, 

3.85277838274214270114E-13, 

7.18012445138366623367E-13, 

-1.79417853150680611778E-12, 

-1.32158118404477131188E-11, 

-3.14991652796324136454E-11, 

1.18891471078464383424E-11, 

4.94060238822496958910E-10, 

3.39623202570838634515E-9, 

2.26666899049817806459E-8, 

2.04891858946906374183E-7, 

2.89137052083475648297E-6, 

6.88975834691682398426E-5, 

3.36911647825569408990E-3, 

8.04490411014108831608E-1 

] 

 

 

def _chbevl(x, vals): 

b0 = vals[0] 

b1 = 0.0 

 

for i in range(1, len(vals)): 

b2 = b1 

b1 = b0 

b0 = x*b1 - b2 + vals[i] 

 

return 0.5*(b0 - b2) 

 

 

def _i0_1(x): 

return exp(x) * _chbevl(x/2.0-2, _i0A) 

 

 

def _i0_2(x): 

return exp(x) * _chbevl(32.0/x - 2.0, _i0B) / sqrt(x) 

 

 

def _i0_dispatcher(x): 

return (x,) 

 

 

@array_function_dispatch(_i0_dispatcher) 

def i0(x): 

""" 

Modified Bessel function of the first kind, order 0. 

 

Usually denoted :math:`I_0`. This function does broadcast, but will *not* 

"up-cast" int dtype arguments unless accompanied by at least one float or 

complex dtype argument (see Raises below). 

 

Parameters 

---------- 

x : array_like, dtype float or complex 

Argument of the Bessel function. 

 

Returns 

------- 

out : ndarray, shape = x.shape, dtype = x.dtype 

The modified Bessel function evaluated at each of the elements of `x`. 

 

Raises 

------ 

TypeError: array cannot be safely cast to required type 

If argument consists exclusively of int dtypes. 

 

See Also 

-------- 

scipy.special.iv, scipy.special.ive 

 

Notes 

----- 

We use the algorithm published by Clenshaw [1]_ and referenced by 

Abramowitz and Stegun [2]_, for which the function domain is 

partitioned into the two intervals [0,8] and (8,inf), and Chebyshev 

polynomial expansions are employed in each interval. Relative error on 

the domain [0,30] using IEEE arithmetic is documented [3]_ as having a 

peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000). 

 

References 

---------- 

.. [1] C. W. Clenshaw, "Chebyshev series for mathematical functions", in 

*National Physical Laboratory Mathematical Tables*, vol. 5, London: 

Her Majesty's Stationery Office, 1962. 

.. [2] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical 

Functions*, 10th printing, New York: Dover, 1964, pp. 379. 

http://www.math.sfu.ca/~cbm/aands/page_379.htm 

.. [3] http://kobesearch.cpan.org/htdocs/Math-Cephes/Math/Cephes.html 

 

Examples 

-------- 

>>> np.i0([0.]) 

array(1.0) 

>>> np.i0([0., 1. + 2j]) 

array([ 1.00000000+0.j , 0.18785373+0.64616944j]) 

 

""" 

x = atleast_1d(x).copy() 

y = empty_like(x) 

ind = (x < 0) 

x[ind] = -x[ind] 

ind = (x <= 8.0) 

y[ind] = _i0_1(x[ind]) 

ind2 = ~ind 

y[ind2] = _i0_2(x[ind2]) 

return y.squeeze() 

 

## End of cephes code for i0 

 

 

@set_module('numpy') 

def kaiser(M, beta): 

""" 

Return the Kaiser window. 

 

The Kaiser window is a taper formed by using a Bessel function. 

 

Parameters 

---------- 

M : int 

Number of points in the output window. If zero or less, an 

empty array is returned. 

beta : float 

Shape parameter for window. 

 

Returns 

------- 

out : array 

The window, with the maximum value normalized to one (the value 

one appears only if the number of samples is odd). 

 

See Also 

-------- 

bartlett, blackman, hamming, hanning 

 

Notes 

----- 

The Kaiser window is defined as 

 

.. math:: w(n) = I_0\\left( \\beta \\sqrt{1-\\frac{4n^2}{(M-1)^2}} 

\\right)/I_0(\\beta) 

 

with 

 

.. math:: \\quad -\\frac{M-1}{2} \\leq n \\leq \\frac{M-1}{2}, 

 

where :math:`I_0` is the modified zeroth-order Bessel function. 

 

The Kaiser was named for Jim Kaiser, who discovered a simple 

approximation to the DPSS window based on Bessel functions. The Kaiser 

window is a very good approximation to the Digital Prolate Spheroidal 

Sequence, or Slepian window, which is the transform which maximizes the 

energy in the main lobe of the window relative to total energy. 

 

The Kaiser can approximate many other windows by varying the beta 

parameter. 

 

==== ======================= 

beta Window shape 

==== ======================= 

0 Rectangular 

5 Similar to a Hamming 

6 Similar to a Hanning 

8.6 Similar to a Blackman 

==== ======================= 

 

A beta value of 14 is probably a good starting point. Note that as beta 

gets large, the window narrows, and so the number of samples needs to be 

large enough to sample the increasingly narrow spike, otherwise NaNs will 

get returned. 

 

Most references to the Kaiser window come from the signal processing 

literature, where it is used as one of many windowing functions for 

smoothing values. It is also known as an apodization (which means 

"removing the foot", i.e. smoothing discontinuities at the beginning 

and end of the sampled signal) or tapering function. 

 

References 

---------- 

.. [1] J. F. Kaiser, "Digital Filters" - Ch 7 in "Systems analysis by 

digital computer", Editors: F.F. Kuo and J.F. Kaiser, p 218-285. 

John Wiley and Sons, New York, (1966). 

.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The 

University of Alberta Press, 1975, pp. 177-178. 

.. [3] Wikipedia, "Window function", 

https://en.wikipedia.org/wiki/Window_function 

 

Examples 

-------- 

>>> import matplotlib.pyplot as plt 

>>> np.kaiser(12, 14) 

array([ 7.72686684e-06, 3.46009194e-03, 4.65200189e-02, 

2.29737120e-01, 5.99885316e-01, 9.45674898e-01, 

9.45674898e-01, 5.99885316e-01, 2.29737120e-01, 

4.65200189e-02, 3.46009194e-03, 7.72686684e-06]) 

 

 

Plot the window and the frequency response: 

 

>>> from numpy.fft import fft, fftshift 

>>> window = np.kaiser(51, 14) 

>>> plt.plot(window) 

[<matplotlib.lines.Line2D object at 0x...>] 

>>> plt.title("Kaiser window") 

<matplotlib.text.Text object at 0x...> 

>>> plt.ylabel("Amplitude") 

<matplotlib.text.Text object at 0x...> 

>>> plt.xlabel("Sample") 

<matplotlib.text.Text object at 0x...> 

>>> plt.show() 

 

>>> plt.figure() 

<matplotlib.figure.Figure object at 0x...> 

>>> A = fft(window, 2048) / 25.5 

>>> mag = np.abs(fftshift(A)) 

>>> freq = np.linspace(-0.5, 0.5, len(A)) 

>>> response = 20 * np.log10(mag) 

>>> response = np.clip(response, -100, 100) 

>>> plt.plot(freq, response) 

[<matplotlib.lines.Line2D object at 0x...>] 

>>> plt.title("Frequency response of Kaiser window") 

<matplotlib.text.Text object at 0x...> 

>>> plt.ylabel("Magnitude [dB]") 

<matplotlib.text.Text object at 0x...> 

>>> plt.xlabel("Normalized frequency [cycles per sample]") 

<matplotlib.text.Text object at 0x...> 

>>> plt.axis('tight') 

(-0.5, 0.5, -100.0, ...) 

>>> plt.show() 

 

""" 

from numpy.dual import i0 

if M == 1: 

return np.array([1.]) 

n = arange(0, M) 

alpha = (M-1)/2.0 

return i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/i0(float(beta)) 

 

 

def _sinc_dispatcher(x): 

return (x,) 

 

 

@array_function_dispatch(_sinc_dispatcher) 

def sinc(x): 

""" 

Return the sinc function. 

 

The sinc function is :math:`\\sin(\\pi x)/(\\pi x)`. 

 

Parameters 

---------- 

x : ndarray 

Array (possibly multi-dimensional) of values for which to to 

calculate ``sinc(x)``. 

 

Returns 

------- 

out : ndarray 

``sinc(x)``, which has the same shape as the input. 

 

Notes 

----- 

``sinc(0)`` is the limit value 1. 

 

The name sinc is short for "sine cardinal" or "sinus cardinalis". 

 

The sinc function is used in various signal processing applications, 

including in anti-aliasing, in the construction of a Lanczos resampling 

filter, and in interpolation. 

 

For bandlimited interpolation of discrete-time signals, the ideal 

interpolation kernel is proportional to the sinc function. 

 

References 

---------- 

.. [1] Weisstein, Eric W. "Sinc Function." From MathWorld--A Wolfram Web 

Resource. http://mathworld.wolfram.com/SincFunction.html 

.. [2] Wikipedia, "Sinc function", 

https://en.wikipedia.org/wiki/Sinc_function 

 

Examples 

-------- 

>>> import matplotlib.pyplot as plt 

>>> x = np.linspace(-4, 4, 41) 

>>> np.sinc(x) 

array([ -3.89804309e-17, -4.92362781e-02, -8.40918587e-02, 

-8.90384387e-02, -5.84680802e-02, 3.89804309e-17, 

6.68206631e-02, 1.16434881e-01, 1.26137788e-01, 

8.50444803e-02, -3.89804309e-17, -1.03943254e-01, 

-1.89206682e-01, -2.16236208e-01, -1.55914881e-01, 

3.89804309e-17, 2.33872321e-01, 5.04551152e-01, 

7.56826729e-01, 9.35489284e-01, 1.00000000e+00, 

9.35489284e-01, 7.56826729e-01, 5.04551152e-01, 

2.33872321e-01, 3.89804309e-17, -1.55914881e-01, 

-2.16236208e-01, -1.89206682e-01, -1.03943254e-01, 

-3.89804309e-17, 8.50444803e-02, 1.26137788e-01, 

1.16434881e-01, 6.68206631e-02, 3.89804309e-17, 

-5.84680802e-02, -8.90384387e-02, -8.40918587e-02, 

-4.92362781e-02, -3.89804309e-17]) 

 

>>> plt.plot(x, np.sinc(x)) 

[<matplotlib.lines.Line2D object at 0x...>] 

>>> plt.title("Sinc Function") 

<matplotlib.text.Text object at 0x...> 

>>> plt.ylabel("Amplitude") 

<matplotlib.text.Text object at 0x...> 

>>> plt.xlabel("X") 

<matplotlib.text.Text object at 0x...> 

>>> plt.show() 

 

It works in 2-D as well: 

 

>>> x = np.linspace(-4, 4, 401) 

>>> xx = np.outer(x, x) 

>>> plt.imshow(np.sinc(xx)) 

<matplotlib.image.AxesImage object at 0x...> 

 

""" 

x = np.asanyarray(x) 

y = pi * where(x == 0, 1.0e-20, x) 

return sin(y)/y 

 

 

def _msort_dispatcher(a): 

return (a,) 

 

 

@array_function_dispatch(_msort_dispatcher) 

def msort(a): 

""" 

Return a copy of an array sorted along the first axis. 

 

Parameters 

---------- 

a : array_like 

Array to be sorted. 

 

Returns 

------- 

sorted_array : ndarray 

Array of the same type and shape as `a`. 

 

See Also 

-------- 

sort 

 

Notes 

----- 

``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. 

 

""" 

b = array(a, subok=True, copy=True) 

b.sort(0) 

return b 

 

 

def _ureduce(a, func, **kwargs): 

""" 

Internal Function. 

Call `func` with `a` as first argument swapping the axes to use extended 

axis on functions that don't support it natively. 

 

Returns result and a.shape with axis dims set to 1. 

 

Parameters 

---------- 

a : array_like 

Input array or object that can be converted to an array. 

func : callable 

Reduction function capable of receiving a single axis argument. 

It is called with `a` as first argument followed by `kwargs`. 

kwargs : keyword arguments 

additional keyword arguments to pass to `func`. 

 

Returns 

------- 

result : tuple 

Result of func(a, **kwargs) and a.shape with axis dims set to 1 

which can be used to reshape the result to the same shape a ufunc with 

keepdims=True would produce. 

 

""" 

a = np.asanyarray(a) 

axis = kwargs.get('axis', None) 

if axis is not None: 

keepdim = list(a.shape) 

nd = a.ndim 

axis = _nx.normalize_axis_tuple(axis, nd) 

 

for ax in axis: 

keepdim[ax] = 1 

 

if len(axis) == 1: 

kwargs['axis'] = axis[0] 

else: 

keep = set(range(nd)) - set(axis) 

nkeep = len(keep) 

# swap axis that should not be reduced to front 

for i, s in enumerate(sorted(keep)): 

a = a.swapaxes(i, s) 

# merge reduced axis 

a = a.reshape(a.shape[:nkeep] + (-1,)) 

kwargs['axis'] = -1 

keepdim = tuple(keepdim) 

else: 

keepdim = (1,) * a.ndim 

 

r = func(a, **kwargs) 

return r, keepdim 

 

 

def _median_dispatcher( 

a, axis=None, out=None, overwrite_input=None, keepdims=None): 

return (a, out) 

 

 

@array_function_dispatch(_median_dispatcher) 

def median(a, axis=None, out=None, overwrite_input=False, keepdims=False): 

""" 

Compute the median along the specified axis. 

 

Returns the median of the array elements. 

 

Parameters 

---------- 

a : array_like 

Input array or object that can be converted to an array. 

axis : {int, sequence of int, None}, optional 

Axis or axes along which the medians are computed. The default 

is to compute the median along a flattened version of the array. 

A sequence of axes is supported since version 1.9.0. 

out : ndarray, optional 

Alternative output array in which to place the result. It must 

have the same shape and buffer length as the expected output, 

but the type (of the output) will be cast if necessary. 

overwrite_input : bool, optional 

If True, then allow use of memory of input array `a` for 

calculations. The input array will be modified by the call to 

`median`. This will save memory when you do not need to preserve 

the contents of the input array. Treat the input as undefined, 

but it will probably be fully or partially sorted. Default is 

False. If `overwrite_input` is ``True`` and `a` is not already an 

`ndarray`, an error will be raised. 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left 

in the result as dimensions with size one. With this option, 

the result will broadcast correctly against the original `arr`. 

 

.. versionadded:: 1.9.0 

 

Returns 

------- 

median : ndarray 

A new array holding the result. If the input contains integers 

or floats smaller than ``float64``, then the output data-type is 

``np.float64``. Otherwise, the data-type of the output is the 

same as that of the input. If `out` is specified, that array is 

returned instead. 

 

See Also 

-------- 

mean, percentile 

 

Notes 

----- 

Given a vector ``V`` of length ``N``, the median of ``V`` is the 

middle value of a sorted copy of ``V``, ``V_sorted`` - i 

e., ``V_sorted[(N-1)/2]``, when ``N`` is odd, and the average of the 

two middle values of ``V_sorted`` when ``N`` is even. 

 

Examples 

-------- 

>>> a = np.array([[10, 7, 4], [3, 2, 1]]) 

>>> a 

array([[10, 7, 4], 

[ 3, 2, 1]]) 

>>> np.median(a) 

3.5 

>>> np.median(a, axis=0) 

array([ 6.5, 4.5, 2.5]) 

>>> np.median(a, axis=1) 

array([ 7., 2.]) 

>>> m = np.median(a, axis=0) 

>>> out = np.zeros_like(m) 

>>> np.median(a, axis=0, out=m) 

array([ 6.5, 4.5, 2.5]) 

>>> m 

array([ 6.5, 4.5, 2.5]) 

>>> b = a.copy() 

>>> np.median(b, axis=1, overwrite_input=True) 

array([ 7., 2.]) 

>>> assert not np.all(a==b) 

>>> b = a.copy() 

>>> np.median(b, axis=None, overwrite_input=True) 

3.5 

>>> assert not np.all(a==b) 

 

""" 

r, k = _ureduce(a, func=_median, axis=axis, out=out, 

overwrite_input=overwrite_input) 

if keepdims: 

return r.reshape(k) 

else: 

return r 

 

def _median(a, axis=None, out=None, overwrite_input=False): 

# can't be reasonably be implemented in terms of percentile as we have to 

# call mean to not break astropy 

a = np.asanyarray(a) 

 

# Set the partition indexes 

if axis is None: 

sz = a.size 

else: 

sz = a.shape[axis] 

if sz % 2 == 0: 

szh = sz // 2 

kth = [szh - 1, szh] 

else: 

kth = [(sz - 1) // 2] 

# Check if the array contains any nan's 

if np.issubdtype(a.dtype, np.inexact): 

kth.append(-1) 

 

if overwrite_input: 

if axis is None: 

part = a.ravel() 

part.partition(kth) 

else: 

a.partition(kth, axis=axis) 

part = a 

else: 

part = partition(a, kth, axis=axis) 

 

if part.shape == (): 

# make 0-D arrays work 

return part.item() 

if axis is None: 

axis = 0 

 

indexer = [slice(None)] * part.ndim 

index = part.shape[axis] // 2 

if part.shape[axis] % 2 == 1: 

# index with slice to allow mean (below) to work 

indexer[axis] = slice(index, index+1) 

else: 

indexer[axis] = slice(index-1, index+1) 

indexer = tuple(indexer) 

 

# Check if the array contains any nan's 

if np.issubdtype(a.dtype, np.inexact) and sz > 0: 

# warn and return nans like mean would 

rout = mean(part[indexer], axis=axis, out=out) 

return np.lib.utils._median_nancheck(part, rout, axis, out) 

else: 

# if there are no nans 

# Use mean in odd and even case to coerce data type 

# and check, use out array. 

return mean(part[indexer], axis=axis, out=out) 

 

 

def _percentile_dispatcher(a, q, axis=None, out=None, overwrite_input=None, 

interpolation=None, keepdims=None): 

return (a, q, out) 

 

 

@array_function_dispatch(_percentile_dispatcher) 

def percentile(a, q, axis=None, out=None, 

overwrite_input=False, interpolation='linear', keepdims=False): 

""" 

Compute the q-th percentile of the data along the specified axis. 

 

Returns the q-th percentile(s) of the array elements. 

 

Parameters 

---------- 

a : array_like 

Input array or object that can be converted to an array. 

q : array_like of float 

Percentile or sequence of percentiles to compute, which must be between 

0 and 100 inclusive. 

axis : {int, tuple of int, None}, optional 

Axis or axes along which the percentiles are computed. The 

default is to compute the percentile(s) along a flattened 

version of the array. 

 

.. versionchanged:: 1.9.0 

A tuple of axes is supported 

out : ndarray, optional 

Alternative output array in which to place the result. It must 

have the same shape and buffer length as the expected output, 

but the type (of the output) will be cast if necessary. 

overwrite_input : bool, optional 

If True, then allow the input array `a` to be modified by intermediate 

calculations, to save memory. In this case, the contents of the input 

`a` after this function completes is undefined. 

 

interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} 

This optional parameter specifies the interpolation method to 

use when the desired percentile lies between two data points 

``i < j``: 

 

* 'linear': ``i + (j - i) * fraction``, where ``fraction`` 

is the fractional part of the index surrounded by ``i`` 

and ``j``. 

* 'lower': ``i``. 

* 'higher': ``j``. 

* 'nearest': ``i`` or ``j``, whichever is nearest. 

* 'midpoint': ``(i + j) / 2``. 

 

.. versionadded:: 1.9.0 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left in 

the result as dimensions with size one. With this option, the 

result will broadcast correctly against the original array `a`. 

 

.. versionadded:: 1.9.0 

 

Returns 

------- 

percentile : scalar or ndarray 

If `q` is a single percentile and `axis=None`, then the result 

is a scalar. If multiple percentiles are given, first axis of 

the result corresponds to the percentiles. The other axes are 

the axes that remain after the reduction of `a`. If the input 

contains integers or floats smaller than ``float64``, the output 

data-type is ``float64``. Otherwise, the output data-type is the 

same as that of the input. If `out` is specified, that array is 

returned instead. 

 

See Also 

-------- 

mean 

median : equivalent to ``percentile(..., 50)`` 

nanpercentile 

quantile : equivalent to percentile, except with q in the range [0, 1]. 

 

Notes 

----- 

Given a vector ``V`` of length ``N``, the q-th percentile of 

``V`` is the value ``q/100`` of the way from the minimum to the 

maximum in a sorted copy of ``V``. The values and distances of 

the two nearest neighbors as well as the `interpolation` parameter 

will determine the percentile if the normalized ranking does not 

match the location of ``q`` exactly. This function is the same as 

the median if ``q=50``, the same as the minimum if ``q=0`` and the 

same as the maximum if ``q=100``. 

 

Examples 

-------- 

>>> a = np.array([[10, 7, 4], [3, 2, 1]]) 

>>> a 

array([[10, 7, 4], 

[ 3, 2, 1]]) 

>>> np.percentile(a, 50) 

3.5 

>>> np.percentile(a, 50, axis=0) 

array([[ 6.5, 4.5, 2.5]]) 

>>> np.percentile(a, 50, axis=1) 

array([ 7., 2.]) 

>>> np.percentile(a, 50, axis=1, keepdims=True) 

array([[ 7.], 

[ 2.]]) 

 

>>> m = np.percentile(a, 50, axis=0) 

>>> out = np.zeros_like(m) 

>>> np.percentile(a, 50, axis=0, out=out) 

array([[ 6.5, 4.5, 2.5]]) 

>>> m 

array([[ 6.5, 4.5, 2.5]]) 

 

>>> b = a.copy() 

>>> np.percentile(b, 50, axis=1, overwrite_input=True) 

array([ 7., 2.]) 

>>> assert not np.all(a == b) 

 

The different types of interpolation can be visualized graphically: 

 

.. plot:: 

 

import matplotlib.pyplot as plt 

 

a = np.arange(4) 

p = np.linspace(0, 100, 6001) 

ax = plt.gca() 

lines = [ 

('linear', None), 

('higher', '--'), 

('lower', '--'), 

('nearest', '-.'), 

('midpoint', '-.'), 

] 

for interpolation, style in lines: 

ax.plot( 

p, np.percentile(a, p, interpolation=interpolation), 

label=interpolation, linestyle=style) 

ax.set( 

title='Interpolation methods for list: ' + str(a), 

xlabel='Percentile', 

ylabel='List item returned', 

yticks=a) 

ax.legend() 

plt.show() 

 

""" 

q = np.true_divide(q, 100.0) # handles the asarray for us too 

if not _quantile_is_valid(q): 

raise ValueError("Percentiles must be in the range [0, 100]") 

return _quantile_unchecked( 

a, q, axis, out, overwrite_input, interpolation, keepdims) 

 

 

def _quantile_dispatcher(a, q, axis=None, out=None, overwrite_input=None, 

interpolation=None, keepdims=None): 

return (a, q, out) 

 

 

@array_function_dispatch(_quantile_dispatcher) 

def quantile(a, q, axis=None, out=None, 

overwrite_input=False, interpolation='linear', keepdims=False): 

""" 

Compute the q-th quantile of the data along the specified axis. 

..versionadded:: 1.15.0 

 

Parameters 

---------- 

a : array_like 

Input array or object that can be converted to an array. 

q : array_like of float 

Quantile or sequence of quantiles to compute, which must be between 

0 and 1 inclusive. 

axis : {int, tuple of int, None}, optional 

Axis or axes along which the quantiles are computed. The 

default is to compute the quantile(s) along a flattened 

version of the array. 

out : ndarray, optional 

Alternative output array in which to place the result. It must 

have the same shape and buffer length as the expected output, 

but the type (of the output) will be cast if necessary. 

overwrite_input : bool, optional 

If True, then allow the input array `a` to be modified by intermediate 

calculations, to save memory. In this case, the contents of the input 

`a` after this function completes is undefined. 

interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} 

This optional parameter specifies the interpolation method to 

use when the desired quantile lies between two data points 

``i < j``: 

 

* linear: ``i + (j - i) * fraction``, where ``fraction`` 

is the fractional part of the index surrounded by ``i`` 

and ``j``. 

* lower: ``i``. 

* higher: ``j``. 

* nearest: ``i`` or ``j``, whichever is nearest. 

* midpoint: ``(i + j) / 2``. 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left in 

the result as dimensions with size one. With this option, the 

result will broadcast correctly against the original array `a`. 

 

Returns 

------- 

quantile : scalar or ndarray 

If `q` is a single quantile and `axis=None`, then the result 

is a scalar. If multiple quantiles are given, first axis of 

the result corresponds to the quantiles. The other axes are 

the axes that remain after the reduction of `a`. If the input 

contains integers or floats smaller than ``float64``, the output 

data-type is ``float64``. Otherwise, the output data-type is the 

same as that of the input. If `out` is specified, that array is 

returned instead. 

 

See Also 

-------- 

mean 

percentile : equivalent to quantile, but with q in the range [0, 100]. 

median : equivalent to ``quantile(..., 0.5)`` 

nanquantile 

 

Notes 

----- 

Given a vector ``V`` of length ``N``, the q-th quantile of 

``V`` is the value ``q`` of the way from the minimum to the 

maximum in a sorted copy of ``V``. The values and distances of 

the two nearest neighbors as well as the `interpolation` parameter 

will determine the quantile if the normalized ranking does not 

match the location of ``q`` exactly. This function is the same as 

the median if ``q=0.5``, the same as the minimum if ``q=0.0`` and the 

same as the maximum if ``q=1.0``. 

 

Examples 

-------- 

>>> a = np.array([[10, 7, 4], [3, 2, 1]]) 

>>> a 

array([[10, 7, 4], 

[ 3, 2, 1]]) 

>>> np.quantile(a, 0.5) 

3.5 

>>> np.quantile(a, 0.5, axis=0) 

array([[ 6.5, 4.5, 2.5]]) 

>>> np.quantile(a, 0.5, axis=1) 

array([ 7., 2.]) 

>>> np.quantile(a, 0.5, axis=1, keepdims=True) 

array([[ 7.], 

[ 2.]]) 

>>> m = np.quantile(a, 0.5, axis=0) 

>>> out = np.zeros_like(m) 

>>> np.quantile(a, 0.5, axis=0, out=out) 

array([[ 6.5, 4.5, 2.5]]) 

>>> m 

array([[ 6.5, 4.5, 2.5]]) 

>>> b = a.copy() 

>>> np.quantile(b, 0.5, axis=1, overwrite_input=True) 

array([ 7., 2.]) 

>>> assert not np.all(a == b) 

""" 

q = np.asanyarray(q) 

if not _quantile_is_valid(q): 

raise ValueError("Quantiles must be in the range [0, 1]") 

return _quantile_unchecked( 

a, q, axis, out, overwrite_input, interpolation, keepdims) 

 

 

def _quantile_unchecked(a, q, axis=None, out=None, overwrite_input=False, 

interpolation='linear', keepdims=False): 

"""Assumes that q is in [0, 1], and is an ndarray""" 

r, k = _ureduce(a, func=_quantile_ureduce_func, q=q, axis=axis, out=out, 

overwrite_input=overwrite_input, 

interpolation=interpolation) 

if keepdims: 

return r.reshape(q.shape + k) 

else: 

return r 

 

 

def _quantile_is_valid(q): 

# avoid expensive reductions, relevant for arrays with < O(1000) elements 

if q.ndim == 1 and q.size < 10: 

for i in range(q.size): 

if q[i] < 0.0 or q[i] > 1.0: 

return False 

else: 

# faster than any() 

if np.count_nonzero(q < 0.0) or np.count_nonzero(q > 1.0): 

return False 

return True 

 

 

def _quantile_ureduce_func(a, q, axis=None, out=None, overwrite_input=False, 

interpolation='linear', keepdims=False): 

a = asarray(a) 

if q.ndim == 0: 

# Do not allow 0-d arrays because following code fails for scalar 

zerod = True 

q = q[None] 

else: 

zerod = False 

 

# prepare a for partitioning 

if overwrite_input: 

if axis is None: 

ap = a.ravel() 

else: 

ap = a 

else: 

if axis is None: 

ap = a.flatten() 

else: 

ap = a.copy() 

 

if axis is None: 

axis = 0 

 

Nx = ap.shape[axis] 

indices = q * (Nx - 1) 

 

# round fractional indices according to interpolation method 

if interpolation == 'lower': 

indices = floor(indices).astype(intp) 

elif interpolation == 'higher': 

indices = ceil(indices).astype(intp) 

elif interpolation == 'midpoint': 

indices = 0.5 * (floor(indices) + ceil(indices)) 

elif interpolation == 'nearest': 

indices = around(indices).astype(intp) 

elif interpolation == 'linear': 

pass # keep index as fraction and interpolate 

else: 

raise ValueError( 

"interpolation can only be 'linear', 'lower' 'higher', " 

"'midpoint', or 'nearest'") 

 

n = np.array(False, dtype=bool) # check for nan's flag 

if indices.dtype == intp: # take the points along axis 

# Check if the array contains any nan's 

if np.issubdtype(a.dtype, np.inexact): 

indices = concatenate((indices, [-1])) 

 

ap.partition(indices, axis=axis) 

# ensure axis with q-th is first 

ap = np.moveaxis(ap, axis, 0) 

axis = 0 

 

# Check if the array contains any nan's 

if np.issubdtype(a.dtype, np.inexact): 

indices = indices[:-1] 

n = np.isnan(ap[-1:, ...]) 

 

if zerod: 

indices = indices[0] 

r = take(ap, indices, axis=axis, out=out) 

 

 

else: # weight the points above and below the indices 

indices_below = floor(indices).astype(intp) 

indices_above = indices_below + 1 

indices_above[indices_above > Nx - 1] = Nx - 1 

 

# Check if the array contains any nan's 

if np.issubdtype(a.dtype, np.inexact): 

indices_above = concatenate((indices_above, [-1])) 

 

weights_above = indices - indices_below 

weights_below = 1.0 - weights_above 

 

weights_shape = [1, ] * ap.ndim 

weights_shape[axis] = len(indices) 

weights_below.shape = weights_shape 

weights_above.shape = weights_shape 

 

ap.partition(concatenate((indices_below, indices_above)), axis=axis) 

 

# ensure axis with q-th is first 

ap = np.moveaxis(ap, axis, 0) 

weights_below = np.moveaxis(weights_below, axis, 0) 

weights_above = np.moveaxis(weights_above, axis, 0) 

axis = 0 

 

# Check if the array contains any nan's 

if np.issubdtype(a.dtype, np.inexact): 

indices_above = indices_above[:-1] 

n = np.isnan(ap[-1:, ...]) 

 

x1 = take(ap, indices_below, axis=axis) * weights_below 

x2 = take(ap, indices_above, axis=axis) * weights_above 

 

# ensure axis with q-th is first 

x1 = np.moveaxis(x1, axis, 0) 

x2 = np.moveaxis(x2, axis, 0) 

 

if zerod: 

x1 = x1.squeeze(0) 

x2 = x2.squeeze(0) 

 

if out is not None: 

r = add(x1, x2, out=out) 

else: 

r = add(x1, x2) 

 

if np.any(n): 

warnings.warn("Invalid value encountered in percentile", 

RuntimeWarning, stacklevel=3) 

if zerod: 

if ap.ndim == 1: 

if out is not None: 

out[...] = a.dtype.type(np.nan) 

r = out 

else: 

r = a.dtype.type(np.nan) 

else: 

r[..., n.squeeze(0)] = a.dtype.type(np.nan) 

else: 

if r.ndim == 1: 

r[:] = a.dtype.type(np.nan) 

else: 

r[..., n.repeat(q.size, 0)] = a.dtype.type(np.nan) 

 

return r 

 

 

def _trapz_dispatcher(y, x=None, dx=None, axis=None): 

return (y, x) 

 

 

@array_function_dispatch(_trapz_dispatcher) 

def trapz(y, x=None, dx=1.0, axis=-1): 

""" 

Integrate along the given axis using the composite trapezoidal rule. 

 

Integrate `y` (`x`) along given axis. 

 

Parameters 

---------- 

y : array_like 

Input array to integrate. 

x : array_like, optional 

The sample points corresponding to the `y` values. If `x` is None, 

the sample points are assumed to be evenly spaced `dx` apart. The 

default is None. 

dx : scalar, optional 

The spacing between sample points when `x` is None. The default is 1. 

axis : int, optional 

The axis along which to integrate. 

 

Returns 

------- 

trapz : float 

Definite integral as approximated by trapezoidal rule. 

 

See Also 

-------- 

sum, cumsum 

 

Notes 

----- 

Image [2]_ illustrates trapezoidal rule -- y-axis locations of points 

will be taken from `y` array, by default x-axis distances between 

points will be 1.0, alternatively they can be provided with `x` array 

or with `dx` scalar. Return value will be equal to combined area under 

the red lines. 

 

 

References 

---------- 

.. [1] Wikipedia page: https://en.wikipedia.org/wiki/Trapezoidal_rule 

 

.. [2] Illustration image: 

https://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png 

 

Examples 

-------- 

>>> np.trapz([1,2,3]) 

4.0 

>>> np.trapz([1,2,3], x=[4,6,8]) 

8.0 

>>> np.trapz([1,2,3], dx=2) 

8.0 

>>> a = np.arange(6).reshape(2, 3) 

>>> a 

array([[0, 1, 2], 

[3, 4, 5]]) 

>>> np.trapz(a, axis=0) 

array([ 1.5, 2.5, 3.5]) 

>>> np.trapz(a, axis=1) 

array([ 2., 8.]) 

 

""" 

y = asanyarray(y) 

if x is None: 

d = dx 

else: 

x = asanyarray(x) 

if x.ndim == 1: 

d = diff(x) 

# reshape to correct shape 

shape = [1]*y.ndim 

shape[axis] = d.shape[0] 

d = d.reshape(shape) 

else: 

d = diff(x, axis=axis) 

nd = y.ndim 

slice1 = [slice(None)]*nd 

slice2 = [slice(None)]*nd 

slice1[axis] = slice(1, None) 

slice2[axis] = slice(None, -1) 

try: 

ret = (d * (y[tuple(slice1)] + y[tuple(slice2)]) / 2.0).sum(axis) 

except ValueError: 

# Operations didn't work, cast to ndarray 

d = np.asarray(d) 

y = np.asarray(y) 

ret = add.reduce(d * (y[tuple(slice1)]+y[tuple(slice2)])/2.0, axis) 

return ret 

 

 

def _meshgrid_dispatcher(*xi, **kwargs): 

return xi 

 

 

# Based on scitools meshgrid 

@array_function_dispatch(_meshgrid_dispatcher) 

def meshgrid(*xi, **kwargs): 

""" 

Return coordinate matrices from coordinate vectors. 

 

Make N-D coordinate arrays for vectorized evaluations of 

N-D scalar/vector fields over N-D grids, given 

one-dimensional coordinate arrays x1, x2,..., xn. 

 

.. versionchanged:: 1.9 

1-D and 0-D cases are allowed. 

 

Parameters 

---------- 

x1, x2,..., xn : array_like 

1-D arrays representing the coordinates of a grid. 

indexing : {'xy', 'ij'}, optional 

Cartesian ('xy', default) or matrix ('ij') indexing of output. 

See Notes for more details. 

 

.. versionadded:: 1.7.0 

sparse : bool, optional 

If True a sparse grid is returned in order to conserve memory. 

Default is False. 

 

.. versionadded:: 1.7.0 

copy : bool, optional 

If False, a view into the original arrays are returned in order to 

conserve memory. Default is True. Please note that 

``sparse=False, copy=False`` will likely return non-contiguous 

arrays. Furthermore, more than one element of a broadcast array 

may refer to a single memory location. If you need to write to the 

arrays, make copies first. 

 

.. versionadded:: 1.7.0 

 

Returns 

------- 

X1, X2,..., XN : ndarray 

For vectors `x1`, `x2`,..., 'xn' with lengths ``Ni=len(xi)`` , 

return ``(N1, N2, N3,...Nn)`` shaped arrays if indexing='ij' 

or ``(N2, N1, N3,...Nn)`` shaped arrays if indexing='xy' 

with the elements of `xi` repeated to fill the matrix along 

the first dimension for `x1`, the second for `x2` and so on. 

 

Notes 

----- 

This function supports both indexing conventions through the indexing 

keyword argument. Giving the string 'ij' returns a meshgrid with 

matrix indexing, while 'xy' returns a meshgrid with Cartesian indexing. 

In the 2-D case with inputs of length M and N, the outputs are of shape 

(N, M) for 'xy' indexing and (M, N) for 'ij' indexing. In the 3-D case 

with inputs of length M, N and P, outputs are of shape (N, M, P) for 

'xy' indexing and (M, N, P) for 'ij' indexing. The difference is 

illustrated by the following code snippet:: 

 

xv, yv = np.meshgrid(x, y, sparse=False, indexing='ij') 

for i in range(nx): 

for j in range(ny): 

# treat xv[i,j], yv[i,j] 

 

xv, yv = np.meshgrid(x, y, sparse=False, indexing='xy') 

for i in range(nx): 

for j in range(ny): 

# treat xv[j,i], yv[j,i] 

 

In the 1-D and 0-D case, the indexing and sparse keywords have no effect. 

 

See Also 

-------- 

index_tricks.mgrid : Construct a multi-dimensional "meshgrid" 

using indexing notation. 

index_tricks.ogrid : Construct an open multi-dimensional "meshgrid" 

using indexing notation. 

 

Examples 

-------- 

>>> nx, ny = (3, 2) 

>>> x = np.linspace(0, 1, nx) 

>>> y = np.linspace(0, 1, ny) 

>>> xv, yv = np.meshgrid(x, y) 

>>> xv 

array([[ 0. , 0.5, 1. ], 

[ 0. , 0.5, 1. ]]) 

>>> yv 

array([[ 0., 0., 0.], 

[ 1., 1., 1.]]) 

>>> xv, yv = np.meshgrid(x, y, sparse=True) # make sparse output arrays 

>>> xv 

array([[ 0. , 0.5, 1. ]]) 

>>> yv 

array([[ 0.], 

[ 1.]]) 

 

`meshgrid` is very useful to evaluate functions on a grid. 

 

>>> import matplotlib.pyplot as plt 

>>> x = np.arange(-5, 5, 0.1) 

>>> y = np.arange(-5, 5, 0.1) 

>>> xx, yy = np.meshgrid(x, y, sparse=True) 

>>> z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2) 

>>> h = plt.contourf(x,y,z) 

>>> plt.show() 

 

""" 

ndim = len(xi) 

 

copy_ = kwargs.pop('copy', True) 

sparse = kwargs.pop('sparse', False) 

indexing = kwargs.pop('indexing', 'xy') 

 

if kwargs: 

raise TypeError("meshgrid() got an unexpected keyword argument '%s'" 

% (list(kwargs)[0],)) 

 

if indexing not in ['xy', 'ij']: 

raise ValueError( 

"Valid values for `indexing` are 'xy' and 'ij'.") 

 

s0 = (1,) * ndim 

output = [np.asanyarray(x).reshape(s0[:i] + (-1,) + s0[i + 1:]) 

for i, x in enumerate(xi)] 

 

if indexing == 'xy' and ndim > 1: 

# switch first and second axis 

output[0].shape = (1, -1) + s0[2:] 

output[1].shape = (-1, 1) + s0[2:] 

 

if not sparse: 

# Return the full N-D matrix (not only the 1-D vector) 

output = np.broadcast_arrays(*output, subok=True) 

 

if copy_: 

output = [x.copy() for x in output] 

 

return output 

 

 

def _delete_dispatcher(arr, obj, axis=None): 

return (arr, obj) 

 

 

@array_function_dispatch(_delete_dispatcher) 

def delete(arr, obj, axis=None): 

""" 

Return a new array with sub-arrays along an axis deleted. For a one 

dimensional array, this returns those entries not returned by 

`arr[obj]`. 

 

Parameters 

---------- 

arr : array_like 

Input array. 

obj : slice, int or array of ints 

Indicate which sub-arrays to remove. 

axis : int, optional 

The axis along which to delete the subarray defined by `obj`. 

If `axis` is None, `obj` is applied to the flattened array. 

 

Returns 

------- 

out : ndarray 

A copy of `arr` with the elements specified by `obj` removed. Note 

that `delete` does not occur in-place. If `axis` is None, `out` is 

a flattened array. 

 

See Also 

-------- 

insert : Insert elements into an array. 

append : Append elements at the end of an array. 

 

Notes 

----- 

Often it is preferable to use a boolean mask. For example: 

 

>>> mask = np.ones(len(arr), dtype=bool) 

>>> mask[[0,2,4]] = False 

>>> result = arr[mask,...] 

 

Is equivalent to `np.delete(arr, [0,2,4], axis=0)`, but allows further 

use of `mask`. 

 

Examples 

-------- 

>>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) 

>>> arr 

array([[ 1, 2, 3, 4], 

[ 5, 6, 7, 8], 

[ 9, 10, 11, 12]]) 

>>> np.delete(arr, 1, 0) 

array([[ 1, 2, 3, 4], 

[ 9, 10, 11, 12]]) 

 

>>> np.delete(arr, np.s_[::2], 1) 

array([[ 2, 4], 

[ 6, 8], 

[10, 12]]) 

>>> np.delete(arr, [1,3,5], None) 

array([ 1, 3, 5, 7, 8, 9, 10, 11, 12]) 

 

""" 

wrap = None 

if type(arr) is not ndarray: 

try: 

wrap = arr.__array_wrap__ 

except AttributeError: 

pass 

 

arr = asarray(arr) 

ndim = arr.ndim 

arrorder = 'F' if arr.flags.fnc else 'C' 

if axis is None: 

if ndim != 1: 

arr = arr.ravel() 

ndim = arr.ndim 

axis = -1 

 

if ndim == 0: 

# 2013-09-24, 1.9 

warnings.warn( 

"in the future the special handling of scalars will be removed " 

"from delete and raise an error", DeprecationWarning, stacklevel=2) 

if wrap: 

return wrap(arr) 

else: 

return arr.copy(order=arrorder) 

 

axis = normalize_axis_index(axis, ndim) 

 

slobj = [slice(None)]*ndim 

N = arr.shape[axis] 

newshape = list(arr.shape) 

 

if isinstance(obj, slice): 

start, stop, step = obj.indices(N) 

xr = range(start, stop, step) 

numtodel = len(xr) 

 

if numtodel <= 0: 

if wrap: 

return wrap(arr.copy(order=arrorder)) 

else: 

return arr.copy(order=arrorder) 

 

# Invert if step is negative: 

if step < 0: 

step = -step 

start = xr[-1] 

stop = xr[0] + 1 

 

newshape[axis] -= numtodel 

new = empty(newshape, arr.dtype, arrorder) 

# copy initial chunk 

if start == 0: 

pass 

else: 

slobj[axis] = slice(None, start) 

new[tuple(slobj)] = arr[tuple(slobj)] 

# copy end chunck 

if stop == N: 

pass 

else: 

slobj[axis] = slice(stop-numtodel, None) 

slobj2 = [slice(None)]*ndim 

slobj2[axis] = slice(stop, None) 

new[tuple(slobj)] = arr[tuple(slobj2)] 

# copy middle pieces 

if step == 1: 

pass 

else: # use array indexing. 

keep = ones(stop-start, dtype=bool) 

keep[:stop-start:step] = False 

slobj[axis] = slice(start, stop-numtodel) 

slobj2 = [slice(None)]*ndim 

slobj2[axis] = slice(start, stop) 

arr = arr[tuple(slobj2)] 

slobj2[axis] = keep 

new[tuple(slobj)] = arr[tuple(slobj2)] 

if wrap: 

return wrap(new) 

else: 

return new 

 

_obj = obj 

obj = np.asarray(obj) 

# After removing the special handling of booleans and out of 

# bounds values, the conversion to the array can be removed. 

if obj.dtype == bool: 

warnings.warn("in the future insert will treat boolean arrays and " 

"array-likes as boolean index instead of casting it " 

"to integer", FutureWarning, stacklevel=2) 

obj = obj.astype(intp) 

if isinstance(_obj, (int, long, integer)): 

# optimization for a single value 

obj = obj.item() 

if (obj < -N or obj >= N): 

raise IndexError( 

"index %i is out of bounds for axis %i with " 

"size %i" % (obj, axis, N)) 

if (obj < 0): 

obj += N 

newshape[axis] -= 1 

new = empty(newshape, arr.dtype, arrorder) 

slobj[axis] = slice(None, obj) 

new[tuple(slobj)] = arr[tuple(slobj)] 

slobj[axis] = slice(obj, None) 

slobj2 = [slice(None)]*ndim 

slobj2[axis] = slice(obj+1, None) 

new[tuple(slobj)] = arr[tuple(slobj2)] 

else: 

if obj.size == 0 and not isinstance(_obj, np.ndarray): 

obj = obj.astype(intp) 

if not np.can_cast(obj, intp, 'same_kind'): 

# obj.size = 1 special case always failed and would just 

# give superfluous warnings. 

# 2013-09-24, 1.9 

warnings.warn( 

"using a non-integer array as obj in delete will result in an " 

"error in the future", DeprecationWarning, stacklevel=2) 

obj = obj.astype(intp) 

keep = ones(N, dtype=bool) 

 

# Test if there are out of bound indices, this is deprecated 

inside_bounds = (obj < N) & (obj >= -N) 

if not inside_bounds.all(): 

# 2013-09-24, 1.9 

warnings.warn( 

"in the future out of bounds indices will raise an error " 

"instead of being ignored by `numpy.delete`.", 

DeprecationWarning, stacklevel=2) 

obj = obj[inside_bounds] 

positive_indices = obj >= 0 

if not positive_indices.all(): 

warnings.warn( 

"in the future negative indices will not be ignored by " 

"`numpy.delete`.", FutureWarning, stacklevel=2) 

obj = obj[positive_indices] 

 

keep[obj, ] = False 

slobj[axis] = keep 

new = arr[tuple(slobj)] 

 

if wrap: 

return wrap(new) 

else: 

return new 

 

 

def _insert_dispatcher(arr, obj, values, axis=None): 

return (arr, obj, values) 

 

 

@array_function_dispatch(_insert_dispatcher) 

def insert(arr, obj, values, axis=None): 

""" 

Insert values along the given axis before the given indices. 

 

Parameters 

---------- 

arr : array_like 

Input array. 

obj : int, slice or sequence of ints 

Object that defines the index or indices before which `values` is 

inserted. 

 

.. versionadded:: 1.8.0 

 

Support for multiple insertions when `obj` is a single scalar or a 

sequence with one element (similar to calling insert multiple 

times). 

values : array_like 

Values to insert into `arr`. If the type of `values` is different 

from that of `arr`, `values` is converted to the type of `arr`. 

`values` should be shaped so that ``arr[...,obj,...] = values`` 

is legal. 

axis : int, optional 

Axis along which to insert `values`. If `axis` is None then `arr` 

is flattened first. 

 

Returns 

------- 

out : ndarray 

A copy of `arr` with `values` inserted. Note that `insert` 

does not occur in-place: a new array is returned. If 

`axis` is None, `out` is a flattened array. 

 

See Also 

-------- 

append : Append elements at the end of an array. 

concatenate : Join a sequence of arrays along an existing axis. 

delete : Delete elements from an array. 

 

Notes 

----- 

Note that for higher dimensional inserts `obj=0` behaves very different 

from `obj=[0]` just like `arr[:,0,:] = values` is different from 

`arr[:,[0],:] = values`. 

 

Examples 

-------- 

>>> a = np.array([[1, 1], [2, 2], [3, 3]]) 

>>> a 

array([[1, 1], 

[2, 2], 

[3, 3]]) 

>>> np.insert(a, 1, 5) 

array([1, 5, 1, 2, 2, 3, 3]) 

>>> np.insert(a, 1, 5, axis=1) 

array([[1, 5, 1], 

[2, 5, 2], 

[3, 5, 3]]) 

 

Difference between sequence and scalars: 

 

>>> np.insert(a, [1], [[1],[2],[3]], axis=1) 

array([[1, 1, 1], 

[2, 2, 2], 

[3, 3, 3]]) 

>>> np.array_equal(np.insert(a, 1, [1, 2, 3], axis=1), 

... np.insert(a, [1], [[1],[2],[3]], axis=1)) 

True 

 

>>> b = a.flatten() 

>>> b 

array([1, 1, 2, 2, 3, 3]) 

>>> np.insert(b, [2, 2], [5, 6]) 

array([1, 1, 5, 6, 2, 2, 3, 3]) 

 

>>> np.insert(b, slice(2, 4), [5, 6]) 

array([1, 1, 5, 2, 6, 2, 3, 3]) 

 

>>> np.insert(b, [2, 2], [7.13, False]) # type casting 

array([1, 1, 7, 0, 2, 2, 3, 3]) 

 

>>> x = np.arange(8).reshape(2, 4) 

>>> idx = (1, 3) 

>>> np.insert(x, idx, 999, axis=1) 

array([[ 0, 999, 1, 2, 999, 3], 

[ 4, 999, 5, 6, 999, 7]]) 

 

""" 

wrap = None 

if type(arr) is not ndarray: 

try: 

wrap = arr.__array_wrap__ 

except AttributeError: 

pass 

 

arr = asarray(arr) 

ndim = arr.ndim 

arrorder = 'F' if arr.flags.fnc else 'C' 

if axis is None: 

if ndim != 1: 

arr = arr.ravel() 

ndim = arr.ndim 

axis = ndim - 1 

elif ndim == 0: 

# 2013-09-24, 1.9 

warnings.warn( 

"in the future the special handling of scalars will be removed " 

"from insert and raise an error", DeprecationWarning, stacklevel=2) 

arr = arr.copy(order=arrorder) 

arr[...] = values 

if wrap: 

return wrap(arr) 

else: 

return arr 

else: 

axis = normalize_axis_index(axis, ndim) 

slobj = [slice(None)]*ndim 

N = arr.shape[axis] 

newshape = list(arr.shape) 

 

if isinstance(obj, slice): 

# turn it into a range object 

indices = arange(*obj.indices(N), **{'dtype': intp}) 

else: 

# need to copy obj, because indices will be changed in-place 

indices = np.array(obj) 

if indices.dtype == bool: 

# See also delete 

warnings.warn( 

"in the future insert will treat boolean arrays and " 

"array-likes as a boolean index instead of casting it to " 

"integer", FutureWarning, stacklevel=2) 

indices = indices.astype(intp) 

# Code after warning period: 

#if obj.ndim != 1: 

# raise ValueError('boolean array argument obj to insert ' 

# 'must be one dimensional') 

#indices = np.flatnonzero(obj) 

elif indices.ndim > 1: 

raise ValueError( 

"index array argument obj to insert must be one dimensional " 

"or scalar") 

if indices.size == 1: 

index = indices.item() 

if index < -N or index > N: 

raise IndexError( 

"index %i is out of bounds for axis %i with " 

"size %i" % (obj, axis, N)) 

if (index < 0): 

index += N 

 

# There are some object array corner cases here, but we cannot avoid 

# that: 

values = array(values, copy=False, ndmin=arr.ndim, dtype=arr.dtype) 

if indices.ndim == 0: 

# broadcasting is very different here, since a[:,0,:] = ... behaves 

# very different from a[:,[0],:] = ...! This changes values so that 

# it works likes the second case. (here a[:,0:1,:]) 

values = np.moveaxis(values, 0, axis) 

numnew = values.shape[axis] 

newshape[axis] += numnew 

new = empty(newshape, arr.dtype, arrorder) 

slobj[axis] = slice(None, index) 

new[tuple(slobj)] = arr[tuple(slobj)] 

slobj[axis] = slice(index, index+numnew) 

new[tuple(slobj)] = values 

slobj[axis] = slice(index+numnew, None) 

slobj2 = [slice(None)] * ndim 

slobj2[axis] = slice(index, None) 

new[tuple(slobj)] = arr[tuple(slobj2)] 

if wrap: 

return wrap(new) 

return new 

elif indices.size == 0 and not isinstance(obj, np.ndarray): 

# Can safely cast the empty list to intp 

indices = indices.astype(intp) 

 

if not np.can_cast(indices, intp, 'same_kind'): 

# 2013-09-24, 1.9 

warnings.warn( 

"using a non-integer array as obj in insert will result in an " 

"error in the future", DeprecationWarning, stacklevel=2) 

indices = indices.astype(intp) 

 

indices[indices < 0] += N 

 

numnew = len(indices) 

order = indices.argsort(kind='mergesort') # stable sort 

indices[order] += np.arange(numnew) 

 

newshape[axis] += numnew 

old_mask = ones(newshape[axis], dtype=bool) 

old_mask[indices] = False 

 

new = empty(newshape, arr.dtype, arrorder) 

slobj2 = [slice(None)]*ndim 

slobj[axis] = indices 

slobj2[axis] = old_mask 

new[tuple(slobj)] = values 

new[tuple(slobj2)] = arr 

 

if wrap: 

return wrap(new) 

return new 

 

 

def _append_dispatcher(arr, values, axis=None): 

return (arr, values) 

 

 

@array_function_dispatch(_append_dispatcher) 

def append(arr, values, axis=None): 

""" 

Append values to the end of an array. 

 

Parameters 

---------- 

arr : array_like 

Values are appended to a copy of this array. 

values : array_like 

These values are appended to a copy of `arr`. It must be of the 

correct shape (the same shape as `arr`, excluding `axis`). If 

`axis` is not specified, `values` can be any shape and will be 

flattened before use. 

axis : int, optional 

The axis along which `values` are appended. If `axis` is not 

given, both `arr` and `values` are flattened before use. 

 

Returns 

------- 

append : ndarray 

A copy of `arr` with `values` appended to `axis`. Note that 

`append` does not occur in-place: a new array is allocated and 

filled. If `axis` is None, `out` is a flattened array. 

 

See Also 

-------- 

insert : Insert elements into an array. 

delete : Delete elements from an array. 

 

Examples 

-------- 

>>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]]) 

array([1, 2, 3, 4, 5, 6, 7, 8, 9]) 

 

When `axis` is specified, `values` must have the correct shape. 

 

>>> np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0) 

array([[1, 2, 3], 

[4, 5, 6], 

[7, 8, 9]]) 

>>> np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0) 

Traceback (most recent call last): 

... 

ValueError: arrays must have same number of dimensions 

 

""" 

arr = asanyarray(arr) 

if axis is None: 

if arr.ndim != 1: 

arr = arr.ravel() 

values = ravel(values) 

axis = arr.ndim-1 

return concatenate((arr, values), axis=axis) 

 

 

def _digitize_dispatcher(x, bins, right=None): 

return (x, bins) 

 

 

@array_function_dispatch(_digitize_dispatcher) 

def digitize(x, bins, right=False): 

""" 

Return the indices of the bins to which each value in input array belongs. 

 

========= ============= ============================ 

`right` order of bins returned index `i` satisfies 

========= ============= ============================ 

``False`` increasing ``bins[i-1] <= x < bins[i]`` 

``True`` increasing ``bins[i-1] < x <= bins[i]`` 

``False`` decreasing ``bins[i-1] > x >= bins[i]`` 

``True`` decreasing ``bins[i-1] >= x > bins[i]`` 

========= ============= ============================ 

 

If values in `x` are beyond the bounds of `bins`, 0 or ``len(bins)`` is 

returned as appropriate. 

 

Parameters 

---------- 

x : array_like 

Input array to be binned. Prior to NumPy 1.10.0, this array had to 

be 1-dimensional, but can now have any shape. 

bins : array_like 

Array of bins. It has to be 1-dimensional and monotonic. 

right : bool, optional 

Indicating whether the intervals include the right or the left bin 

edge. Default behavior is (right==False) indicating that the interval 

does not include the right edge. The left bin end is open in this 

case, i.e., bins[i-1] <= x < bins[i] is the default behavior for 

monotonically increasing bins. 

 

Returns 

------- 

indices : ndarray of ints 

Output array of indices, of same shape as `x`. 

 

Raises 

------ 

ValueError 

If `bins` is not monotonic. 

TypeError 

If the type of the input is complex. 

 

See Also 

-------- 

bincount, histogram, unique, searchsorted 

 

Notes 

----- 

If values in `x` are such that they fall outside the bin range, 

attempting to index `bins` with the indices that `digitize` returns 

will result in an IndexError. 

 

.. versionadded:: 1.10.0 

 

`np.digitize` is implemented in terms of `np.searchsorted`. This means 

that a binary search is used to bin the values, which scales much better 

for larger number of bins than the previous linear search. It also removes 

the requirement for the input array to be 1-dimensional. 

 

For monotonically _increasing_ `bins`, the following are equivalent:: 

 

np.digitize(x, bins, right=True) 

np.searchsorted(bins, x, side='left') 

 

Note that as the order of the arguments are reversed, the side must be too. 

The `searchsorted` call is marginally faster, as it does not do any 

monotonicity checks. Perhaps more importantly, it supports all dtypes. 

 

Examples 

-------- 

>>> x = np.array([0.2, 6.4, 3.0, 1.6]) 

>>> bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0]) 

>>> inds = np.digitize(x, bins) 

>>> inds 

array([1, 4, 3, 2]) 

>>> for n in range(x.size): 

... print(bins[inds[n]-1], "<=", x[n], "<", bins[inds[n]]) 

... 

0.0 <= 0.2 < 1.0 

4.0 <= 6.4 < 10.0 

2.5 <= 3.0 < 4.0 

1.0 <= 1.6 < 2.5 

 

>>> x = np.array([1.2, 10.0, 12.4, 15.5, 20.]) 

>>> bins = np.array([0, 5, 10, 15, 20]) 

>>> np.digitize(x,bins,right=True) 

array([1, 2, 3, 4, 4]) 

>>> np.digitize(x,bins,right=False) 

array([1, 3, 3, 4, 5]) 

""" 

x = _nx.asarray(x) 

bins = _nx.asarray(bins) 

 

# here for compatibility, searchsorted below is happy to take this 

if np.issubdtype(x.dtype, _nx.complexfloating): 

raise TypeError("x may not be complex") 

 

mono = _monotonicity(bins) 

if mono == 0: 

raise ValueError("bins must be monotonically increasing or decreasing") 

 

# this is backwards because the arguments below are swapped 

side = 'left' if right else 'right' 

if mono == -1: 

# reverse the bins, and invert the results 

return len(bins) - _nx.searchsorted(bins[::-1], x, side=side) 

else: 

return _nx.searchsorted(bins, x, side=side)