1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

from __future__ import division, absolute_import, print_function 

 

import functools 

import sys 

import math 

 

import numpy.core.numeric as _nx 

from numpy.core.numeric import ( 

asarray, ScalarType, array, alltrue, cumprod, arange, ndim 

) 

from numpy.core.numerictypes import find_common_type, issubdtype 

 

import numpy.matrixlib as matrixlib 

from .function_base import diff 

from numpy.core.multiarray import ravel_multi_index, unravel_index 

from numpy.core.overrides import set_module 

from numpy.core import overrides, linspace 

from numpy.lib.stride_tricks import as_strided 

 

 

array_function_dispatch = functools.partial( 

overrides.array_function_dispatch, module='numpy') 

 

 

__all__ = [ 

'ravel_multi_index', 'unravel_index', 'mgrid', 'ogrid', 'r_', 'c_', 

's_', 'index_exp', 'ix_', 'ndenumerate', 'ndindex', 'fill_diagonal', 

'diag_indices', 'diag_indices_from' 

] 

 

 

def _ix__dispatcher(*args): 

return args 

 

 

@array_function_dispatch(_ix__dispatcher) 

def ix_(*args): 

""" 

Construct an open mesh from multiple sequences. 

 

This function takes N 1-D sequences and returns N outputs with N 

dimensions each, such that the shape is 1 in all but one dimension 

and the dimension with the non-unit shape value cycles through all 

N dimensions. 

 

Using `ix_` one can quickly construct index arrays that will index 

the cross product. ``a[np.ix_([1,3],[2,5])]`` returns the array 

``[[a[1,2] a[1,5]], [a[3,2] a[3,5]]]``. 

 

Parameters 

---------- 

args : 1-D sequences 

Each sequence should be of integer or boolean type. 

Boolean sequences will be interpreted as boolean masks for the 

corresponding dimension (equivalent to passing in 

``np.nonzero(boolean_sequence)``). 

 

Returns 

------- 

out : tuple of ndarrays 

N arrays with N dimensions each, with N the number of input 

sequences. Together these arrays form an open mesh. 

 

See Also 

-------- 

ogrid, mgrid, meshgrid 

 

Examples 

-------- 

>>> a = np.arange(10).reshape(2, 5) 

>>> a 

array([[0, 1, 2, 3, 4], 

[5, 6, 7, 8, 9]]) 

>>> ixgrid = np.ix_([0, 1], [2, 4]) 

>>> ixgrid 

(array([[0], 

[1]]), array([[2, 4]])) 

>>> ixgrid[0].shape, ixgrid[1].shape 

((2, 1), (1, 2)) 

>>> a[ixgrid] 

array([[2, 4], 

[7, 9]]) 

 

>>> ixgrid = np.ix_([True, True], [2, 4]) 

>>> a[ixgrid] 

array([[2, 4], 

[7, 9]]) 

>>> ixgrid = np.ix_([True, True], [False, False, True, False, True]) 

>>> a[ixgrid] 

array([[2, 4], 

[7, 9]]) 

 

""" 

out = [] 

nd = len(args) 

for k, new in enumerate(args): 

new = asarray(new) 

if new.ndim != 1: 

raise ValueError("Cross index must be 1 dimensional") 

if new.size == 0: 

# Explicitly type empty arrays to avoid float default 

new = new.astype(_nx.intp) 

if issubdtype(new.dtype, _nx.bool_): 

new, = new.nonzero() 

new = new.reshape((1,)*k + (new.size,) + (1,)*(nd-k-1)) 

out.append(new) 

return tuple(out) 

 

class nd_grid(object): 

""" 

Construct a multi-dimensional "meshgrid". 

 

``grid = nd_grid()`` creates an instance which will return a mesh-grid 

when indexed. The dimension and number of the output arrays are equal 

to the number of indexing dimensions. If the step length is not a 

complex number, then the stop is not inclusive. 

 

However, if the step length is a **complex number** (e.g. 5j), then the 

integer part of its magnitude is interpreted as specifying the 

number of points to create between the start and stop values, where 

the stop value **is inclusive**. 

 

If instantiated with an argument of ``sparse=True``, the mesh-grid is 

open (or not fleshed out) so that only one-dimension of each returned 

argument is greater than 1. 

 

Parameters 

---------- 

sparse : bool, optional 

Whether the grid is sparse or not. Default is False. 

 

Notes 

----- 

Two instances of `nd_grid` are made available in the NumPy namespace, 

`mgrid` and `ogrid`, approximately defined as:: 

 

mgrid = nd_grid(sparse=False) 

ogrid = nd_grid(sparse=True) 

 

Users should use these pre-defined instances instead of using `nd_grid` 

directly. 

""" 

 

def __init__(self, sparse=False): 

self.sparse = sparse 

 

def __getitem__(self, key): 

try: 

size = [] 

typ = int 

for k in range(len(key)): 

step = key[k].step 

start = key[k].start 

if start is None: 

start = 0 

if step is None: 

step = 1 

if isinstance(step, complex): 

size.append(int(abs(step))) 

typ = float 

else: 

size.append( 

int(math.ceil((key[k].stop - start)/(step*1.0)))) 

if (isinstance(step, float) or 

isinstance(start, float) or 

isinstance(key[k].stop, float)): 

typ = float 

if self.sparse: 

nn = [_nx.arange(_x, dtype=_t) 

for _x, _t in zip(size, (typ,)*len(size))] 

else: 

nn = _nx.indices(size, typ) 

for k in range(len(size)): 

step = key[k].step 

start = key[k].start 

if start is None: 

start = 0 

if step is None: 

step = 1 

if isinstance(step, complex): 

step = int(abs(step)) 

if step != 1: 

step = (key[k].stop - start)/float(step-1) 

nn[k] = (nn[k]*step+start) 

if self.sparse: 

slobj = [_nx.newaxis]*len(size) 

for k in range(len(size)): 

slobj[k] = slice(None, None) 

nn[k] = nn[k][tuple(slobj)] 

slobj[k] = _nx.newaxis 

return nn 

except (IndexError, TypeError): 

step = key.step 

stop = key.stop 

start = key.start 

if start is None: 

start = 0 

if isinstance(step, complex): 

step = abs(step) 

length = int(step) 

if step != 1: 

step = (key.stop-start)/float(step-1) 

stop = key.stop + step 

return _nx.arange(0, length, 1, float)*step + start 

else: 

return _nx.arange(start, stop, step) 

 

 

class MGridClass(nd_grid): 

""" 

`nd_grid` instance which returns a dense multi-dimensional "meshgrid". 

 

An instance of `numpy.lib.index_tricks.nd_grid` which returns an dense 

(or fleshed out) mesh-grid when indexed, so that each returned argument 

has the same shape. The dimensions and number of the output arrays are 

equal to the number of indexing dimensions. If the step length is not a 

complex number, then the stop is not inclusive. 

 

However, if the step length is a **complex number** (e.g. 5j), then 

the integer part of its magnitude is interpreted as specifying the 

number of points to create between the start and stop values, where 

the stop value **is inclusive**. 

 

Returns 

---------- 

mesh-grid `ndarrays` all of the same dimensions 

 

See Also 

-------- 

numpy.lib.index_tricks.nd_grid : class of `ogrid` and `mgrid` objects 

ogrid : like mgrid but returns open (not fleshed out) mesh grids 

r_ : array concatenator 

 

Examples 

-------- 

>>> np.mgrid[0:5,0:5] 

array([[[0, 0, 0, 0, 0], 

[1, 1, 1, 1, 1], 

[2, 2, 2, 2, 2], 

[3, 3, 3, 3, 3], 

[4, 4, 4, 4, 4]], 

[[0, 1, 2, 3, 4], 

[0, 1, 2, 3, 4], 

[0, 1, 2, 3, 4], 

[0, 1, 2, 3, 4], 

[0, 1, 2, 3, 4]]]) 

>>> np.mgrid[-1:1:5j] 

array([-1. , -0.5, 0. , 0.5, 1. ]) 

 

""" 

def __init__(self): 

super(MGridClass, self).__init__(sparse=False) 

 

mgrid = MGridClass() 

 

class OGridClass(nd_grid): 

""" 

`nd_grid` instance which returns an open multi-dimensional "meshgrid". 

 

An instance of `numpy.lib.index_tricks.nd_grid` which returns an open 

(i.e. not fleshed out) mesh-grid when indexed, so that only one dimension 

of each returned array is greater than 1. The dimension and number of the 

output arrays are equal to the number of indexing dimensions. If the step 

length is not a complex number, then the stop is not inclusive. 

 

However, if the step length is a **complex number** (e.g. 5j), then 

the integer part of its magnitude is interpreted as specifying the 

number of points to create between the start and stop values, where 

the stop value **is inclusive**. 

 

Returns 

---------- 

mesh-grid `ndarrays` with only one dimension :math:`\\neq 1` 

 

See Also 

-------- 

np.lib.index_tricks.nd_grid : class of `ogrid` and `mgrid` objects 

mgrid : like `ogrid` but returns dense (or fleshed out) mesh grids 

r_ : array concatenator 

 

Examples 

-------- 

>>> from numpy import ogrid 

>>> ogrid[-1:1:5j] 

array([-1. , -0.5, 0. , 0.5, 1. ]) 

>>> ogrid[0:5,0:5] 

[array([[0], 

[1], 

[2], 

[3], 

[4]]), array([[0, 1, 2, 3, 4]])] 

 

""" 

def __init__(self): 

super(OGridClass, self).__init__(sparse=True) 

 

ogrid = OGridClass() 

 

 

class AxisConcatenator(object): 

""" 

Translates slice objects to concatenation along an axis. 

 

For detailed documentation on usage, see `r_`. 

""" 

# allow ma.mr_ to override this 

concatenate = staticmethod(_nx.concatenate) 

makemat = staticmethod(matrixlib.matrix) 

 

def __init__(self, axis=0, matrix=False, ndmin=1, trans1d=-1): 

self.axis = axis 

self.matrix = matrix 

self.trans1d = trans1d 

self.ndmin = ndmin 

 

def __getitem__(self, key): 

# handle matrix builder syntax 

if isinstance(key, str): 

frame = sys._getframe().f_back 

mymat = matrixlib.bmat(key, frame.f_globals, frame.f_locals) 

return mymat 

 

if not isinstance(key, tuple): 

key = (key,) 

 

# copy attributes, since they can be overridden in the first argument 

trans1d = self.trans1d 

ndmin = self.ndmin 

matrix = self.matrix 

axis = self.axis 

 

objs = [] 

scalars = [] 

arraytypes = [] 

scalartypes = [] 

 

for k, item in enumerate(key): 

scalar = False 

if isinstance(item, slice): 

step = item.step 

start = item.start 

stop = item.stop 

if start is None: 

start = 0 

if step is None: 

step = 1 

if isinstance(step, complex): 

size = int(abs(step)) 

newobj = linspace(start, stop, num=size) 

else: 

newobj = _nx.arange(start, stop, step) 

if ndmin > 1: 

newobj = array(newobj, copy=False, ndmin=ndmin) 

if trans1d != -1: 

newobj = newobj.swapaxes(-1, trans1d) 

elif isinstance(item, str): 

if k != 0: 

raise ValueError("special directives must be the " 

"first entry.") 

if item in ('r', 'c'): 

matrix = True 

col = (item == 'c') 

continue 

if ',' in item: 

vec = item.split(',') 

try: 

axis, ndmin = [int(x) for x in vec[:2]] 

if len(vec) == 3: 

trans1d = int(vec[2]) 

continue 

except Exception: 

raise ValueError("unknown special directive") 

try: 

axis = int(item) 

continue 

except (ValueError, TypeError): 

raise ValueError("unknown special directive") 

elif type(item) in ScalarType: 

newobj = array(item, ndmin=ndmin) 

scalars.append(len(objs)) 

scalar = True 

scalartypes.append(newobj.dtype) 

else: 

item_ndim = ndim(item) 

newobj = array(item, copy=False, subok=True, ndmin=ndmin) 

if trans1d != -1 and item_ndim < ndmin: 

k2 = ndmin - item_ndim 

k1 = trans1d 

if k1 < 0: 

k1 += k2 + 1 

defaxes = list(range(ndmin)) 

axes = defaxes[:k1] + defaxes[k2:] + defaxes[k1:k2] 

newobj = newobj.transpose(axes) 

objs.append(newobj) 

if not scalar and isinstance(newobj, _nx.ndarray): 

arraytypes.append(newobj.dtype) 

 

# Ensure that scalars won't up-cast unless warranted 

final_dtype = find_common_type(arraytypes, scalartypes) 

if final_dtype is not None: 

for k in scalars: 

objs[k] = objs[k].astype(final_dtype) 

 

res = self.concatenate(tuple(objs), axis=axis) 

 

if matrix: 

oldndim = res.ndim 

res = self.makemat(res) 

if oldndim == 1 and col: 

res = res.T 

return res 

 

def __len__(self): 

return 0 

 

# separate classes are used here instead of just making r_ = concatentor(0), 

# etc. because otherwise we couldn't get the doc string to come out right 

# in help(r_) 

 

class RClass(AxisConcatenator): 

""" 

Translates slice objects to concatenation along the first axis. 

 

This is a simple way to build up arrays quickly. There are two use cases. 

 

1. If the index expression contains comma separated arrays, then stack 

them along their first axis. 

2. If the index expression contains slice notation or scalars then create 

a 1-D array with a range indicated by the slice notation. 

 

If slice notation is used, the syntax ``start:stop:step`` is equivalent 

to ``np.arange(start, stop, step)`` inside of the brackets. However, if 

``step`` is an imaginary number (i.e. 100j) then its integer portion is 

interpreted as a number-of-points desired and the start and stop are 

inclusive. In other words ``start:stop:stepj`` is interpreted as 

``np.linspace(start, stop, step, endpoint=1)`` inside of the brackets. 

After expansion of slice notation, all comma separated sequences are 

concatenated together. 

 

Optional character strings placed as the first element of the index 

expression can be used to change the output. The strings 'r' or 'c' result 

in matrix output. If the result is 1-D and 'r' is specified a 1 x N (row) 

matrix is produced. If the result is 1-D and 'c' is specified, then a N x 1 

(column) matrix is produced. If the result is 2-D then both provide the 

same matrix result. 

 

A string integer specifies which axis to stack multiple comma separated 

arrays along. A string of two comma-separated integers allows indication 

of the minimum number of dimensions to force each entry into as the 

second integer (the axis to concatenate along is still the first integer). 

 

A string with three comma-separated integers allows specification of the 

axis to concatenate along, the minimum number of dimensions to force the 

entries to, and which axis should contain the start of the arrays which 

are less than the specified number of dimensions. In other words the third 

integer allows you to specify where the 1's should be placed in the shape 

of the arrays that have their shapes upgraded. By default, they are placed 

in the front of the shape tuple. The third argument allows you to specify 

where the start of the array should be instead. Thus, a third argument of 

'0' would place the 1's at the end of the array shape. Negative integers 

specify where in the new shape tuple the last dimension of upgraded arrays 

should be placed, so the default is '-1'. 

 

Parameters 

---------- 

Not a function, so takes no parameters 

 

 

Returns 

------- 

A concatenated ndarray or matrix. 

 

See Also 

-------- 

concatenate : Join a sequence of arrays along an existing axis. 

c_ : Translates slice objects to concatenation along the second axis. 

 

Examples 

-------- 

>>> np.r_[np.array([1,2,3]), 0, 0, np.array([4,5,6])] 

array([1, 2, 3, 0, 0, 4, 5, 6]) 

>>> np.r_[-1:1:6j, [0]*3, 5, 6] 

array([-1. , -0.6, -0.2, 0.2, 0.6, 1. , 0. , 0. , 0. , 5. , 6. ]) 

 

String integers specify the axis to concatenate along or the minimum 

number of dimensions to force entries into. 

 

>>> a = np.array([[0, 1, 2], [3, 4, 5]]) 

>>> np.r_['-1', a, a] # concatenate along last axis 

array([[0, 1, 2, 0, 1, 2], 

[3, 4, 5, 3, 4, 5]]) 

>>> np.r_['0,2', [1,2,3], [4,5,6]] # concatenate along first axis, dim>=2 

array([[1, 2, 3], 

[4, 5, 6]]) 

 

>>> np.r_['0,2,0', [1,2,3], [4,5,6]] 

array([[1], 

[2], 

[3], 

[4], 

[5], 

[6]]) 

>>> np.r_['1,2,0', [1,2,3], [4,5,6]] 

array([[1, 4], 

[2, 5], 

[3, 6]]) 

 

Using 'r' or 'c' as a first string argument creates a matrix. 

 

>>> np.r_['r',[1,2,3], [4,5,6]] 

matrix([[1, 2, 3, 4, 5, 6]]) 

 

""" 

 

def __init__(self): 

AxisConcatenator.__init__(self, 0) 

 

r_ = RClass() 

 

class CClass(AxisConcatenator): 

""" 

Translates slice objects to concatenation along the second axis. 

 

This is short-hand for ``np.r_['-1,2,0', index expression]``, which is 

useful because of its common occurrence. In particular, arrays will be 

stacked along their last axis after being upgraded to at least 2-D with 

1's post-pended to the shape (column vectors made out of 1-D arrays). 

 

See Also 

-------- 

column_stack : Stack 1-D arrays as columns into a 2-D array. 

r_ : For more detailed documentation. 

 

Examples 

-------- 

>>> np.c_[np.array([1,2,3]), np.array([4,5,6])] 

array([[1, 4], 

[2, 5], 

[3, 6]]) 

>>> np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])] 

array([[1, 2, 3, 0, 0, 4, 5, 6]]) 

 

""" 

 

def __init__(self): 

AxisConcatenator.__init__(self, -1, ndmin=2, trans1d=0) 

 

 

c_ = CClass() 

 

 

@set_module('numpy') 

class ndenumerate(object): 

""" 

Multidimensional index iterator. 

 

Return an iterator yielding pairs of array coordinates and values. 

 

Parameters 

---------- 

arr : ndarray 

Input array. 

 

See Also 

-------- 

ndindex, flatiter 

 

Examples 

-------- 

>>> a = np.array([[1, 2], [3, 4]]) 

>>> for index, x in np.ndenumerate(a): 

... print(index, x) 

(0, 0) 1 

(0, 1) 2 

(1, 0) 3 

(1, 1) 4 

 

""" 

 

def __init__(self, arr): 

self.iter = asarray(arr).flat 

 

def __next__(self): 

""" 

Standard iterator method, returns the index tuple and array value. 

 

Returns 

------- 

coords : tuple of ints 

The indices of the current iteration. 

val : scalar 

The array element of the current iteration. 

 

""" 

return self.iter.coords, next(self.iter) 

 

def __iter__(self): 

return self 

 

next = __next__ 

 

 

@set_module('numpy') 

class ndindex(object): 

""" 

An N-dimensional iterator object to index arrays. 

 

Given the shape of an array, an `ndindex` instance iterates over 

the N-dimensional index of the array. At each iteration a tuple 

of indices is returned, the last dimension is iterated over first. 

 

Parameters 

---------- 

`*args` : ints 

The size of each dimension of the array. 

 

See Also 

-------- 

ndenumerate, flatiter 

 

Examples 

-------- 

>>> for index in np.ndindex(3, 2, 1): 

... print(index) 

(0, 0, 0) 

(0, 1, 0) 

(1, 0, 0) 

(1, 1, 0) 

(2, 0, 0) 

(2, 1, 0) 

 

""" 

 

def __init__(self, *shape): 

if len(shape) == 1 and isinstance(shape[0], tuple): 

shape = shape[0] 

x = as_strided(_nx.zeros(1), shape=shape, 

strides=_nx.zeros_like(shape)) 

self._it = _nx.nditer(x, flags=['multi_index', 'zerosize_ok'], 

order='C') 

 

def __iter__(self): 

return self 

 

def ndincr(self): 

""" 

Increment the multi-dimensional index by one. 

 

This method is for backward compatibility only: do not use. 

""" 

next(self) 

 

def __next__(self): 

""" 

Standard iterator method, updates the index and returns the index 

tuple. 

 

Returns 

------- 

val : tuple of ints 

Returns a tuple containing the indices of the current 

iteration. 

 

""" 

next(self._it) 

return self._it.multi_index 

 

next = __next__ 

 

 

# You can do all this with slice() plus a few special objects, 

# but there's a lot to remember. This version is simpler because 

# it uses the standard array indexing syntax. 

# 

# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr> 

# last revision: 1999-7-23 

# 

# Cosmetic changes by T. Oliphant 2001 

# 

# 

 

class IndexExpression(object): 

""" 

A nicer way to build up index tuples for arrays. 

 

.. note:: 

Use one of the two predefined instances `index_exp` or `s_` 

rather than directly using `IndexExpression`. 

 

For any index combination, including slicing and axis insertion, 

``a[indices]`` is the same as ``a[np.index_exp[indices]]`` for any 

array `a`. However, ``np.index_exp[indices]`` can be used anywhere 

in Python code and returns a tuple of slice objects that can be 

used in the construction of complex index expressions. 

 

Parameters 

---------- 

maketuple : bool 

If True, always returns a tuple. 

 

See Also 

-------- 

index_exp : Predefined instance that always returns a tuple: 

`index_exp = IndexExpression(maketuple=True)`. 

s_ : Predefined instance without tuple conversion: 

`s_ = IndexExpression(maketuple=False)`. 

 

Notes 

----- 

You can do all this with `slice()` plus a few special objects, 

but there's a lot to remember and this version is simpler because 

it uses the standard array indexing syntax. 

 

Examples 

-------- 

>>> np.s_[2::2] 

slice(2, None, 2) 

>>> np.index_exp[2::2] 

(slice(2, None, 2),) 

 

>>> np.array([0, 1, 2, 3, 4])[np.s_[2::2]] 

array([2, 4]) 

 

""" 

 

def __init__(self, maketuple): 

self.maketuple = maketuple 

 

def __getitem__(self, item): 

if self.maketuple and not isinstance(item, tuple): 

return (item,) 

else: 

return item 

 

index_exp = IndexExpression(maketuple=True) 

s_ = IndexExpression(maketuple=False) 

 

# End contribution from Konrad. 

 

 

# The following functions complement those in twodim_base, but are 

# applicable to N-dimensions. 

 

 

def _fill_diagonal_dispatcher(a, val, wrap=None): 

return (a,) 

 

 

@array_function_dispatch(_fill_diagonal_dispatcher) 

def fill_diagonal(a, val, wrap=False): 

"""Fill the main diagonal of the given array of any dimensionality. 

 

For an array `a` with ``a.ndim >= 2``, the diagonal is the list of 

locations with indices ``a[i, ..., i]`` all identical. This function 

modifies the input array in-place, it does not return a value. 

 

Parameters 

---------- 

a : array, at least 2-D. 

Array whose diagonal is to be filled, it gets modified in-place. 

 

val : scalar 

Value to be written on the diagonal, its type must be compatible with 

that of the array a. 

 

wrap : bool 

For tall matrices in NumPy version up to 1.6.2, the 

diagonal "wrapped" after N columns. You can have this behavior 

with this option. This affects only tall matrices. 

 

See also 

-------- 

diag_indices, diag_indices_from 

 

Notes 

----- 

.. versionadded:: 1.4.0 

 

This functionality can be obtained via `diag_indices`, but internally 

this version uses a much faster implementation that never constructs the 

indices and uses simple slicing. 

 

Examples 

-------- 

>>> a = np.zeros((3, 3), int) 

>>> np.fill_diagonal(a, 5) 

>>> a 

array([[5, 0, 0], 

[0, 5, 0], 

[0, 0, 5]]) 

 

The same function can operate on a 4-D array: 

 

>>> a = np.zeros((3, 3, 3, 3), int) 

>>> np.fill_diagonal(a, 4) 

 

We only show a few blocks for clarity: 

 

>>> a[0, 0] 

array([[4, 0, 0], 

[0, 0, 0], 

[0, 0, 0]]) 

>>> a[1, 1] 

array([[0, 0, 0], 

[0, 4, 0], 

[0, 0, 0]]) 

>>> a[2, 2] 

array([[0, 0, 0], 

[0, 0, 0], 

[0, 0, 4]]) 

 

The wrap option affects only tall matrices: 

 

>>> # tall matrices no wrap 

>>> a = np.zeros((5, 3),int) 

>>> fill_diagonal(a, 4) 

>>> a 

array([[4, 0, 0], 

[0, 4, 0], 

[0, 0, 4], 

[0, 0, 0], 

[0, 0, 0]]) 

 

>>> # tall matrices wrap 

>>> a = np.zeros((5, 3),int) 

>>> fill_diagonal(a, 4, wrap=True) 

>>> a 

array([[4, 0, 0], 

[0, 4, 0], 

[0, 0, 4], 

[0, 0, 0], 

[4, 0, 0]]) 

 

>>> # wide matrices 

>>> a = np.zeros((3, 5),int) 

>>> fill_diagonal(a, 4, wrap=True) 

>>> a 

array([[4, 0, 0, 0, 0], 

[0, 4, 0, 0, 0], 

[0, 0, 4, 0, 0]]) 

 

""" 

if a.ndim < 2: 

raise ValueError("array must be at least 2-d") 

end = None 

if a.ndim == 2: 

# Explicit, fast formula for the common case. For 2-d arrays, we 

# accept rectangular ones. 

step = a.shape[1] + 1 

#This is needed to don't have tall matrix have the diagonal wrap. 

if not wrap: 

end = a.shape[1] * a.shape[1] 

else: 

# For more than d=2, the strided formula is only valid for arrays with 

# all dimensions equal, so we check first. 

if not alltrue(diff(a.shape) == 0): 

raise ValueError("All dimensions of input must be of equal length") 

step = 1 + (cumprod(a.shape[:-1])).sum() 

 

# Write the value out into the diagonal. 

a.flat[:end:step] = val 

 

 

@set_module('numpy') 

def diag_indices(n, ndim=2): 

""" 

Return the indices to access the main diagonal of an array. 

 

This returns a tuple of indices that can be used to access the main 

diagonal of an array `a` with ``a.ndim >= 2`` dimensions and shape 

(n, n, ..., n). For ``a.ndim = 2`` this is the usual diagonal, for 

``a.ndim > 2`` this is the set of indices to access ``a[i, i, ..., i]`` 

for ``i = [0..n-1]``. 

 

Parameters 

---------- 

n : int 

The size, along each dimension, of the arrays for which the returned 

indices can be used. 

 

ndim : int, optional 

The number of dimensions. 

 

See also 

-------- 

diag_indices_from 

 

Notes 

----- 

.. versionadded:: 1.4.0 

 

Examples 

-------- 

Create a set of indices to access the diagonal of a (4, 4) array: 

 

>>> di = np.diag_indices(4) 

>>> di 

(array([0, 1, 2, 3]), array([0, 1, 2, 3])) 

>>> a = np.arange(16).reshape(4, 4) 

>>> a 

array([[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 

[ 8, 9, 10, 11], 

[12, 13, 14, 15]]) 

>>> a[di] = 100 

>>> a 

array([[100, 1, 2, 3], 

[ 4, 100, 6, 7], 

[ 8, 9, 100, 11], 

[ 12, 13, 14, 100]]) 

 

Now, we create indices to manipulate a 3-D array: 

 

>>> d3 = np.diag_indices(2, 3) 

>>> d3 

(array([0, 1]), array([0, 1]), array([0, 1])) 

 

And use it to set the diagonal of an array of zeros to 1: 

 

>>> a = np.zeros((2, 2, 2), dtype=int) 

>>> a[d3] = 1 

>>> a 

array([[[1, 0], 

[0, 0]], 

[[0, 0], 

[0, 1]]]) 

 

""" 

idx = arange(n) 

return (idx,) * ndim 

 

 

def _diag_indices_from(arr): 

return (arr,) 

 

 

@array_function_dispatch(_diag_indices_from) 

def diag_indices_from(arr): 

""" 

Return the indices to access the main diagonal of an n-dimensional array. 

 

See `diag_indices` for full details. 

 

Parameters 

---------- 

arr : array, at least 2-D 

 

See Also 

-------- 

diag_indices 

 

Notes 

----- 

.. versionadded:: 1.4.0 

 

""" 

 

if not arr.ndim >= 2: 

raise ValueError("input array must be at least 2-d") 

# For more than d=2, the strided formula is only valid for arrays with 

# all dimensions equal, so we check first. 

if not alltrue(diff(arr.shape) == 0): 

raise ValueError("All dimensions of input must be of equal length") 

 

return diag_indices(arr.shape[0], arr.ndim)