1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

""" 

Functions that ignore NaN. 

 

Functions 

--------- 

 

- `nanmin` -- minimum non-NaN value 

- `nanmax` -- maximum non-NaN value 

- `nanargmin` -- index of minimum non-NaN value 

- `nanargmax` -- index of maximum non-NaN value 

- `nansum` -- sum of non-NaN values 

- `nanprod` -- product of non-NaN values 

- `nancumsum` -- cumulative sum of non-NaN values 

- `nancumprod` -- cumulative product of non-NaN values 

- `nanmean` -- mean of non-NaN values 

- `nanvar` -- variance of non-NaN values 

- `nanstd` -- standard deviation of non-NaN values 

- `nanmedian` -- median of non-NaN values 

- `nanquantile` -- qth quantile of non-NaN values 

- `nanpercentile` -- qth percentile of non-NaN values 

 

""" 

from __future__ import division, absolute_import, print_function 

 

import functools 

import warnings 

import numpy as np 

from numpy.lib import function_base 

from numpy.core import overrides 

 

 

array_function_dispatch = functools.partial( 

overrides.array_function_dispatch, module='numpy') 

 

 

__all__ = [ 

'nansum', 'nanmax', 'nanmin', 'nanargmax', 'nanargmin', 'nanmean', 

'nanmedian', 'nanpercentile', 'nanvar', 'nanstd', 'nanprod', 

'nancumsum', 'nancumprod', 'nanquantile' 

] 

 

 

def _replace_nan(a, val): 

""" 

If `a` is of inexact type, make a copy of `a`, replace NaNs with 

the `val` value, and return the copy together with a boolean mask 

marking the locations where NaNs were present. If `a` is not of 

inexact type, do nothing and return `a` together with a mask of None. 

 

Note that scalars will end up as array scalars, which is important 

for using the result as the value of the out argument in some 

operations. 

 

Parameters 

---------- 

a : array-like 

Input array. 

val : float 

NaN values are set to val before doing the operation. 

 

Returns 

------- 

y : ndarray 

If `a` is of inexact type, return a copy of `a` with the NaNs 

replaced by the fill value, otherwise return `a`. 

mask: {bool, None} 

If `a` is of inexact type, return a boolean mask marking locations of 

NaNs, otherwise return None. 

 

""" 

a = np.array(a, subok=True, copy=True) 

 

if a.dtype == np.object_: 

# object arrays do not support `isnan` (gh-9009), so make a guess 

mask = a != a 

elif issubclass(a.dtype.type, np.inexact): 

mask = np.isnan(a) 

else: 

mask = None 

 

if mask is not None: 

np.copyto(a, val, where=mask) 

 

return a, mask 

 

 

def _copyto(a, val, mask): 

""" 

Replace values in `a` with NaN where `mask` is True. This differs from 

copyto in that it will deal with the case where `a` is a numpy scalar. 

 

Parameters 

---------- 

a : ndarray or numpy scalar 

Array or numpy scalar some of whose values are to be replaced 

by val. 

val : numpy scalar 

Value used a replacement. 

mask : ndarray, scalar 

Boolean array. Where True the corresponding element of `a` is 

replaced by `val`. Broadcasts. 

 

Returns 

------- 

res : ndarray, scalar 

Array with elements replaced or scalar `val`. 

 

""" 

if isinstance(a, np.ndarray): 

np.copyto(a, val, where=mask, casting='unsafe') 

else: 

a = a.dtype.type(val) 

return a 

 

 

def _remove_nan_1d(arr1d, overwrite_input=False): 

""" 

Equivalent to arr1d[~arr1d.isnan()], but in a different order 

 

Presumably faster as it incurs fewer copies 

 

Parameters 

---------- 

arr1d : ndarray 

Array to remove nans from 

overwrite_input : bool 

True if `arr1d` can be modified in place 

 

Returns 

------- 

res : ndarray 

Array with nan elements removed 

overwrite_input : bool 

True if `res` can be modified in place, given the constraint on the 

input 

""" 

 

c = np.isnan(arr1d) 

s = np.nonzero(c)[0] 

if s.size == arr1d.size: 

warnings.warn("All-NaN slice encountered", RuntimeWarning, stacklevel=4) 

return arr1d[:0], True 

elif s.size == 0: 

return arr1d, overwrite_input 

else: 

if not overwrite_input: 

arr1d = arr1d.copy() 

# select non-nans at end of array 

enonan = arr1d[-s.size:][~c[-s.size:]] 

# fill nans in beginning of array with non-nans of end 

arr1d[s[:enonan.size]] = enonan 

 

return arr1d[:-s.size], True 

 

 

def _divide_by_count(a, b, out=None): 

""" 

Compute a/b ignoring invalid results. If `a` is an array the division 

is done in place. If `a` is a scalar, then its type is preserved in the 

output. If out is None, then then a is used instead so that the 

division is in place. Note that this is only called with `a` an inexact 

type. 

 

Parameters 

---------- 

a : {ndarray, numpy scalar} 

Numerator. Expected to be of inexact type but not checked. 

b : {ndarray, numpy scalar} 

Denominator. 

out : ndarray, optional 

Alternate output array in which to place the result. The default 

is ``None``; if provided, it must have the same shape as the 

expected output, but the type will be cast if necessary. 

 

Returns 

------- 

ret : {ndarray, numpy scalar} 

The return value is a/b. If `a` was an ndarray the division is done 

in place. If `a` is a numpy scalar, the division preserves its type. 

 

""" 

with np.errstate(invalid='ignore', divide='ignore'): 

if isinstance(a, np.ndarray): 

if out is None: 

return np.divide(a, b, out=a, casting='unsafe') 

else: 

return np.divide(a, b, out=out, casting='unsafe') 

else: 

if out is None: 

return a.dtype.type(a / b) 

else: 

# This is questionable, but currently a numpy scalar can 

# be output to a zero dimensional array. 

return np.divide(a, b, out=out, casting='unsafe') 

 

 

def _nanmin_dispatcher(a, axis=None, out=None, keepdims=None): 

return (a, out) 

 

 

@array_function_dispatch(_nanmin_dispatcher) 

def nanmin(a, axis=None, out=None, keepdims=np._NoValue): 

""" 

Return minimum of an array or minimum along an axis, ignoring any NaNs. 

When all-NaN slices are encountered a ``RuntimeWarning`` is raised and 

Nan is returned for that slice. 

 

Parameters 

---------- 

a : array_like 

Array containing numbers whose minimum is desired. If `a` is not an 

array, a conversion is attempted. 

axis : {int, tuple of int, None}, optional 

Axis or axes along which the minimum is computed. The default is to compute 

the minimum of the flattened array. 

out : ndarray, optional 

Alternate output array in which to place the result. The default 

is ``None``; if provided, it must have the same shape as the 

expected output, but the type will be cast if necessary. See 

`doc.ufuncs` for details. 

 

.. versionadded:: 1.8.0 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left 

in the result as dimensions with size one. With this option, 

the result will broadcast correctly against the original `a`. 

 

If the value is anything but the default, then 

`keepdims` will be passed through to the `min` method 

of sub-classes of `ndarray`. If the sub-classes methods 

does not implement `keepdims` any exceptions will be raised. 

 

.. versionadded:: 1.8.0 

 

Returns 

------- 

nanmin : ndarray 

An array with the same shape as `a`, with the specified axis 

removed. If `a` is a 0-d array, or if axis is None, an ndarray 

scalar is returned. The same dtype as `a` is returned. 

 

See Also 

-------- 

nanmax : 

The maximum value of an array along a given axis, ignoring any NaNs. 

amin : 

The minimum value of an array along a given axis, propagating any NaNs. 

fmin : 

Element-wise minimum of two arrays, ignoring any NaNs. 

minimum : 

Element-wise minimum of two arrays, propagating any NaNs. 

isnan : 

Shows which elements are Not a Number (NaN). 

isfinite: 

Shows which elements are neither NaN nor infinity. 

 

amax, fmax, maximum 

 

Notes 

----- 

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic 

(IEEE 754). This means that Not a Number is not equivalent to infinity. 

Positive infinity is treated as a very large number and negative 

infinity is treated as a very small (i.e. negative) number. 

 

If the input has a integer type the function is equivalent to np.min. 

 

Examples 

-------- 

>>> a = np.array([[1, 2], [3, np.nan]]) 

>>> np.nanmin(a) 

1.0 

>>> np.nanmin(a, axis=0) 

array([ 1., 2.]) 

>>> np.nanmin(a, axis=1) 

array([ 1., 3.]) 

 

When positive infinity and negative infinity are present: 

 

>>> np.nanmin([1, 2, np.nan, np.inf]) 

1.0 

>>> np.nanmin([1, 2, np.nan, np.NINF]) 

-inf 

 

""" 

kwargs = {} 

if keepdims is not np._NoValue: 

kwargs['keepdims'] = keepdims 

if type(a) is np.ndarray and a.dtype != np.object_: 

# Fast, but not safe for subclasses of ndarray, or object arrays, 

# which do not implement isnan (gh-9009), or fmin correctly (gh-8975) 

res = np.fmin.reduce(a, axis=axis, out=out, **kwargs) 

if np.isnan(res).any(): 

warnings.warn("All-NaN slice encountered", RuntimeWarning, stacklevel=2) 

else: 

# Slow, but safe for subclasses of ndarray 

a, mask = _replace_nan(a, +np.inf) 

res = np.amin(a, axis=axis, out=out, **kwargs) 

if mask is None: 

return res 

 

# Check for all-NaN axis 

mask = np.all(mask, axis=axis, **kwargs) 

if np.any(mask): 

res = _copyto(res, np.nan, mask) 

warnings.warn("All-NaN axis encountered", RuntimeWarning, stacklevel=2) 

return res 

 

 

def _nanmax_dispatcher(a, axis=None, out=None, keepdims=None): 

return (a, out) 

 

 

@array_function_dispatch(_nanmax_dispatcher) 

def nanmax(a, axis=None, out=None, keepdims=np._NoValue): 

""" 

Return the maximum of an array or maximum along an axis, ignoring any 

NaNs. When all-NaN slices are encountered a ``RuntimeWarning`` is 

raised and NaN is returned for that slice. 

 

Parameters 

---------- 

a : array_like 

Array containing numbers whose maximum is desired. If `a` is not an 

array, a conversion is attempted. 

axis : {int, tuple of int, None}, optional 

Axis or axes along which the maximum is computed. The default is to compute 

the maximum of the flattened array. 

out : ndarray, optional 

Alternate output array in which to place the result. The default 

is ``None``; if provided, it must have the same shape as the 

expected output, but the type will be cast if necessary. See 

`doc.ufuncs` for details. 

 

.. versionadded:: 1.8.0 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left 

in the result as dimensions with size one. With this option, 

the result will broadcast correctly against the original `a`. 

 

If the value is anything but the default, then 

`keepdims` will be passed through to the `max` method 

of sub-classes of `ndarray`. If the sub-classes methods 

does not implement `keepdims` any exceptions will be raised. 

 

.. versionadded:: 1.8.0 

 

Returns 

------- 

nanmax : ndarray 

An array with the same shape as `a`, with the specified axis removed. 

If `a` is a 0-d array, or if axis is None, an ndarray scalar is 

returned. The same dtype as `a` is returned. 

 

See Also 

-------- 

nanmin : 

The minimum value of an array along a given axis, ignoring any NaNs. 

amax : 

The maximum value of an array along a given axis, propagating any NaNs. 

fmax : 

Element-wise maximum of two arrays, ignoring any NaNs. 

maximum : 

Element-wise maximum of two arrays, propagating any NaNs. 

isnan : 

Shows which elements are Not a Number (NaN). 

isfinite: 

Shows which elements are neither NaN nor infinity. 

 

amin, fmin, minimum 

 

Notes 

----- 

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic 

(IEEE 754). This means that Not a Number is not equivalent to infinity. 

Positive infinity is treated as a very large number and negative 

infinity is treated as a very small (i.e. negative) number. 

 

If the input has a integer type the function is equivalent to np.max. 

 

Examples 

-------- 

>>> a = np.array([[1, 2], [3, np.nan]]) 

>>> np.nanmax(a) 

3.0 

>>> np.nanmax(a, axis=0) 

array([ 3., 2.]) 

>>> np.nanmax(a, axis=1) 

array([ 2., 3.]) 

 

When positive infinity and negative infinity are present: 

 

>>> np.nanmax([1, 2, np.nan, np.NINF]) 

2.0 

>>> np.nanmax([1, 2, np.nan, np.inf]) 

inf 

 

""" 

kwargs = {} 

if keepdims is not np._NoValue: 

kwargs['keepdims'] = keepdims 

if type(a) is np.ndarray and a.dtype != np.object_: 

# Fast, but not safe for subclasses of ndarray, or object arrays, 

# which do not implement isnan (gh-9009), or fmax correctly (gh-8975) 

res = np.fmax.reduce(a, axis=axis, out=out, **kwargs) 

if np.isnan(res).any(): 

warnings.warn("All-NaN slice encountered", RuntimeWarning, stacklevel=2) 

else: 

# Slow, but safe for subclasses of ndarray 

a, mask = _replace_nan(a, -np.inf) 

res = np.amax(a, axis=axis, out=out, **kwargs) 

if mask is None: 

return res 

 

# Check for all-NaN axis 

mask = np.all(mask, axis=axis, **kwargs) 

if np.any(mask): 

res = _copyto(res, np.nan, mask) 

warnings.warn("All-NaN axis encountered", RuntimeWarning, stacklevel=2) 

return res 

 

 

def _nanargmin_dispatcher(a, axis=None): 

return (a,) 

 

 

@array_function_dispatch(_nanargmin_dispatcher) 

def nanargmin(a, axis=None): 

""" 

Return the indices of the minimum values in the specified axis ignoring 

NaNs. For all-NaN slices ``ValueError`` is raised. Warning: the results 

cannot be trusted if a slice contains only NaNs and Infs. 

 

Parameters 

---------- 

a : array_like 

Input data. 

axis : int, optional 

Axis along which to operate. By default flattened input is used. 

 

Returns 

------- 

index_array : ndarray 

An array of indices or a single index value. 

 

See Also 

-------- 

argmin, nanargmax 

 

Examples 

-------- 

>>> a = np.array([[np.nan, 4], [2, 3]]) 

>>> np.argmin(a) 

0 

>>> np.nanargmin(a) 

2 

>>> np.nanargmin(a, axis=0) 

array([1, 1]) 

>>> np.nanargmin(a, axis=1) 

array([1, 0]) 

 

""" 

a, mask = _replace_nan(a, np.inf) 

res = np.argmin(a, axis=axis) 

if mask is not None: 

mask = np.all(mask, axis=axis) 

if np.any(mask): 

raise ValueError("All-NaN slice encountered") 

return res 

 

 

def _nanargmax_dispatcher(a, axis=None): 

return (a,) 

 

 

@array_function_dispatch(_nanargmax_dispatcher) 

def nanargmax(a, axis=None): 

""" 

Return the indices of the maximum values in the specified axis ignoring 

NaNs. For all-NaN slices ``ValueError`` is raised. Warning: the 

results cannot be trusted if a slice contains only NaNs and -Infs. 

 

 

Parameters 

---------- 

a : array_like 

Input data. 

axis : int, optional 

Axis along which to operate. By default flattened input is used. 

 

Returns 

------- 

index_array : ndarray 

An array of indices or a single index value. 

 

See Also 

-------- 

argmax, nanargmin 

 

Examples 

-------- 

>>> a = np.array([[np.nan, 4], [2, 3]]) 

>>> np.argmax(a) 

0 

>>> np.nanargmax(a) 

1 

>>> np.nanargmax(a, axis=0) 

array([1, 0]) 

>>> np.nanargmax(a, axis=1) 

array([1, 1]) 

 

""" 

a, mask = _replace_nan(a, -np.inf) 

res = np.argmax(a, axis=axis) 

if mask is not None: 

mask = np.all(mask, axis=axis) 

if np.any(mask): 

raise ValueError("All-NaN slice encountered") 

return res 

 

 

def _nansum_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None): 

return (a, out) 

 

 

@array_function_dispatch(_nansum_dispatcher) 

def nansum(a, axis=None, dtype=None, out=None, keepdims=np._NoValue): 

""" 

Return the sum of array elements over a given axis treating Not a 

Numbers (NaNs) as zero. 

 

In NumPy versions <= 1.9.0 Nan is returned for slices that are all-NaN or 

empty. In later versions zero is returned. 

 

Parameters 

---------- 

a : array_like 

Array containing numbers whose sum is desired. If `a` is not an 

array, a conversion is attempted. 

axis : {int, tuple of int, None}, optional 

Axis or axes along which the sum is computed. The default is to compute the 

sum of the flattened array. 

dtype : data-type, optional 

The type of the returned array and of the accumulator in which the 

elements are summed. By default, the dtype of `a` is used. An 

exception is when `a` has an integer type with less precision than 

the platform (u)intp. In that case, the default will be either 

(u)int32 or (u)int64 depending on whether the platform is 32 or 64 

bits. For inexact inputs, dtype must be inexact. 

 

.. versionadded:: 1.8.0 

out : ndarray, optional 

Alternate output array in which to place the result. The default 

is ``None``. If provided, it must have the same shape as the 

expected output, but the type will be cast if necessary. See 

`doc.ufuncs` for details. The casting of NaN to integer can yield 

unexpected results. 

 

.. versionadded:: 1.8.0 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left 

in the result as dimensions with size one. With this option, 

the result will broadcast correctly against the original `a`. 

 

 

If the value is anything but the default, then 

`keepdims` will be passed through to the `mean` or `sum` methods 

of sub-classes of `ndarray`. If the sub-classes methods 

does not implement `keepdims` any exceptions will be raised. 

 

.. versionadded:: 1.8.0 

 

Returns 

------- 

nansum : ndarray. 

A new array holding the result is returned unless `out` is 

specified, in which it is returned. The result has the same 

size as `a`, and the same shape as `a` if `axis` is not None 

or `a` is a 1-d array. 

 

See Also 

-------- 

numpy.sum : Sum across array propagating NaNs. 

isnan : Show which elements are NaN. 

isfinite: Show which elements are not NaN or +/-inf. 

 

Notes 

----- 

If both positive and negative infinity are present, the sum will be Not 

A Number (NaN). 

 

Examples 

-------- 

>>> np.nansum(1) 

1 

>>> np.nansum([1]) 

1 

>>> np.nansum([1, np.nan]) 

1.0 

>>> a = np.array([[1, 1], [1, np.nan]]) 

>>> np.nansum(a) 

3.0 

>>> np.nansum(a, axis=0) 

array([ 2., 1.]) 

>>> np.nansum([1, np.nan, np.inf]) 

inf 

>>> np.nansum([1, np.nan, np.NINF]) 

-inf 

>>> np.nansum([1, np.nan, np.inf, -np.inf]) # both +/- infinity present 

nan 

 

""" 

a, mask = _replace_nan(a, 0) 

return np.sum(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims) 

 

 

def _nanprod_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None): 

return (a, out) 

 

 

@array_function_dispatch(_nanprod_dispatcher) 

def nanprod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue): 

""" 

Return the product of array elements over a given axis treating Not a 

Numbers (NaNs) as ones. 

 

One is returned for slices that are all-NaN or empty. 

 

.. versionadded:: 1.10.0 

 

Parameters 

---------- 

a : array_like 

Array containing numbers whose product is desired. If `a` is not an 

array, a conversion is attempted. 

axis : {int, tuple of int, None}, optional 

Axis or axes along which the product is computed. The default is to compute 

the product of the flattened array. 

dtype : data-type, optional 

The type of the returned array and of the accumulator in which the 

elements are summed. By default, the dtype of `a` is used. An 

exception is when `a` has an integer type with less precision than 

the platform (u)intp. In that case, the default will be either 

(u)int32 or (u)int64 depending on whether the platform is 32 or 64 

bits. For inexact inputs, dtype must be inexact. 

out : ndarray, optional 

Alternate output array in which to place the result. The default 

is ``None``. If provided, it must have the same shape as the 

expected output, but the type will be cast if necessary. See 

`doc.ufuncs` for details. The casting of NaN to integer can yield 

unexpected results. 

keepdims : bool, optional 

If True, the axes which are reduced are left in the result as 

dimensions with size one. With this option, the result will 

broadcast correctly against the original `arr`. 

 

Returns 

------- 

nanprod : ndarray 

A new array holding the result is returned unless `out` is 

specified, in which case it is returned. 

 

See Also 

-------- 

numpy.prod : Product across array propagating NaNs. 

isnan : Show which elements are NaN. 

 

Examples 

-------- 

>>> np.nanprod(1) 

1 

>>> np.nanprod([1]) 

1 

>>> np.nanprod([1, np.nan]) 

1.0 

>>> a = np.array([[1, 2], [3, np.nan]]) 

>>> np.nanprod(a) 

6.0 

>>> np.nanprod(a, axis=0) 

array([ 3., 2.]) 

 

""" 

a, mask = _replace_nan(a, 1) 

return np.prod(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims) 

 

 

def _nancumsum_dispatcher(a, axis=None, dtype=None, out=None): 

return (a, out) 

 

 

@array_function_dispatch(_nancumsum_dispatcher) 

def nancumsum(a, axis=None, dtype=None, out=None): 

""" 

Return the cumulative sum of array elements over a given axis treating Not a 

Numbers (NaNs) as zero. The cumulative sum does not change when NaNs are 

encountered and leading NaNs are replaced by zeros. 

 

Zeros are returned for slices that are all-NaN or empty. 

 

.. versionadded:: 1.12.0 

 

Parameters 

---------- 

a : array_like 

Input array. 

axis : int, optional 

Axis along which the cumulative sum is computed. The default 

(None) is to compute the cumsum over the flattened array. 

dtype : dtype, optional 

Type of the returned array and of the accumulator in which the 

elements are summed. If `dtype` is not specified, it defaults 

to the dtype of `a`, unless `a` has an integer dtype with a 

precision less than that of the default platform integer. In 

that case, the default platform integer is used. 

out : ndarray, optional 

Alternative output array in which to place the result. It must 

have the same shape and buffer length as the expected output 

but the type will be cast if necessary. See `doc.ufuncs` 

(Section "Output arguments") for more details. 

 

Returns 

------- 

nancumsum : ndarray. 

A new array holding the result is returned unless `out` is 

specified, in which it is returned. The result has the same 

size as `a`, and the same shape as `a` if `axis` is not None 

or `a` is a 1-d array. 

 

See Also 

-------- 

numpy.cumsum : Cumulative sum across array propagating NaNs. 

isnan : Show which elements are NaN. 

 

Examples 

-------- 

>>> np.nancumsum(1) 

array([1]) 

>>> np.nancumsum([1]) 

array([1]) 

>>> np.nancumsum([1, np.nan]) 

array([ 1., 1.]) 

>>> a = np.array([[1, 2], [3, np.nan]]) 

>>> np.nancumsum(a) 

array([ 1., 3., 6., 6.]) 

>>> np.nancumsum(a, axis=0) 

array([[ 1., 2.], 

[ 4., 2.]]) 

>>> np.nancumsum(a, axis=1) 

array([[ 1., 3.], 

[ 3., 3.]]) 

 

""" 

a, mask = _replace_nan(a, 0) 

return np.cumsum(a, axis=axis, dtype=dtype, out=out) 

 

 

def _nancumprod_dispatcher(a, axis=None, dtype=None, out=None): 

return (a, out) 

 

 

@array_function_dispatch(_nancumprod_dispatcher) 

def nancumprod(a, axis=None, dtype=None, out=None): 

""" 

Return the cumulative product of array elements over a given axis treating Not a 

Numbers (NaNs) as one. The cumulative product does not change when NaNs are 

encountered and leading NaNs are replaced by ones. 

 

Ones are returned for slices that are all-NaN or empty. 

 

.. versionadded:: 1.12.0 

 

Parameters 

---------- 

a : array_like 

Input array. 

axis : int, optional 

Axis along which the cumulative product is computed. By default 

the input is flattened. 

dtype : dtype, optional 

Type of the returned array, as well as of the accumulator in which 

the elements are multiplied. If *dtype* is not specified, it 

defaults to the dtype of `a`, unless `a` has an integer dtype with 

a precision less than that of the default platform integer. In 

that case, the default platform integer is used instead. 

out : ndarray, optional 

Alternative output array in which to place the result. It must 

have the same shape and buffer length as the expected output 

but the type of the resulting values will be cast if necessary. 

 

Returns 

------- 

nancumprod : ndarray 

A new array holding the result is returned unless `out` is 

specified, in which case it is returned. 

 

See Also 

-------- 

numpy.cumprod : Cumulative product across array propagating NaNs. 

isnan : Show which elements are NaN. 

 

Examples 

-------- 

>>> np.nancumprod(1) 

array([1]) 

>>> np.nancumprod([1]) 

array([1]) 

>>> np.nancumprod([1, np.nan]) 

array([ 1., 1.]) 

>>> a = np.array([[1, 2], [3, np.nan]]) 

>>> np.nancumprod(a) 

array([ 1., 2., 6., 6.]) 

>>> np.nancumprod(a, axis=0) 

array([[ 1., 2.], 

[ 3., 2.]]) 

>>> np.nancumprod(a, axis=1) 

array([[ 1., 2.], 

[ 3., 3.]]) 

 

""" 

a, mask = _replace_nan(a, 1) 

return np.cumprod(a, axis=axis, dtype=dtype, out=out) 

 

 

def _nanmean_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None): 

return (a, out) 

 

 

@array_function_dispatch(_nanmean_dispatcher) 

def nanmean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue): 

""" 

Compute the arithmetic mean along the specified axis, ignoring NaNs. 

 

Returns the average of the array elements. The average is taken over 

the flattened array by default, otherwise over the specified axis. 

`float64` intermediate and return values are used for integer inputs. 

 

For all-NaN slices, NaN is returned and a `RuntimeWarning` is raised. 

 

.. versionadded:: 1.8.0 

 

Parameters 

---------- 

a : array_like 

Array containing numbers whose mean is desired. If `a` is not an 

array, a conversion is attempted. 

axis : {int, tuple of int, None}, optional 

Axis or axes along which the means are computed. The default is to compute 

the mean of the flattened array. 

dtype : data-type, optional 

Type to use in computing the mean. For integer inputs, the default 

is `float64`; for inexact inputs, it is the same as the input 

dtype. 

out : ndarray, optional 

Alternate output array in which to place the result. The default 

is ``None``; if provided, it must have the same shape as the 

expected output, but the type will be cast if necessary. See 

`doc.ufuncs` for details. 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left 

in the result as dimensions with size one. With this option, 

the result will broadcast correctly against the original `a`. 

 

If the value is anything but the default, then 

`keepdims` will be passed through to the `mean` or `sum` methods 

of sub-classes of `ndarray`. If the sub-classes methods 

does not implement `keepdims` any exceptions will be raised. 

 

Returns 

------- 

m : ndarray, see dtype parameter above 

If `out=None`, returns a new array containing the mean values, 

otherwise a reference to the output array is returned. Nan is 

returned for slices that contain only NaNs. 

 

See Also 

-------- 

average : Weighted average 

mean : Arithmetic mean taken while not ignoring NaNs 

var, nanvar 

 

Notes 

----- 

The arithmetic mean is the sum of the non-NaN elements along the axis 

divided by the number of non-NaN elements. 

 

Note that for floating-point input, the mean is computed using the same 

precision the input has. Depending on the input data, this can cause 

the results to be inaccurate, especially for `float32`. Specifying a 

higher-precision accumulator using the `dtype` keyword can alleviate 

this issue. 

 

Examples 

-------- 

>>> a = np.array([[1, np.nan], [3, 4]]) 

>>> np.nanmean(a) 

2.6666666666666665 

>>> np.nanmean(a, axis=0) 

array([ 2., 4.]) 

>>> np.nanmean(a, axis=1) 

array([ 1., 3.5]) 

 

""" 

arr, mask = _replace_nan(a, 0) 

if mask is None: 

return np.mean(arr, axis=axis, dtype=dtype, out=out, keepdims=keepdims) 

 

if dtype is not None: 

dtype = np.dtype(dtype) 

if dtype is not None and not issubclass(dtype.type, np.inexact): 

raise TypeError("If a is inexact, then dtype must be inexact") 

if out is not None and not issubclass(out.dtype.type, np.inexact): 

raise TypeError("If a is inexact, then out must be inexact") 

 

cnt = np.sum(~mask, axis=axis, dtype=np.intp, keepdims=keepdims) 

tot = np.sum(arr, axis=axis, dtype=dtype, out=out, keepdims=keepdims) 

avg = _divide_by_count(tot, cnt, out=out) 

 

isbad = (cnt == 0) 

if isbad.any(): 

warnings.warn("Mean of empty slice", RuntimeWarning, stacklevel=2) 

# NaN is the only possible bad value, so no further 

# action is needed to handle bad results. 

return avg 

 

 

def _nanmedian1d(arr1d, overwrite_input=False): 

""" 

Private function for rank 1 arrays. Compute the median ignoring NaNs. 

See nanmedian for parameter usage 

""" 

arr1d, overwrite_input = _remove_nan_1d(arr1d, 

overwrite_input=overwrite_input) 

if arr1d.size == 0: 

return np.nan 

 

return np.median(arr1d, overwrite_input=overwrite_input) 

 

 

def _nanmedian(a, axis=None, out=None, overwrite_input=False): 

""" 

Private function that doesn't support extended axis or keepdims. 

These methods are extended to this function using _ureduce 

See nanmedian for parameter usage 

 

""" 

if axis is None or a.ndim == 1: 

part = a.ravel() 

if out is None: 

return _nanmedian1d(part, overwrite_input) 

else: 

out[...] = _nanmedian1d(part, overwrite_input) 

return out 

else: 

# for small medians use sort + indexing which is still faster than 

# apply_along_axis 

# benchmarked with shuffled (50, 50, x) containing a few NaN 

if a.shape[axis] < 600: 

return _nanmedian_small(a, axis, out, overwrite_input) 

result = np.apply_along_axis(_nanmedian1d, axis, a, overwrite_input) 

if out is not None: 

out[...] = result 

return result 

 

 

def _nanmedian_small(a, axis=None, out=None, overwrite_input=False): 

""" 

sort + indexing median, faster for small medians along multiple 

dimensions due to the high overhead of apply_along_axis 

 

see nanmedian for parameter usage 

""" 

a = np.ma.masked_array(a, np.isnan(a)) 

m = np.ma.median(a, axis=axis, overwrite_input=overwrite_input) 

for i in range(np.count_nonzero(m.mask.ravel())): 

warnings.warn("All-NaN slice encountered", RuntimeWarning, stacklevel=3) 

if out is not None: 

out[...] = m.filled(np.nan) 

return out 

return m.filled(np.nan) 

 

 

def _nanmedian_dispatcher( 

a, axis=None, out=None, overwrite_input=None, keepdims=None): 

return (a, out) 

 

 

@array_function_dispatch(_nanmedian_dispatcher) 

def nanmedian(a, axis=None, out=None, overwrite_input=False, keepdims=np._NoValue): 

""" 

Compute the median along the specified axis, while ignoring NaNs. 

 

Returns the median of the array elements. 

 

.. versionadded:: 1.9.0 

 

Parameters 

---------- 

a : array_like 

Input array or object that can be converted to an array. 

axis : {int, sequence of int, None}, optional 

Axis or axes along which the medians are computed. The default 

is to compute the median along a flattened version of the array. 

A sequence of axes is supported since version 1.9.0. 

out : ndarray, optional 

Alternative output array in which to place the result. It must 

have the same shape and buffer length as the expected output, 

but the type (of the output) will be cast if necessary. 

overwrite_input : bool, optional 

If True, then allow use of memory of input array `a` for 

calculations. The input array will be modified by the call to 

`median`. This will save memory when you do not need to preserve 

the contents of the input array. Treat the input as undefined, 

but it will probably be fully or partially sorted. Default is 

False. If `overwrite_input` is ``True`` and `a` is not already an 

`ndarray`, an error will be raised. 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left 

in the result as dimensions with size one. With this option, 

the result will broadcast correctly against the original `a`. 

 

If this is anything but the default value it will be passed 

through (in the special case of an empty array) to the 

`mean` function of the underlying array. If the array is 

a sub-class and `mean` does not have the kwarg `keepdims` this 

will raise a RuntimeError. 

 

Returns 

------- 

median : ndarray 

A new array holding the result. If the input contains integers 

or floats smaller than ``float64``, then the output data-type is 

``np.float64``. Otherwise, the data-type of the output is the 

same as that of the input. If `out` is specified, that array is 

returned instead. 

 

See Also 

-------- 

mean, median, percentile 

 

Notes 

----- 

Given a vector ``V`` of length ``N``, the median of ``V`` is the 

middle value of a sorted copy of ``V``, ``V_sorted`` - i.e., 

``V_sorted[(N-1)/2]``, when ``N`` is odd and the average of the two 

middle values of ``V_sorted`` when ``N`` is even. 

 

Examples 

-------- 

>>> a = np.array([[10.0, 7, 4], [3, 2, 1]]) 

>>> a[0, 1] = np.nan 

>>> a 

array([[ 10., nan, 4.], 

[ 3., 2., 1.]]) 

>>> np.median(a) 

nan 

>>> np.nanmedian(a) 

3.0 

>>> np.nanmedian(a, axis=0) 

array([ 6.5, 2., 2.5]) 

>>> np.median(a, axis=1) 

array([ 7., 2.]) 

>>> b = a.copy() 

>>> np.nanmedian(b, axis=1, overwrite_input=True) 

array([ 7., 2.]) 

>>> assert not np.all(a==b) 

>>> b = a.copy() 

>>> np.nanmedian(b, axis=None, overwrite_input=True) 

3.0 

>>> assert not np.all(a==b) 

 

""" 

a = np.asanyarray(a) 

# apply_along_axis in _nanmedian doesn't handle empty arrays well, 

# so deal them upfront 

if a.size == 0: 

return np.nanmean(a, axis, out=out, keepdims=keepdims) 

 

r, k = function_base._ureduce(a, func=_nanmedian, axis=axis, out=out, 

overwrite_input=overwrite_input) 

if keepdims and keepdims is not np._NoValue: 

return r.reshape(k) 

else: 

return r 

 

 

def _nanpercentile_dispatcher(a, q, axis=None, out=None, overwrite_input=None, 

interpolation=None, keepdims=None): 

return (a, q, out) 

 

 

@array_function_dispatch(_nanpercentile_dispatcher) 

def nanpercentile(a, q, axis=None, out=None, overwrite_input=False, 

interpolation='linear', keepdims=np._NoValue): 

""" 

Compute the qth percentile of the data along the specified axis, 

while ignoring nan values. 

 

Returns the qth percentile(s) of the array elements. 

 

.. versionadded:: 1.9.0 

 

Parameters 

---------- 

a : array_like 

Input array or object that can be converted to an array, containing 

nan values to be ignored. 

q : array_like of float 

Percentile or sequence of percentiles to compute, which must be between 

0 and 100 inclusive. 

axis : {int, tuple of int, None}, optional 

Axis or axes along which the percentiles are computed. The 

default is to compute the percentile(s) along a flattened 

version of the array. 

out : ndarray, optional 

Alternative output array in which to place the result. It must 

have the same shape and buffer length as the expected output, 

but the type (of the output) will be cast if necessary. 

overwrite_input : bool, optional 

If True, then allow the input array `a` to be modified by intermediate 

calculations, to save memory. In this case, the contents of the input 

`a` after this function completes is undefined. 

interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} 

This optional parameter specifies the interpolation method to 

use when the desired percentile lies between two data points 

``i < j``: 

 

* 'linear': ``i + (j - i) * fraction``, where ``fraction`` 

is the fractional part of the index surrounded by ``i`` 

and ``j``. 

* 'lower': ``i``. 

* 'higher': ``j``. 

* 'nearest': ``i`` or ``j``, whichever is nearest. 

* 'midpoint': ``(i + j) / 2``. 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left in 

the result as dimensions with size one. With this option, the 

result will broadcast correctly against the original array `a`. 

 

If this is anything but the default value it will be passed 

through (in the special case of an empty array) to the 

`mean` function of the underlying array. If the array is 

a sub-class and `mean` does not have the kwarg `keepdims` this 

will raise a RuntimeError. 

 

Returns 

------- 

percentile : scalar or ndarray 

If `q` is a single percentile and `axis=None`, then the result 

is a scalar. If multiple percentiles are given, first axis of 

the result corresponds to the percentiles. The other axes are 

the axes that remain after the reduction of `a`. If the input 

contains integers or floats smaller than ``float64``, the output 

data-type is ``float64``. Otherwise, the output data-type is the 

same as that of the input. If `out` is specified, that array is 

returned instead. 

 

See Also 

-------- 

nanmean 

nanmedian : equivalent to ``nanpercentile(..., 50)`` 

percentile, median, mean 

nanquantile : equivalent to nanpercentile, but with q in the range [0, 1]. 

 

Notes 

----- 

Given a vector ``V`` of length ``N``, the ``q``-th percentile of 

``V`` is the value ``q/100`` of the way from the minimum to the 

maximum in a sorted copy of ``V``. The values and distances of 

the two nearest neighbors as well as the `interpolation` parameter 

will determine the percentile if the normalized ranking does not 

match the location of ``q`` exactly. This function is the same as 

the median if ``q=50``, the same as the minimum if ``q=0`` and the 

same as the maximum if ``q=100``. 

 

Examples 

-------- 

>>> a = np.array([[10., 7., 4.], [3., 2., 1.]]) 

>>> a[0][1] = np.nan 

>>> a 

array([[ 10., nan, 4.], 

[ 3., 2., 1.]]) 

>>> np.percentile(a, 50) 

nan 

>>> np.nanpercentile(a, 50) 

3.5 

>>> np.nanpercentile(a, 50, axis=0) 

array([ 6.5, 2., 2.5]) 

>>> np.nanpercentile(a, 50, axis=1, keepdims=True) 

array([[ 7.], 

[ 2.]]) 

>>> m = np.nanpercentile(a, 50, axis=0) 

>>> out = np.zeros_like(m) 

>>> np.nanpercentile(a, 50, axis=0, out=out) 

array([ 6.5, 2., 2.5]) 

>>> m 

array([ 6.5, 2. , 2.5]) 

 

>>> b = a.copy() 

>>> np.nanpercentile(b, 50, axis=1, overwrite_input=True) 

array([ 7., 2.]) 

>>> assert not np.all(a==b) 

 

""" 

a = np.asanyarray(a) 

q = np.true_divide(q, 100.0) # handles the asarray for us too 

if not function_base._quantile_is_valid(q): 

raise ValueError("Percentiles must be in the range [0, 100]") 

return _nanquantile_unchecked( 

a, q, axis, out, overwrite_input, interpolation, keepdims) 

 

 

def _nanquantile_dispatcher(a, q, axis=None, out=None, overwrite_input=None, 

interpolation=None, keepdims=None): 

return (a, q, out) 

 

 

@array_function_dispatch(_nanquantile_dispatcher) 

def nanquantile(a, q, axis=None, out=None, overwrite_input=False, 

interpolation='linear', keepdims=np._NoValue): 

""" 

Compute the qth quantile of the data along the specified axis, 

while ignoring nan values. 

Returns the qth quantile(s) of the array elements. 

.. versionadded:: 1.15.0 

 

Parameters 

---------- 

a : array_like 

Input array or object that can be converted to an array, containing 

nan values to be ignored 

q : array_like of float 

Quantile or sequence of quantiles to compute, which must be between 

0 and 1 inclusive. 

axis : {int, tuple of int, None}, optional 

Axis or axes along which the quantiles are computed. The 

default is to compute the quantile(s) along a flattened 

version of the array. 

out : ndarray, optional 

Alternative output array in which to place the result. It must 

have the same shape and buffer length as the expected output, 

but the type (of the output) will be cast if necessary. 

overwrite_input : bool, optional 

If True, then allow the input array `a` to be modified by intermediate 

calculations, to save memory. In this case, the contents of the input 

`a` after this function completes is undefined. 

interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} 

This optional parameter specifies the interpolation method to 

use when the desired quantile lies between two data points 

``i < j``: 

 

* linear: ``i + (j - i) * fraction``, where ``fraction`` 

is the fractional part of the index surrounded by ``i`` 

and ``j``. 

* lower: ``i``. 

* higher: ``j``. 

* nearest: ``i`` or ``j``, whichever is nearest. 

* midpoint: ``(i + j) / 2``. 

 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left in 

the result as dimensions with size one. With this option, the 

result will broadcast correctly against the original array `a`. 

 

If this is anything but the default value it will be passed 

through (in the special case of an empty array) to the 

`mean` function of the underlying array. If the array is 

a sub-class and `mean` does not have the kwarg `keepdims` this 

will raise a RuntimeError. 

 

Returns 

------- 

quantile : scalar or ndarray 

If `q` is a single percentile and `axis=None`, then the result 

is a scalar. If multiple quantiles are given, first axis of 

the result corresponds to the quantiles. The other axes are 

the axes that remain after the reduction of `a`. If the input 

contains integers or floats smaller than ``float64``, the output 

data-type is ``float64``. Otherwise, the output data-type is the 

same as that of the input. If `out` is specified, that array is 

returned instead. 

 

See Also 

-------- 

quantile 

nanmean, nanmedian 

nanmedian : equivalent to ``nanquantile(..., 0.5)`` 

nanpercentile : same as nanquantile, but with q in the range [0, 100]. 

 

Examples 

-------- 

>>> a = np.array([[10., 7., 4.], [3., 2., 1.]]) 

>>> a[0][1] = np.nan 

>>> a 

array([[ 10., nan, 4.], 

[ 3., 2., 1.]]) 

>>> np.quantile(a, 0.5) 

nan 

>>> np.nanquantile(a, 0.5) 

3.5 

>>> np.nanquantile(a, 0.5, axis=0) 

array([ 6.5, 2., 2.5]) 

>>> np.nanquantile(a, 0.5, axis=1, keepdims=True) 

array([[ 7.], 

[ 2.]]) 

>>> m = np.nanquantile(a, 0.5, axis=0) 

>>> out = np.zeros_like(m) 

>>> np.nanquantile(a, 0.5, axis=0, out=out) 

array([ 6.5, 2., 2.5]) 

>>> m 

array([ 6.5, 2. , 2.5]) 

>>> b = a.copy() 

>>> np.nanquantile(b, 0.5, axis=1, overwrite_input=True) 

array([ 7., 2.]) 

>>> assert not np.all(a==b) 

""" 

a = np.asanyarray(a) 

q = np.asanyarray(q) 

if not function_base._quantile_is_valid(q): 

raise ValueError("Quantiles must be in the range [0, 1]") 

return _nanquantile_unchecked( 

a, q, axis, out, overwrite_input, interpolation, keepdims) 

 

 

def _nanquantile_unchecked(a, q, axis=None, out=None, overwrite_input=False, 

interpolation='linear', keepdims=np._NoValue): 

"""Assumes that q is in [0, 1], and is an ndarray""" 

# apply_along_axis in _nanpercentile doesn't handle empty arrays well, 

# so deal them upfront 

if a.size == 0: 

return np.nanmean(a, axis, out=out, keepdims=keepdims) 

 

r, k = function_base._ureduce( 

a, func=_nanquantile_ureduce_func, q=q, axis=axis, out=out, 

overwrite_input=overwrite_input, interpolation=interpolation 

) 

if keepdims and keepdims is not np._NoValue: 

return r.reshape(q.shape + k) 

else: 

return r 

 

 

def _nanquantile_ureduce_func(a, q, axis=None, out=None, overwrite_input=False, 

interpolation='linear'): 

""" 

Private function that doesn't support extended axis or keepdims. 

These methods are extended to this function using _ureduce 

See nanpercentile for parameter usage 

""" 

if axis is None or a.ndim == 1: 

part = a.ravel() 

result = _nanquantile_1d(part, q, overwrite_input, interpolation) 

else: 

result = np.apply_along_axis(_nanquantile_1d, axis, a, q, 

overwrite_input, interpolation) 

# apply_along_axis fills in collapsed axis with results. 

# Move that axis to the beginning to match percentile's 

# convention. 

if q.ndim != 0: 

result = np.moveaxis(result, axis, 0) 

 

if out is not None: 

out[...] = result 

return result 

 

 

def _nanquantile_1d(arr1d, q, overwrite_input=False, interpolation='linear'): 

""" 

Private function for rank 1 arrays. Compute quantile ignoring NaNs. 

See nanpercentile for parameter usage 

""" 

arr1d, overwrite_input = _remove_nan_1d(arr1d, 

overwrite_input=overwrite_input) 

if arr1d.size == 0: 

return np.full(q.shape, np.nan)[()] # convert to scalar 

 

return function_base._quantile_unchecked( 

arr1d, q, overwrite_input=overwrite_input, interpolation=interpolation) 

 

 

def _nanvar_dispatcher( 

a, axis=None, dtype=None, out=None, ddof=None, keepdims=None): 

return (a, out) 

 

 

@array_function_dispatch(_nanvar_dispatcher) 

def nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue): 

""" 

Compute the variance along the specified axis, while ignoring NaNs. 

 

Returns the variance of the array elements, a measure of the spread of 

a distribution. The variance is computed for the flattened array by 

default, otherwise over the specified axis. 

 

For all-NaN slices or slices with zero degrees of freedom, NaN is 

returned and a `RuntimeWarning` is raised. 

 

.. versionadded:: 1.8.0 

 

Parameters 

---------- 

a : array_like 

Array containing numbers whose variance is desired. If `a` is not an 

array, a conversion is attempted. 

axis : {int, tuple of int, None}, optional 

Axis or axes along which the variance is computed. The default is to compute 

the variance of the flattened array. 

dtype : data-type, optional 

Type to use in computing the variance. For arrays of integer type 

the default is `float32`; for arrays of float types it is the same as 

the array type. 

out : ndarray, optional 

Alternate output array in which to place the result. It must have 

the same shape as the expected output, but the type is cast if 

necessary. 

ddof : int, optional 

"Delta Degrees of Freedom": the divisor used in the calculation is 

``N - ddof``, where ``N`` represents the number of non-NaN 

elements. By default `ddof` is zero. 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left 

in the result as dimensions with size one. With this option, 

the result will broadcast correctly against the original `a`. 

 

 

Returns 

------- 

variance : ndarray, see dtype parameter above 

If `out` is None, return a new array containing the variance, 

otherwise return a reference to the output array. If ddof is >= the 

number of non-NaN elements in a slice or the slice contains only 

NaNs, then the result for that slice is NaN. 

 

See Also 

-------- 

std : Standard deviation 

mean : Average 

var : Variance while not ignoring NaNs 

nanstd, nanmean 

numpy.doc.ufuncs : Section "Output arguments" 

 

Notes 

----- 

The variance is the average of the squared deviations from the mean, 

i.e., ``var = mean(abs(x - x.mean())**2)``. 

 

The mean is normally calculated as ``x.sum() / N``, where ``N = len(x)``. 

If, however, `ddof` is specified, the divisor ``N - ddof`` is used 

instead. In standard statistical practice, ``ddof=1`` provides an 

unbiased estimator of the variance of a hypothetical infinite 

population. ``ddof=0`` provides a maximum likelihood estimate of the 

variance for normally distributed variables. 

 

Note that for complex numbers, the absolute value is taken before 

squaring, so that the result is always real and nonnegative. 

 

For floating-point input, the variance is computed using the same 

precision the input has. Depending on the input data, this can cause 

the results to be inaccurate, especially for `float32` (see example 

below). Specifying a higher-accuracy accumulator using the ``dtype`` 

keyword can alleviate this issue. 

 

For this function to work on sub-classes of ndarray, they must define 

`sum` with the kwarg `keepdims` 

 

Examples 

-------- 

>>> a = np.array([[1, np.nan], [3, 4]]) 

>>> np.var(a) 

1.5555555555555554 

>>> np.nanvar(a, axis=0) 

array([ 1., 0.]) 

>>> np.nanvar(a, axis=1) 

array([ 0., 0.25]) 

 

""" 

arr, mask = _replace_nan(a, 0) 

if mask is None: 

return np.var(arr, axis=axis, dtype=dtype, out=out, ddof=ddof, 

keepdims=keepdims) 

 

if dtype is not None: 

dtype = np.dtype(dtype) 

if dtype is not None and not issubclass(dtype.type, np.inexact): 

raise TypeError("If a is inexact, then dtype must be inexact") 

if out is not None and not issubclass(out.dtype.type, np.inexact): 

raise TypeError("If a is inexact, then out must be inexact") 

 

# Compute mean 

if type(arr) is np.matrix: 

_keepdims = np._NoValue 

else: 

_keepdims = True 

# we need to special case matrix for reverse compatibility 

# in order for this to work, these sums need to be called with 

# keepdims=True, however matrix now raises an error in this case, but 

# the reason that it drops the keepdims kwarg is to force keepdims=True 

# so this used to work by serendipity. 

cnt = np.sum(~mask, axis=axis, dtype=np.intp, keepdims=_keepdims) 

avg = np.sum(arr, axis=axis, dtype=dtype, keepdims=_keepdims) 

avg = _divide_by_count(avg, cnt) 

 

# Compute squared deviation from mean. 

np.subtract(arr, avg, out=arr, casting='unsafe') 

arr = _copyto(arr, 0, mask) 

if issubclass(arr.dtype.type, np.complexfloating): 

sqr = np.multiply(arr, arr.conj(), out=arr).real 

else: 

sqr = np.multiply(arr, arr, out=arr) 

 

# Compute variance. 

var = np.sum(sqr, axis=axis, dtype=dtype, out=out, keepdims=keepdims) 

if var.ndim < cnt.ndim: 

# Subclasses of ndarray may ignore keepdims, so check here. 

cnt = cnt.squeeze(axis) 

dof = cnt - ddof 

var = _divide_by_count(var, dof) 

 

isbad = (dof <= 0) 

if np.any(isbad): 

warnings.warn("Degrees of freedom <= 0 for slice.", RuntimeWarning, stacklevel=2) 

# NaN, inf, or negative numbers are all possible bad 

# values, so explicitly replace them with NaN. 

var = _copyto(var, np.nan, isbad) 

return var 

 

 

def _nanstd_dispatcher( 

a, axis=None, dtype=None, out=None, ddof=None, keepdims=None): 

return (a, out) 

 

 

@array_function_dispatch(_nanstd_dispatcher) 

def nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue): 

""" 

Compute the standard deviation along the specified axis, while 

ignoring NaNs. 

 

Returns the standard deviation, a measure of the spread of a 

distribution, of the non-NaN array elements. The standard deviation is 

computed for the flattened array by default, otherwise over the 

specified axis. 

 

For all-NaN slices or slices with zero degrees of freedom, NaN is 

returned and a `RuntimeWarning` is raised. 

 

.. versionadded:: 1.8.0 

 

Parameters 

---------- 

a : array_like 

Calculate the standard deviation of the non-NaN values. 

axis : {int, tuple of int, None}, optional 

Axis or axes along which the standard deviation is computed. The default is 

to compute the standard deviation of the flattened array. 

dtype : dtype, optional 

Type to use in computing the standard deviation. For arrays of 

integer type the default is float64, for arrays of float types it 

is the same as the array type. 

out : ndarray, optional 

Alternative output array in which to place the result. It must have 

the same shape as the expected output but the type (of the 

calculated values) will be cast if necessary. 

ddof : int, optional 

Means Delta Degrees of Freedom. The divisor used in calculations 

is ``N - ddof``, where ``N`` represents the number of non-NaN 

elements. By default `ddof` is zero. 

 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left 

in the result as dimensions with size one. With this option, 

the result will broadcast correctly against the original `a`. 

 

If this value is anything but the default it is passed through 

as-is to the relevant functions of the sub-classes. If these 

functions do not have a `keepdims` kwarg, a RuntimeError will 

be raised. 

 

Returns 

------- 

standard_deviation : ndarray, see dtype parameter above. 

If `out` is None, return a new array containing the standard 

deviation, otherwise return a reference to the output array. If 

ddof is >= the number of non-NaN elements in a slice or the slice 

contains only NaNs, then the result for that slice is NaN. 

 

See Also 

-------- 

var, mean, std 

nanvar, nanmean 

numpy.doc.ufuncs : Section "Output arguments" 

 

Notes 

----- 

The standard deviation is the square root of the average of the squared 

deviations from the mean: ``std = sqrt(mean(abs(x - x.mean())**2))``. 

 

The average squared deviation is normally calculated as 

``x.sum() / N``, where ``N = len(x)``. If, however, `ddof` is 

specified, the divisor ``N - ddof`` is used instead. In standard 

statistical practice, ``ddof=1`` provides an unbiased estimator of the 

variance of the infinite population. ``ddof=0`` provides a maximum 

likelihood estimate of the variance for normally distributed variables. 

The standard deviation computed in this function is the square root of 

the estimated variance, so even with ``ddof=1``, it will not be an 

unbiased estimate of the standard deviation per se. 

 

Note that, for complex numbers, `std` takes the absolute value before 

squaring, so that the result is always real and nonnegative. 

 

For floating-point input, the *std* is computed using the same 

precision the input has. Depending on the input data, this can cause 

the results to be inaccurate, especially for float32 (see example 

below). Specifying a higher-accuracy accumulator using the `dtype` 

keyword can alleviate this issue. 

 

Examples 

-------- 

>>> a = np.array([[1, np.nan], [3, 4]]) 

>>> np.nanstd(a) 

1.247219128924647 

>>> np.nanstd(a, axis=0) 

array([ 1., 0.]) 

>>> np.nanstd(a, axis=1) 

array([ 0., 0.5]) 

 

""" 

var = nanvar(a, axis=axis, dtype=dtype, out=out, ddof=ddof, 

keepdims=keepdims) 

if isinstance(var, np.ndarray): 

std = np.sqrt(var, out=var) 

else: 

std = var.dtype.type(np.sqrt(var)) 

return std