1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

from __future__ import division, absolute_import, print_function 

 

import sys 

import os 

import re 

import functools 

import itertools 

import warnings 

import weakref 

from operator import itemgetter, index as opindex 

 

import numpy as np 

from . import format 

from ._datasource import DataSource 

from numpy.core import overrides 

from numpy.core.multiarray import packbits, unpackbits 

from numpy.core.overrides import set_module 

from numpy.core._internal import recursive 

from ._iotools import ( 

LineSplitter, NameValidator, StringConverter, ConverterError, 

ConverterLockError, ConversionWarning, _is_string_like, 

has_nested_fields, flatten_dtype, easy_dtype, _decode_line 

) 

 

from numpy.compat import ( 

asbytes, asstr, asunicode, asbytes_nested, bytes, basestring, unicode, 

os_fspath, os_PathLike 

) 

from numpy.core.numeric import pickle 

 

if sys.version_info[0] >= 3: 

from collections.abc import Mapping 

else: 

from future_builtins import map 

from collections import Mapping 

 

 

@set_module('numpy') 

def loads(*args, **kwargs): 

# NumPy 1.15.0, 2017-12-10 

warnings.warn( 

"np.loads is deprecated, use pickle.loads instead", 

DeprecationWarning, stacklevel=2) 

return pickle.loads(*args, **kwargs) 

 

 

__all__ = [ 

'savetxt', 'loadtxt', 'genfromtxt', 'ndfromtxt', 'mafromtxt', 

'recfromtxt', 'recfromcsv', 'load', 'loads', 'save', 'savez', 

'savez_compressed', 'packbits', 'unpackbits', 'fromregex', 'DataSource' 

] 

 

 

array_function_dispatch = functools.partial( 

overrides.array_function_dispatch, module='numpy') 

 

 

class BagObj(object): 

""" 

BagObj(obj) 

 

Convert attribute look-ups to getitems on the object passed in. 

 

Parameters 

---------- 

obj : class instance 

Object on which attribute look-up is performed. 

 

Examples 

-------- 

>>> from numpy.lib.npyio import BagObj as BO 

>>> class BagDemo(object): 

... def __getitem__(self, key): # An instance of BagObj(BagDemo) 

... # will call this method when any 

... # attribute look-up is required 

... result = "Doesn't matter what you want, " 

... return result + "you're gonna get this" 

... 

>>> demo_obj = BagDemo() 

>>> bagobj = BO(demo_obj) 

>>> bagobj.hello_there 

"Doesn't matter what you want, you're gonna get this" 

>>> bagobj.I_can_be_anything 

"Doesn't matter what you want, you're gonna get this" 

 

""" 

 

def __init__(self, obj): 

# Use weakref to make NpzFile objects collectable by refcount 

self._obj = weakref.proxy(obj) 

 

def __getattribute__(self, key): 

try: 

return object.__getattribute__(self, '_obj')[key] 

except KeyError: 

raise AttributeError(key) 

 

def __dir__(self): 

""" 

Enables dir(bagobj) to list the files in an NpzFile. 

 

This also enables tab-completion in an interpreter or IPython. 

""" 

return list(object.__getattribute__(self, '_obj').keys()) 

 

 

def zipfile_factory(file, *args, **kwargs): 

""" 

Create a ZipFile. 

 

Allows for Zip64, and the `file` argument can accept file, str, or 

pathlib.Path objects. `args` and `kwargs` are passed to the zipfile.ZipFile 

constructor. 

""" 

if not hasattr(file, 'read'): 

file = os_fspath(file) 

import zipfile 

kwargs['allowZip64'] = True 

return zipfile.ZipFile(file, *args, **kwargs) 

 

 

class NpzFile(Mapping): 

""" 

NpzFile(fid) 

 

A dictionary-like object with lazy-loading of files in the zipped 

archive provided on construction. 

 

`NpzFile` is used to load files in the NumPy ``.npz`` data archive 

format. It assumes that files in the archive have a ``.npy`` extension, 

other files are ignored. 

 

The arrays and file strings are lazily loaded on either 

getitem access using ``obj['key']`` or attribute lookup using 

``obj.f.key``. A list of all files (without ``.npy`` extensions) can 

be obtained with ``obj.files`` and the ZipFile object itself using 

``obj.zip``. 

 

Attributes 

---------- 

files : list of str 

List of all files in the archive with a ``.npy`` extension. 

zip : ZipFile instance 

The ZipFile object initialized with the zipped archive. 

f : BagObj instance 

An object on which attribute can be performed as an alternative 

to getitem access on the `NpzFile` instance itself. 

allow_pickle : bool, optional 

Allow loading pickled data. Default: True 

pickle_kwargs : dict, optional 

Additional keyword arguments to pass on to pickle.load. 

These are only useful when loading object arrays saved on 

Python 2 when using Python 3. 

 

Parameters 

---------- 

fid : file or str 

The zipped archive to open. This is either a file-like object 

or a string containing the path to the archive. 

own_fid : bool, optional 

Whether NpzFile should close the file handle. 

Requires that `fid` is a file-like object. 

 

Examples 

-------- 

>>> from tempfile import TemporaryFile 

>>> outfile = TemporaryFile() 

>>> x = np.arange(10) 

>>> y = np.sin(x) 

>>> np.savez(outfile, x=x, y=y) 

>>> outfile.seek(0) 

 

>>> npz = np.load(outfile) 

>>> isinstance(npz, np.lib.io.NpzFile) 

True 

>>> npz.files 

['y', 'x'] 

>>> npz['x'] # getitem access 

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

>>> npz.f.x # attribute lookup 

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

 

""" 

 

def __init__(self, fid, own_fid=False, allow_pickle=True, 

pickle_kwargs=None): 

# Import is postponed to here since zipfile depends on gzip, an 

# optional component of the so-called standard library. 

_zip = zipfile_factory(fid) 

self._files = _zip.namelist() 

self.files = [] 

self.allow_pickle = allow_pickle 

self.pickle_kwargs = pickle_kwargs 

for x in self._files: 

if x.endswith('.npy'): 

self.files.append(x[:-4]) 

else: 

self.files.append(x) 

self.zip = _zip 

self.f = BagObj(self) 

if own_fid: 

self.fid = fid 

else: 

self.fid = None 

 

def __enter__(self): 

return self 

 

def __exit__(self, exc_type, exc_value, traceback): 

self.close() 

 

def close(self): 

""" 

Close the file. 

 

""" 

if self.zip is not None: 

self.zip.close() 

self.zip = None 

if self.fid is not None: 

self.fid.close() 

self.fid = None 

self.f = None # break reference cycle 

 

def __del__(self): 

self.close() 

 

# Implement the Mapping ABC 

def __iter__(self): 

return iter(self.files) 

 

def __len__(self): 

return len(self.files) 

 

def __getitem__(self, key): 

# FIXME: This seems like it will copy strings around 

# more than is strictly necessary. The zipfile 

# will read the string and then 

# the format.read_array will copy the string 

# to another place in memory. 

# It would be better if the zipfile could read 

# (or at least uncompress) the data 

# directly into the array memory. 

member = False 

if key in self._files: 

member = True 

elif key in self.files: 

member = True 

key += '.npy' 

if member: 

bytes = self.zip.open(key) 

magic = bytes.read(len(format.MAGIC_PREFIX)) 

bytes.close() 

if magic == format.MAGIC_PREFIX: 

bytes = self.zip.open(key) 

return format.read_array(bytes, 

allow_pickle=self.allow_pickle, 

pickle_kwargs=self.pickle_kwargs) 

else: 

return self.zip.read(key) 

else: 

raise KeyError("%s is not a file in the archive" % key) 

 

 

if sys.version_info.major == 3: 

# deprecate the python 2 dict apis that we supported by accident in 

# python 3. We forgot to implement itervalues() at all in earlier 

# versions of numpy, so no need to deprecated it here. 

 

def iteritems(self): 

# Numpy 1.15, 2018-02-20 

warnings.warn( 

"NpzFile.iteritems is deprecated in python 3, to match the " 

"removal of dict.itertems. Use .items() instead.", 

DeprecationWarning, stacklevel=2) 

return self.items() 

 

def iterkeys(self): 

# Numpy 1.15, 2018-02-20 

warnings.warn( 

"NpzFile.iterkeys is deprecated in python 3, to match the " 

"removal of dict.iterkeys. Use .keys() instead.", 

DeprecationWarning, stacklevel=2) 

return self.keys() 

 

 

@set_module('numpy') 

def load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, 

encoding='ASCII'): 

""" 

Load arrays or pickled objects from ``.npy``, ``.npz`` or pickled files. 

 

Parameters 

---------- 

file : file-like object, string, or pathlib.Path 

The file to read. File-like objects must support the 

``seek()`` and ``read()`` methods. Pickled files require that the 

file-like object support the ``readline()`` method as well. 

mmap_mode : {None, 'r+', 'r', 'w+', 'c'}, optional 

If not None, then memory-map the file, using the given mode (see 

`numpy.memmap` for a detailed description of the modes). A 

memory-mapped array is kept on disk. However, it can be accessed 

and sliced like any ndarray. Memory mapping is especially useful 

for accessing small fragments of large files without reading the 

entire file into memory. 

allow_pickle : bool, optional 

Allow loading pickled object arrays stored in npy files. Reasons for 

disallowing pickles include security, as loading pickled data can 

execute arbitrary code. If pickles are disallowed, loading object 

arrays will fail. 

Default: True 

fix_imports : bool, optional 

Only useful when loading Python 2 generated pickled files on Python 3, 

which includes npy/npz files containing object arrays. If `fix_imports` 

is True, pickle will try to map the old Python 2 names to the new names 

used in Python 3. 

encoding : str, optional 

What encoding to use when reading Python 2 strings. Only useful when 

loading Python 2 generated pickled files in Python 3, which includes 

npy/npz files containing object arrays. Values other than 'latin1', 

'ASCII', and 'bytes' are not allowed, as they can corrupt numerical 

data. Default: 'ASCII' 

 

Returns 

------- 

result : array, tuple, dict, etc. 

Data stored in the file. For ``.npz`` files, the returned instance 

of NpzFile class must be closed to avoid leaking file descriptors. 

 

Raises 

------ 

IOError 

If the input file does not exist or cannot be read. 

ValueError 

The file contains an object array, but allow_pickle=False given. 

 

See Also 

-------- 

save, savez, savez_compressed, loadtxt 

memmap : Create a memory-map to an array stored in a file on disk. 

lib.format.open_memmap : Create or load a memory-mapped ``.npy`` file. 

 

Notes 

----- 

- If the file contains pickle data, then whatever object is stored 

in the pickle is returned. 

- If the file is a ``.npy`` file, then a single array is returned. 

- If the file is a ``.npz`` file, then a dictionary-like object is 

returned, containing ``{filename: array}`` key-value pairs, one for 

each file in the archive. 

- If the file is a ``.npz`` file, the returned value supports the 

context manager protocol in a similar fashion to the open function:: 

 

with load('foo.npz') as data: 

a = data['a'] 

 

The underlying file descriptor is closed when exiting the 'with' 

block. 

 

Examples 

-------- 

Store data to disk, and load it again: 

 

>>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) 

>>> np.load('/tmp/123.npy') 

array([[1, 2, 3], 

[4, 5, 6]]) 

 

Store compressed data to disk, and load it again: 

 

>>> a=np.array([[1, 2, 3], [4, 5, 6]]) 

>>> b=np.array([1, 2]) 

>>> np.savez('/tmp/123.npz', a=a, b=b) 

>>> data = np.load('/tmp/123.npz') 

>>> data['a'] 

array([[1, 2, 3], 

[4, 5, 6]]) 

>>> data['b'] 

array([1, 2]) 

>>> data.close() 

 

Mem-map the stored array, and then access the second row 

directly from disk: 

 

>>> X = np.load('/tmp/123.npy', mmap_mode='r') 

>>> X[1, :] 

memmap([4, 5, 6]) 

 

""" 

if encoding not in ('ASCII', 'latin1', 'bytes'): 

# The 'encoding' value for pickle also affects what encoding 

# the serialized binary data of NumPy arrays is loaded 

# in. Pickle does not pass on the encoding information to 

# NumPy. The unpickling code in numpy.core.multiarray is 

# written to assume that unicode data appearing where binary 

# should be is in 'latin1'. 'bytes' is also safe, as is 'ASCII'. 

# 

# Other encoding values can corrupt binary data, and we 

# purposefully disallow them. For the same reason, the errors= 

# argument is not exposed, as values other than 'strict' 

# result can similarly silently corrupt numerical data. 

raise ValueError("encoding must be 'ASCII', 'latin1', or 'bytes'") 

 

if sys.version_info[0] >= 3: 

pickle_kwargs = dict(encoding=encoding, fix_imports=fix_imports) 

else: 

# Nothing to do on Python 2 

pickle_kwargs = {} 

 

# TODO: Use contextlib.ExitStack once we drop Python 2 

if hasattr(file, 'read'): 

fid = file 

own_fid = False 

else: 

fid = open(os_fspath(file), "rb") 

own_fid = True 

 

try: 

# Code to distinguish from NumPy binary files and pickles. 

_ZIP_PREFIX = b'PK\x03\x04' 

_ZIP_SUFFIX = b'PK\x05\x06' # empty zip files start with this 

N = len(format.MAGIC_PREFIX) 

magic = fid.read(N) 

# If the file size is less than N, we need to make sure not 

# to seek past the beginning of the file 

fid.seek(-min(N, len(magic)), 1) # back-up 

if magic.startswith(_ZIP_PREFIX) or magic.startswith(_ZIP_SUFFIX): 

# zip-file (assume .npz) 

# Transfer file ownership to NpzFile 

ret = NpzFile(fid, own_fid=own_fid, allow_pickle=allow_pickle, 

pickle_kwargs=pickle_kwargs) 

own_fid = False 

return ret 

elif magic == format.MAGIC_PREFIX: 

# .npy file 

if mmap_mode: 

return format.open_memmap(file, mode=mmap_mode) 

else: 

return format.read_array(fid, allow_pickle=allow_pickle, 

pickle_kwargs=pickle_kwargs) 

else: 

# Try a pickle 

if not allow_pickle: 

raise ValueError("Cannot load file containing pickled data " 

"when allow_pickle=False") 

try: 

return pickle.load(fid, **pickle_kwargs) 

except Exception: 

raise IOError( 

"Failed to interpret file %s as a pickle" % repr(file)) 

finally: 

if own_fid: 

fid.close() 

 

 

def _save_dispatcher(file, arr, allow_pickle=None, fix_imports=None): 

return (arr,) 

 

 

@array_function_dispatch(_save_dispatcher) 

def save(file, arr, allow_pickle=True, fix_imports=True): 

""" 

Save an array to a binary file in NumPy ``.npy`` format. 

 

Parameters 

---------- 

file : file, str, or pathlib.Path 

File or filename to which the data is saved. If file is a file-object, 

then the filename is unchanged. If file is a string or Path, a ``.npy`` 

extension will be appended to the file name if it does not already 

have one. 

arr : array_like 

Array data to be saved. 

allow_pickle : bool, optional 

Allow saving object arrays using Python pickles. Reasons for disallowing 

pickles include security (loading pickled data can execute arbitrary 

code) and portability (pickled objects may not be loadable on different 

Python installations, for example if the stored objects require libraries 

that are not available, and not all pickled data is compatible between 

Python 2 and Python 3). 

Default: True 

fix_imports : bool, optional 

Only useful in forcing objects in object arrays on Python 3 to be 

pickled in a Python 2 compatible way. If `fix_imports` is True, pickle 

will try to map the new Python 3 names to the old module names used in 

Python 2, so that the pickle data stream is readable with Python 2. 

 

See Also 

-------- 

savez : Save several arrays into a ``.npz`` archive 

savetxt, load 

 

Notes 

----- 

For a description of the ``.npy`` format, see :py:mod:`numpy.lib.format`. 

 

Examples 

-------- 

>>> from tempfile import TemporaryFile 

>>> outfile = TemporaryFile() 

 

>>> x = np.arange(10) 

>>> np.save(outfile, x) 

 

>>> outfile.seek(0) # Only needed here to simulate closing & reopening file 

>>> np.load(outfile) 

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

 

""" 

own_fid = False 

if hasattr(file, 'read'): 

fid = file 

else: 

file = os_fspath(file) 

if not file.endswith('.npy'): 

file = file + '.npy' 

fid = open(file, "wb") 

own_fid = True 

 

if sys.version_info[0] >= 3: 

pickle_kwargs = dict(fix_imports=fix_imports) 

else: 

# Nothing to do on Python 2 

pickle_kwargs = None 

 

try: 

arr = np.asanyarray(arr) 

format.write_array(fid, arr, allow_pickle=allow_pickle, 

pickle_kwargs=pickle_kwargs) 

finally: 

if own_fid: 

fid.close() 

 

 

def _savez_dispatcher(file, *args, **kwds): 

for a in args: 

yield a 

for v in kwds.values(): 

yield v 

 

 

@array_function_dispatch(_savez_dispatcher) 

def savez(file, *args, **kwds): 

""" 

Save several arrays into a single file in uncompressed ``.npz`` format. 

 

If arguments are passed in with no keywords, the corresponding variable 

names, in the ``.npz`` file, are 'arr_0', 'arr_1', etc. If keyword 

arguments are given, the corresponding variable names, in the ``.npz`` 

file will match the keyword names. 

 

Parameters 

---------- 

file : str or file 

Either the file name (string) or an open file (file-like object) 

where the data will be saved. If file is a string or a Path, the 

``.npz`` extension will be appended to the file name if it is not 

already there. 

args : Arguments, optional 

Arrays to save to the file. Since it is not possible for Python to 

know the names of the arrays outside `savez`, the arrays will be saved 

with names "arr_0", "arr_1", and so on. These arguments can be any 

expression. 

kwds : Keyword arguments, optional 

Arrays to save to the file. Arrays will be saved in the file with the 

keyword names. 

 

Returns 

------- 

None 

 

See Also 

-------- 

save : Save a single array to a binary file in NumPy format. 

savetxt : Save an array to a file as plain text. 

savez_compressed : Save several arrays into a compressed ``.npz`` archive 

 

Notes 

----- 

The ``.npz`` file format is a zipped archive of files named after the 

variables they contain. The archive is not compressed and each file 

in the archive contains one variable in ``.npy`` format. For a 

description of the ``.npy`` format, see :py:mod:`numpy.lib.format`. 

 

When opening the saved ``.npz`` file with `load` a `NpzFile` object is 

returned. This is a dictionary-like object which can be queried for 

its list of arrays (with the ``.files`` attribute), and for the arrays 

themselves. 

 

Examples 

-------- 

>>> from tempfile import TemporaryFile 

>>> outfile = TemporaryFile() 

>>> x = np.arange(10) 

>>> y = np.sin(x) 

 

Using `savez` with \\*args, the arrays are saved with default names. 

 

>>> np.savez(outfile, x, y) 

>>> outfile.seek(0) # Only needed here to simulate closing & reopening file 

>>> npzfile = np.load(outfile) 

>>> npzfile.files 

['arr_1', 'arr_0'] 

>>> npzfile['arr_0'] 

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

 

Using `savez` with \\**kwds, the arrays are saved with the keyword names. 

 

>>> outfile = TemporaryFile() 

>>> np.savez(outfile, x=x, y=y) 

>>> outfile.seek(0) 

>>> npzfile = np.load(outfile) 

>>> npzfile.files 

['y', 'x'] 

>>> npzfile['x'] 

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

 

""" 

_savez(file, args, kwds, False) 

 

 

def _savez_compressed_dispatcher(file, *args, **kwds): 

for a in args: 

yield a 

for v in kwds.values(): 

yield v 

 

 

@array_function_dispatch(_savez_compressed_dispatcher) 

def savez_compressed(file, *args, **kwds): 

""" 

Save several arrays into a single file in compressed ``.npz`` format. 

 

If keyword arguments are given, then filenames are taken from the keywords. 

If arguments are passed in with no keywords, then stored file names are 

arr_0, arr_1, etc. 

 

Parameters 

---------- 

file : str or file 

Either the file name (string) or an open file (file-like object) 

where the data will be saved. If file is a string or a Path, the 

``.npz`` extension will be appended to the file name if it is not 

already there. 

args : Arguments, optional 

Arrays to save to the file. Since it is not possible for Python to 

know the names of the arrays outside `savez`, the arrays will be saved 

with names "arr_0", "arr_1", and so on. These arguments can be any 

expression. 

kwds : Keyword arguments, optional 

Arrays to save to the file. Arrays will be saved in the file with the 

keyword names. 

 

Returns 

------- 

None 

 

See Also 

-------- 

numpy.save : Save a single array to a binary file in NumPy format. 

numpy.savetxt : Save an array to a file as plain text. 

numpy.savez : Save several arrays into an uncompressed ``.npz`` file format 

numpy.load : Load the files created by savez_compressed. 

 

Notes 

----- 

The ``.npz`` file format is a zipped archive of files named after the 

variables they contain. The archive is compressed with 

``zipfile.ZIP_DEFLATED`` and each file in the archive contains one variable 

in ``.npy`` format. For a description of the ``.npy`` format, see  

:py:mod:`numpy.lib.format`. 

 

 

When opening the saved ``.npz`` file with `load` a `NpzFile` object is 

returned. This is a dictionary-like object which can be queried for 

its list of arrays (with the ``.files`` attribute), and for the arrays 

themselves. 

 

Examples 

-------- 

>>> test_array = np.random.rand(3, 2) 

>>> test_vector = np.random.rand(4) 

>>> np.savez_compressed('/tmp/123', a=test_array, b=test_vector) 

>>> loaded = np.load('/tmp/123.npz') 

>>> print(np.array_equal(test_array, loaded['a'])) 

True 

>>> print(np.array_equal(test_vector, loaded['b'])) 

True 

 

""" 

_savez(file, args, kwds, True) 

 

 

def _savez(file, args, kwds, compress, allow_pickle=True, pickle_kwargs=None): 

# Import is postponed to here since zipfile depends on gzip, an optional 

# component of the so-called standard library. 

import zipfile 

 

if not hasattr(file, 'read'): 

file = os_fspath(file) 

if not file.endswith('.npz'): 

file = file + '.npz' 

 

namedict = kwds 

for i, val in enumerate(args): 

key = 'arr_%d' % i 

if key in namedict.keys(): 

raise ValueError( 

"Cannot use un-named variables and keyword %s" % key) 

namedict[key] = val 

 

if compress: 

compression = zipfile.ZIP_DEFLATED 

else: 

compression = zipfile.ZIP_STORED 

 

zipf = zipfile_factory(file, mode="w", compression=compression) 

 

if sys.version_info >= (3, 6): 

# Since Python 3.6 it is possible to write directly to a ZIP file. 

for key, val in namedict.items(): 

fname = key + '.npy' 

val = np.asanyarray(val) 

force_zip64 = val.nbytes >= 2**30 

with zipf.open(fname, 'w', force_zip64=force_zip64) as fid: 

format.write_array(fid, val, 

allow_pickle=allow_pickle, 

pickle_kwargs=pickle_kwargs) 

else: 

# Stage arrays in a temporary file on disk, before writing to zip. 

 

# Import deferred for startup time improvement 

import tempfile 

# Since target file might be big enough to exceed capacity of a global 

# temporary directory, create temp file side-by-side with the target file. 

file_dir, file_prefix = os.path.split(file) if _is_string_like(file) else (None, 'tmp') 

fd, tmpfile = tempfile.mkstemp(prefix=file_prefix, dir=file_dir, suffix='-numpy.npy') 

os.close(fd) 

try: 

for key, val in namedict.items(): 

fname = key + '.npy' 

fid = open(tmpfile, 'wb') 

try: 

format.write_array(fid, np.asanyarray(val), 

allow_pickle=allow_pickle, 

pickle_kwargs=pickle_kwargs) 

fid.close() 

fid = None 

zipf.write(tmpfile, arcname=fname) 

except IOError as exc: 

raise IOError("Failed to write to %s: %s" % (tmpfile, exc)) 

finally: 

if fid: 

fid.close() 

finally: 

os.remove(tmpfile) 

 

zipf.close() 

 

 

def _getconv(dtype): 

""" Find the correct dtype converter. Adapted from matplotlib """ 

 

def floatconv(x): 

x.lower() 

if '0x' in x: 

return float.fromhex(x) 

return float(x) 

 

typ = dtype.type 

if issubclass(typ, np.bool_): 

return lambda x: bool(int(x)) 

if issubclass(typ, np.uint64): 

return np.uint64 

if issubclass(typ, np.int64): 

return np.int64 

if issubclass(typ, np.integer): 

return lambda x: int(float(x)) 

elif issubclass(typ, np.longdouble): 

return np.longdouble 

elif issubclass(typ, np.floating): 

return floatconv 

elif issubclass(typ, complex): 

return lambda x: complex(asstr(x).replace('+-', '-')) 

elif issubclass(typ, np.bytes_): 

return asbytes 

elif issubclass(typ, np.unicode_): 

return asunicode 

else: 

return asstr 

 

# amount of lines loadtxt reads in one chunk, can be overridden for testing 

_loadtxt_chunksize = 50000 

 

 

@set_module('numpy') 

def loadtxt(fname, dtype=float, comments='#', delimiter=None, 

converters=None, skiprows=0, usecols=None, unpack=False, 

ndmin=0, encoding='bytes', max_rows=None): 

""" 

Load data from a text file. 

 

Each row in the text file must have the same number of values. 

 

Parameters 

---------- 

fname : file, str, or pathlib.Path 

File, filename, or generator to read. If the filename extension is 

``.gz`` or ``.bz2``, the file is first decompressed. Note that 

generators should return byte strings for Python 3k. 

dtype : data-type, optional 

Data-type of the resulting array; default: float. If this is a 

structured data-type, the resulting array will be 1-dimensional, and 

each row will be interpreted as an element of the array. In this 

case, the number of columns used must match the number of fields in 

the data-type. 

comments : str or sequence of str, optional 

The characters or list of characters used to indicate the start of a 

comment. None implies no comments. For backwards compatibility, byte 

strings will be decoded as 'latin1'. The default is '#'. 

delimiter : str, optional 

The string used to separate values. For backwards compatibility, byte 

strings will be decoded as 'latin1'. The default is whitespace. 

converters : dict, optional 

A dictionary mapping column number to a function that will parse the 

column string into the desired value. E.g., if column 0 is a date 

string: ``converters = {0: datestr2num}``. Converters can also be 

used to provide a default value for missing data (but see also 

`genfromtxt`): ``converters = {3: lambda s: float(s.strip() or 0)}``. 

Default: None. 

skiprows : int, optional 

Skip the first `skiprows` lines; default: 0. 

usecols : int or sequence, optional 

Which columns to read, with 0 being the first. For example, 

``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns. 

The default, None, results in all columns being read. 

 

.. versionchanged:: 1.11.0 

When a single column has to be read it is possible to use 

an integer instead of a tuple. E.g ``usecols = 3`` reads the 

fourth column the same way as ``usecols = (3,)`` would. 

unpack : bool, optional 

If True, the returned array is transposed, so that arguments may be 

unpacked using ``x, y, z = loadtxt(...)``. When used with a structured 

data-type, arrays are returned for each field. Default is False. 

ndmin : int, optional 

The returned array will have at least `ndmin` dimensions. 

Otherwise mono-dimensional axes will be squeezed. 

Legal values: 0 (default), 1 or 2. 

 

.. versionadded:: 1.6.0 

encoding : str, optional 

Encoding used to decode the inputfile. Does not apply to input streams. 

The special value 'bytes' enables backward compatibility workarounds 

that ensures you receive byte arrays as results if possible and passes 

'latin1' encoded strings to converters. Override this value to receive 

unicode arrays and pass strings as input to converters. If set to None 

the system default is used. The default value is 'bytes'. 

 

.. versionadded:: 1.14.0 

max_rows : int, optional 

Read `max_rows` lines of content after `skiprows` lines. The default 

is to read all the lines. 

 

.. versionadded:: 1.16.0 

 

Returns 

------- 

out : ndarray 

Data read from the text file. 

 

See Also 

-------- 

load, fromstring, fromregex 

genfromtxt : Load data with missing values handled as specified. 

scipy.io.loadmat : reads MATLAB data files 

 

Notes 

----- 

This function aims to be a fast reader for simply formatted files. The 

`genfromtxt` function provides more sophisticated handling of, e.g., 

lines with missing values. 

 

.. versionadded:: 1.10.0 

 

The strings produced by the Python float.hex method can be used as 

input for floats. 

 

Examples 

-------- 

>>> from io import StringIO # StringIO behaves like a file object 

>>> c = StringIO(u"0 1\\n2 3") 

>>> np.loadtxt(c) 

array([[ 0., 1.], 

[ 2., 3.]]) 

 

>>> d = StringIO(u"M 21 72\\nF 35 58") 

>>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), 

... 'formats': ('S1', 'i4', 'f4')}) 

array([('M', 21, 72.0), ('F', 35, 58.0)], 

dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')]) 

 

>>> c = StringIO(u"1,0,2\\n3,0,4") 

>>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) 

>>> x 

array([ 1., 3.]) 

>>> y 

array([ 2., 4.]) 

 

""" 

# Type conversions for Py3 convenience 

if comments is not None: 

if isinstance(comments, (basestring, bytes)): 

comments = [comments] 

comments = [_decode_line(x) for x in comments] 

# Compile regex for comments beforehand 

comments = (re.escape(comment) for comment in comments) 

regex_comments = re.compile('|'.join(comments)) 

 

if delimiter is not None: 

delimiter = _decode_line(delimiter) 

 

user_converters = converters 

 

if encoding == 'bytes': 

encoding = None 

byte_converters = True 

else: 

byte_converters = False 

 

if usecols is not None: 

# Allow usecols to be a single int or a sequence of ints 

try: 

usecols_as_list = list(usecols) 

except TypeError: 

usecols_as_list = [usecols] 

for col_idx in usecols_as_list: 

try: 

opindex(col_idx) 

except TypeError as e: 

e.args = ( 

"usecols must be an int or a sequence of ints but " 

"it contains at least one element of type %s" % 

type(col_idx), 

) 

raise 

# Fall back to existing code 

usecols = usecols_as_list 

 

fown = False 

try: 

if isinstance(fname, os_PathLike): 

fname = os_fspath(fname) 

if _is_string_like(fname): 

fh = np.lib._datasource.open(fname, 'rt', encoding=encoding) 

fencoding = getattr(fh, 'encoding', 'latin1') 

fh = iter(fh) 

fown = True 

else: 

fh = iter(fname) 

fencoding = getattr(fname, 'encoding', 'latin1') 

except TypeError: 

raise ValueError('fname must be a string, file handle, or generator') 

 

# input may be a python2 io stream 

if encoding is not None: 

fencoding = encoding 

# we must assume local encoding 

# TODO emit portability warning? 

elif fencoding is None: 

import locale 

fencoding = locale.getpreferredencoding() 

 

# not to be confused with the flatten_dtype we import... 

@recursive 

def flatten_dtype_internal(self, dt): 

"""Unpack a structured data-type, and produce re-packing info.""" 

if dt.names is None: 

# If the dtype is flattened, return. 

# If the dtype has a shape, the dtype occurs 

# in the list more than once. 

shape = dt.shape 

if len(shape) == 0: 

return ([dt.base], None) 

else: 

packing = [(shape[-1], list)] 

if len(shape) > 1: 

for dim in dt.shape[-2::-1]: 

packing = [(dim*packing[0][0], packing*dim)] 

return ([dt.base] * int(np.prod(dt.shape)), packing) 

else: 

types = [] 

packing = [] 

for field in dt.names: 

tp, bytes = dt.fields[field] 

flat_dt, flat_packing = self(tp) 

types.extend(flat_dt) 

# Avoid extra nesting for subarrays 

if tp.ndim > 0: 

packing.extend(flat_packing) 

else: 

packing.append((len(flat_dt), flat_packing)) 

return (types, packing) 

 

@recursive 

def pack_items(self, items, packing): 

"""Pack items into nested lists based on re-packing info.""" 

if packing is None: 

return items[0] 

elif packing is tuple: 

return tuple(items) 

elif packing is list: 

return list(items) 

else: 

start = 0 

ret = [] 

for length, subpacking in packing: 

ret.append(self(items[start:start+length], subpacking)) 

start += length 

return tuple(ret) 

 

def split_line(line): 

"""Chop off comments, strip, and split at delimiter. """ 

line = _decode_line(line, encoding=encoding) 

 

if comments is not None: 

line = regex_comments.split(line, maxsplit=1)[0] 

line = line.strip('\r\n') 

if line: 

return line.split(delimiter) 

else: 

return [] 

 

def read_data(chunk_size): 

"""Parse each line, including the first. 

 

The file read, `fh`, is a global defined above. 

 

Parameters 

---------- 

chunk_size : int 

At most `chunk_size` lines are read at a time, with iteration 

until all lines are read. 

 

""" 

X = [] 

line_iter = itertools.chain([first_line], fh) 

line_iter = itertools.islice(line_iter, max_rows) 

for i, line in enumerate(line_iter): 

vals = split_line(line) 

if len(vals) == 0: 

continue 

if usecols: 

vals = [vals[j] for j in usecols] 

if len(vals) != N: 

line_num = i + skiprows + 1 

raise ValueError("Wrong number of columns at line %d" 

% line_num) 

 

# Convert each value according to its column and store 

items = [conv(val) for (conv, val) in zip(converters, vals)] 

 

# Then pack it according to the dtype's nesting 

items = pack_items(items, packing) 

X.append(items) 

if len(X) > chunk_size: 

yield X 

X = [] 

if X: 

yield X 

 

try: 

# Make sure we're dealing with a proper dtype 

dtype = np.dtype(dtype) 

defconv = _getconv(dtype) 

 

# Skip the first `skiprows` lines 

for i in range(skiprows): 

next(fh) 

 

# Read until we find a line with some values, and use 

# it to estimate the number of columns, N. 

first_vals = None 

try: 

while not first_vals: 

first_line = next(fh) 

first_vals = split_line(first_line) 

except StopIteration: 

# End of lines reached 

first_line = '' 

first_vals = [] 

warnings.warn('loadtxt: Empty input file: "%s"' % fname, stacklevel=2) 

N = len(usecols or first_vals) 

 

dtype_types, packing = flatten_dtype_internal(dtype) 

if len(dtype_types) > 1: 

# We're dealing with a structured array, each field of 

# the dtype matches a column 

converters = [_getconv(dt) for dt in dtype_types] 

else: 

# All fields have the same dtype 

converters = [defconv for i in range(N)] 

if N > 1: 

packing = [(N, tuple)] 

 

# By preference, use the converters specified by the user 

for i, conv in (user_converters or {}).items(): 

if usecols: 

try: 

i = usecols.index(i) 

except ValueError: 

# Unused converter specified 

continue 

if byte_converters: 

# converters may use decode to workaround numpy's old behaviour, 

# so encode the string again before passing to the user converter 

def tobytes_first(x, conv): 

if type(x) is bytes: 

return conv(x) 

return conv(x.encode("latin1")) 

import functools 

converters[i] = functools.partial(tobytes_first, conv=conv) 

else: 

converters[i] = conv 

 

converters = [conv if conv is not bytes else 

lambda x: x.encode(fencoding) for conv in converters] 

 

# read data in chunks and fill it into an array via resize 

# over-allocating and shrinking the array later may be faster but is 

# probably not relevant compared to the cost of actually reading and 

# converting the data 

X = None 

for x in read_data(_loadtxt_chunksize): 

if X is None: 

X = np.array(x, dtype) 

else: 

nshape = list(X.shape) 

pos = nshape[0] 

nshape[0] += len(x) 

X.resize(nshape, refcheck=False) 

X[pos:, ...] = x 

finally: 

if fown: 

fh.close() 

 

if X is None: 

X = np.array([], dtype) 

 

# Multicolumn data are returned with shape (1, N, M), i.e. 

# (1, 1, M) for a single row - remove the singleton dimension there 

if X.ndim == 3 and X.shape[:2] == (1, 1): 

X.shape = (1, -1) 

 

# Verify that the array has at least dimensions `ndmin`. 

# Check correctness of the values of `ndmin` 

if ndmin not in [0, 1, 2]: 

raise ValueError('Illegal value of ndmin keyword: %s' % ndmin) 

# Tweak the size and shape of the arrays - remove extraneous dimensions 

if X.ndim > ndmin: 

X = np.squeeze(X) 

# and ensure we have the minimum number of dimensions asked for 

# - has to be in this order for the odd case ndmin=1, X.squeeze().ndim=0 

if X.ndim < ndmin: 

if ndmin == 1: 

X = np.atleast_1d(X) 

elif ndmin == 2: 

X = np.atleast_2d(X).T 

 

if unpack: 

if len(dtype_types) > 1: 

# For structured arrays, return an array for each field. 

return [X[field] for field in dtype.names] 

else: 

return X.T 

else: 

return X 

 

 

def _savetxt_dispatcher(fname, X, fmt=None, delimiter=None, newline=None, 

header=None, footer=None, comments=None, 

encoding=None): 

return (X,) 

 

 

@array_function_dispatch(_savetxt_dispatcher) 

def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', 

footer='', comments='# ', encoding=None): 

""" 

Save an array to a text file. 

 

Parameters 

---------- 

fname : filename or file handle 

If the filename ends in ``.gz``, the file is automatically saved in 

compressed gzip format. `loadtxt` understands gzipped files 

transparently. 

X : 1D or 2D array_like 

Data to be saved to a text file. 

fmt : str or sequence of strs, optional 

A single format (%10.5f), a sequence of formats, or a 

multi-format string, e.g. 'Iteration %d -- %10.5f', in which 

case `delimiter` is ignored. For complex `X`, the legal options 

for `fmt` are: 

 

* a single specifier, `fmt='%.4e'`, resulting in numbers formatted 

like `' (%s+%sj)' % (fmt, fmt)` 

* a full string specifying every real and imaginary part, e.g. 

`' %.4e %+.4ej %.4e %+.4ej %.4e %+.4ej'` for 3 columns 

* a list of specifiers, one per column - in this case, the real 

and imaginary part must have separate specifiers, 

e.g. `['%.3e + %.3ej', '(%.15e%+.15ej)']` for 2 columns 

delimiter : str, optional 

String or character separating columns. 

newline : str, optional 

String or character separating lines. 

 

.. versionadded:: 1.5.0 

header : str, optional 

String that will be written at the beginning of the file. 

 

.. versionadded:: 1.7.0 

footer : str, optional 

String that will be written at the end of the file. 

 

.. versionadded:: 1.7.0 

comments : str, optional 

String that will be prepended to the ``header`` and ``footer`` strings, 

to mark them as comments. Default: '# ', as expected by e.g. 

``numpy.loadtxt``. 

 

.. versionadded:: 1.7.0 

encoding : {None, str}, optional 

Encoding used to encode the outputfile. Does not apply to output 

streams. If the encoding is something other than 'bytes' or 'latin1' 

you will not be able to load the file in NumPy versions < 1.14. Default 

is 'latin1'. 

 

.. versionadded:: 1.14.0 

 

 

See Also 

-------- 

save : Save an array to a binary file in NumPy ``.npy`` format 

savez : Save several arrays into an uncompressed ``.npz`` archive 

savez_compressed : Save several arrays into a compressed ``.npz`` archive 

 

Notes 

----- 

Further explanation of the `fmt` parameter 

(``%[flag]width[.precision]specifier``): 

 

flags: 

``-`` : left justify 

 

``+`` : Forces to precede result with + or -. 

 

``0`` : Left pad the number with zeros instead of space (see width). 

 

width: 

Minimum number of characters to be printed. The value is not truncated 

if it has more characters. 

 

precision: 

- For integer specifiers (eg. ``d,i,o,x``), the minimum number of 

digits. 

- For ``e, E`` and ``f`` specifiers, the number of digits to print 

after the decimal point. 

- For ``g`` and ``G``, the maximum number of significant digits. 

- For ``s``, the maximum number of characters. 

 

specifiers: 

``c`` : character 

 

``d`` or ``i`` : signed decimal integer 

 

``e`` or ``E`` : scientific notation with ``e`` or ``E``. 

 

``f`` : decimal floating point 

 

``g,G`` : use the shorter of ``e,E`` or ``f`` 

 

``o`` : signed octal 

 

``s`` : string of characters 

 

``u`` : unsigned decimal integer 

 

``x,X`` : unsigned hexadecimal integer 

 

This explanation of ``fmt`` is not complete, for an exhaustive 

specification see [1]_. 

 

References 

---------- 

.. [1] `Format Specification Mini-Language 

<https://docs.python.org/library/string.html#format-specification-mini-language>`_, 

Python Documentation. 

 

Examples 

-------- 

>>> x = y = z = np.arange(0.0,5.0,1.0) 

>>> np.savetxt('test.out', x, delimiter=',') # X is an array 

>>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays 

>>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation 

 

""" 

 

# Py3 conversions first 

if isinstance(fmt, bytes): 

fmt = asstr(fmt) 

delimiter = asstr(delimiter) 

 

class WriteWrap(object): 

"""Convert to unicode in py2 or to bytes on bytestream inputs. 

 

""" 

def __init__(self, fh, encoding): 

self.fh = fh 

self.encoding = encoding 

self.do_write = self.first_write 

 

def close(self): 

self.fh.close() 

 

def write(self, v): 

self.do_write(v) 

 

def write_bytes(self, v): 

if isinstance(v, bytes): 

self.fh.write(v) 

else: 

self.fh.write(v.encode(self.encoding)) 

 

def write_normal(self, v): 

self.fh.write(asunicode(v)) 

 

def first_write(self, v): 

try: 

self.write_normal(v) 

self.write = self.write_normal 

except TypeError: 

# input is probably a bytestream 

self.write_bytes(v) 

self.write = self.write_bytes 

 

own_fh = False 

if isinstance(fname, os_PathLike): 

fname = os_fspath(fname) 

if _is_string_like(fname): 

# datasource doesn't support creating a new file ... 

open(fname, 'wt').close() 

fh = np.lib._datasource.open(fname, 'wt', encoding=encoding) 

own_fh = True 

# need to convert str to unicode for text io output 

if sys.version_info[0] == 2: 

fh = WriteWrap(fh, encoding or 'latin1') 

elif hasattr(fname, 'write'): 

# wrap to handle byte output streams 

fh = WriteWrap(fname, encoding or 'latin1') 

else: 

raise ValueError('fname must be a string or file handle') 

 

try: 

X = np.asarray(X) 

 

# Handle 1-dimensional arrays 

if X.ndim == 0 or X.ndim > 2: 

raise ValueError( 

"Expected 1D or 2D array, got %dD array instead" % X.ndim) 

elif X.ndim == 1: 

# Common case -- 1d array of numbers 

if X.dtype.names is None: 

X = np.atleast_2d(X).T 

ncol = 1 

 

# Complex dtype -- each field indicates a separate column 

else: 

ncol = len(X.dtype.descr) 

else: 

ncol = X.shape[1] 

 

iscomplex_X = np.iscomplexobj(X) 

# `fmt` can be a string with multiple insertion points or a 

# list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d') 

if type(fmt) in (list, tuple): 

if len(fmt) != ncol: 

raise AttributeError('fmt has wrong shape. %s' % str(fmt)) 

format = asstr(delimiter).join(map(asstr, fmt)) 

elif isinstance(fmt, str): 

n_fmt_chars = fmt.count('%') 

error = ValueError('fmt has wrong number of %% formats: %s' % fmt) 

if n_fmt_chars == 1: 

if iscomplex_X: 

fmt = [' (%s+%sj)' % (fmt, fmt), ] * ncol 

else: 

fmt = [fmt, ] * ncol 

format = delimiter.join(fmt) 

elif iscomplex_X and n_fmt_chars != (2 * ncol): 

raise error 

elif ((not iscomplex_X) and n_fmt_chars != ncol): 

raise error 

else: 

format = fmt 

else: 

raise ValueError('invalid fmt: %r' % (fmt,)) 

 

if len(header) > 0: 

header = header.replace('\n', '\n' + comments) 

fh.write(comments + header + newline) 

if iscomplex_X: 

for row in X: 

row2 = [] 

for number in row: 

row2.append(number.real) 

row2.append(number.imag) 

s = format % tuple(row2) + newline 

fh.write(s.replace('+-', '-')) 

else: 

for row in X: 

try: 

v = format % tuple(row) + newline 

except TypeError: 

raise TypeError("Mismatch between array dtype ('%s') and " 

"format specifier ('%s')" 

% (str(X.dtype), format)) 

fh.write(v) 

 

if len(footer) > 0: 

footer = footer.replace('\n', '\n' + comments) 

fh.write(comments + footer + newline) 

finally: 

if own_fh: 

fh.close() 

 

 

@set_module('numpy') 

def fromregex(file, regexp, dtype, encoding=None): 

""" 

Construct an array from a text file, using regular expression parsing. 

 

The returned array is always a structured array, and is constructed from 

all matches of the regular expression in the file. Groups in the regular 

expression are converted to fields of the structured array. 

 

Parameters 

---------- 

file : str or file 

File name or file object to read. 

regexp : str or regexp 

Regular expression used to parse the file. 

Groups in the regular expression correspond to fields in the dtype. 

dtype : dtype or list of dtypes 

Dtype for the structured array. 

encoding : str, optional 

Encoding used to decode the inputfile. Does not apply to input streams. 

 

.. versionadded:: 1.14.0 

 

Returns 

------- 

output : ndarray 

The output array, containing the part of the content of `file` that 

was matched by `regexp`. `output` is always a structured array. 

 

Raises 

------ 

TypeError 

When `dtype` is not a valid dtype for a structured array. 

 

See Also 

-------- 

fromstring, loadtxt 

 

Notes 

----- 

Dtypes for structured arrays can be specified in several forms, but all 

forms specify at least the data type and field name. For details see 

`doc.structured_arrays`. 

 

Examples 

-------- 

>>> f = open('test.dat', 'w') 

>>> f.write("1312 foo\\n1534 bar\\n444 qux") 

>>> f.close() 

 

>>> regexp = r"(\\d+)\\s+(...)" # match [digits, whitespace, anything] 

>>> output = np.fromregex('test.dat', regexp, 

... [('num', np.int64), ('key', 'S3')]) 

>>> output 

array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')], 

dtype=[('num', '<i8'), ('key', '|S3')]) 

>>> output['num'] 

array([1312, 1534, 444], dtype=int64) 

 

""" 

own_fh = False 

if not hasattr(file, "read"): 

file = np.lib._datasource.open(file, 'rt', encoding=encoding) 

own_fh = True 

 

try: 

if not isinstance(dtype, np.dtype): 

dtype = np.dtype(dtype) 

 

content = file.read() 

if isinstance(content, bytes) and isinstance(regexp, np.unicode): 

regexp = asbytes(regexp) 

elif isinstance(content, np.unicode) and isinstance(regexp, bytes): 

regexp = asstr(regexp) 

 

if not hasattr(regexp, 'match'): 

regexp = re.compile(regexp) 

seq = regexp.findall(content) 

if seq and not isinstance(seq[0], tuple): 

# Only one group is in the regexp. 

# Create the new array as a single data-type and then 

# re-interpret as a single-field structured array. 

newdtype = np.dtype(dtype[dtype.names[0]]) 

output = np.array(seq, dtype=newdtype) 

output.dtype = dtype 

else: 

output = np.array(seq, dtype=dtype) 

 

return output 

finally: 

if own_fh: 

file.close() 

 

 

#####-------------------------------------------------------------------------- 

#---- --- ASCII functions --- 

#####-------------------------------------------------------------------------- 

 

 

@set_module('numpy') 

def genfromtxt(fname, dtype=float, comments='#', delimiter=None, 

skip_header=0, skip_footer=0, converters=None, 

missing_values=None, filling_values=None, usecols=None, 

names=None, excludelist=None, deletechars=None, 

replace_space='_', autostrip=False, case_sensitive=True, 

defaultfmt="f%i", unpack=None, usemask=False, loose=True, 

invalid_raise=True, max_rows=None, encoding='bytes'): 

""" 

Load data from a text file, with missing values handled as specified. 

 

Each line past the first `skip_header` lines is split at the `delimiter` 

character, and characters following the `comments` character are discarded. 

 

Parameters 

---------- 

fname : file, str, pathlib.Path, list of str, generator 

File, filename, list, or generator to read. If the filename 

extension is `.gz` or `.bz2`, the file is first decompressed. Note 

that generators must return byte strings in Python 3k. The strings 

in a list or produced by a generator are treated as lines. 

dtype : dtype, optional 

Data type of the resulting array. 

If None, the dtypes will be determined by the contents of each 

column, individually. 

comments : str, optional 

The character used to indicate the start of a comment. 

All the characters occurring on a line after a comment are discarded 

delimiter : str, int, or sequence, optional 

The string used to separate values. By default, any consecutive 

whitespaces act as delimiter. An integer or sequence of integers 

can also be provided as width(s) of each field. 

skiprows : int, optional 

`skiprows` was removed in numpy 1.10. Please use `skip_header` instead. 

skip_header : int, optional 

The number of lines to skip at the beginning of the file. 

skip_footer : int, optional 

The number of lines to skip at the end of the file. 

converters : variable, optional 

The set of functions that convert the data of a column to a value. 

The converters can also be used to provide a default value 

for missing data: ``converters = {3: lambda s: float(s or 0)}``. 

missing : variable, optional 

`missing` was removed in numpy 1.10. Please use `missing_values` 

instead. 

missing_values : variable, optional 

The set of strings corresponding to missing data. 

filling_values : variable, optional 

The set of values to be used as default when the data are missing. 

usecols : sequence, optional 

Which columns to read, with 0 being the first. For example, 

``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. 

names : {None, True, str, sequence}, optional 

If `names` is True, the field names are read from the first line after 

the first `skip_header` lines. This line can optionally be proceeded 

by a comment delimiter. If `names` is a sequence or a single-string of 

comma-separated names, the names will be used to define the field names 

in a structured dtype. If `names` is None, the names of the dtype 

fields will be used, if any. 

excludelist : sequence, optional 

A list of names to exclude. This list is appended to the default list 

['return','file','print']. Excluded names are appended an underscore: 

for example, `file` would become `file_`. 

deletechars : str, optional 

A string combining invalid characters that must be deleted from the 

names. 

defaultfmt : str, optional 

A format used to define default field names, such as "f%i" or "f_%02i". 

autostrip : bool, optional 

Whether to automatically strip white spaces from the variables. 

replace_space : char, optional 

Character(s) used in replacement of white spaces in the variables 

names. By default, use a '_'. 

case_sensitive : {True, False, 'upper', 'lower'}, optional 

If True, field names are case sensitive. 

If False or 'upper', field names are converted to upper case. 

If 'lower', field names are converted to lower case. 

unpack : bool, optional 

If True, the returned array is transposed, so that arguments may be 

unpacked using ``x, y, z = loadtxt(...)`` 

usemask : bool, optional 

If True, return a masked array. 

If False, return a regular array. 

loose : bool, optional 

If True, do not raise errors for invalid values. 

invalid_raise : bool, optional 

If True, an exception is raised if an inconsistency is detected in the 

number of columns. 

If False, a warning is emitted and the offending lines are skipped. 

max_rows : int, optional 

The maximum number of rows to read. Must not be used with skip_footer 

at the same time. If given, the value must be at least 1. Default is 

to read the entire file. 

 

.. versionadded:: 1.10.0 

encoding : str, optional 

Encoding used to decode the inputfile. Does not apply when `fname` is 

a file object. The special value 'bytes' enables backward compatibility 

workarounds that ensure that you receive byte arrays when possible 

and passes latin1 encoded strings to converters. Override this value to 

receive unicode arrays and pass strings as input to converters. If set 

to None the system default is used. The default value is 'bytes'. 

 

.. versionadded:: 1.14.0 

 

Returns 

------- 

out : ndarray 

Data read from the text file. If `usemask` is True, this is a 

masked array. 

 

See Also 

-------- 

numpy.loadtxt : equivalent function when no data is missing. 

 

Notes 

----- 

* When spaces are used as delimiters, or when no delimiter has been given 

as input, there should not be any missing data between two fields. 

* When the variables are named (either by a flexible dtype or with `names`, 

there must not be any header in the file (else a ValueError 

exception is raised). 

* Individual values are not stripped of spaces by default. 

When using a custom converter, make sure the function does remove spaces. 

 

References 

---------- 

.. [1] NumPy User Guide, section `I/O with NumPy 

<https://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>`_. 

 

Examples 

--------- 

>>> from io import StringIO 

>>> import numpy as np 

 

Comma delimited file with mixed dtype 

 

>>> s = StringIO(u"1,1.3,abcde") 

>>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), 

... ('mystring','S5')], delimiter=",") 

>>> data 

array((1, 1.3, 'abcde'), 

dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) 

 

Using dtype = None 

 

>>> s.seek(0) # needed for StringIO example only 

>>> data = np.genfromtxt(s, dtype=None, 

... names = ['myint','myfloat','mystring'], delimiter=",") 

>>> data 

array((1, 1.3, 'abcde'), 

dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) 

 

Specifying dtype and names 

 

>>> s.seek(0) 

>>> data = np.genfromtxt(s, dtype="i8,f8,S5", 

... names=['myint','myfloat','mystring'], delimiter=",") 

>>> data 

array((1, 1.3, 'abcde'), 

dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) 

 

An example with fixed-width columns 

 

>>> s = StringIO(u"11.3abcde") 

>>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], 

... delimiter=[1,3,5]) 

>>> data 

array((1, 1.3, 'abcde'), 

dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')]) 

 

""" 

if max_rows is not None: 

if skip_footer: 

raise ValueError( 

"The keywords 'skip_footer' and 'max_rows' can not be " 

"specified at the same time.") 

if max_rows < 1: 

raise ValueError("'max_rows' must be at least 1.") 

 

if usemask: 

from numpy.ma import MaskedArray, make_mask_descr 

# Check the input dictionary of converters 

user_converters = converters or {} 

if not isinstance(user_converters, dict): 

raise TypeError( 

"The input argument 'converter' should be a valid dictionary " 

"(got '%s' instead)" % type(user_converters)) 

 

if encoding == 'bytes': 

encoding = None 

byte_converters = True 

else: 

byte_converters = False 

 

# Initialize the filehandle, the LineSplitter and the NameValidator 

own_fhd = False 

try: 

if isinstance(fname, os_PathLike): 

fname = os_fspath(fname) 

if isinstance(fname, basestring): 

fhd = iter(np.lib._datasource.open(fname, 'rt', encoding=encoding)) 

own_fhd = True 

else: 

fhd = iter(fname) 

except TypeError: 

raise TypeError( 

"fname must be a string, filehandle, list of strings, " 

"or generator. Got %s instead." % type(fname)) 

 

split_line = LineSplitter(delimiter=delimiter, comments=comments, 

autostrip=autostrip, encoding=encoding) 

validate_names = NameValidator(excludelist=excludelist, 

deletechars=deletechars, 

case_sensitive=case_sensitive, 

replace_space=replace_space) 

 

# Skip the first `skip_header` rows 

for i in range(skip_header): 

next(fhd) 

 

# Keep on until we find the first valid values 

first_values = None 

try: 

while not first_values: 

first_line = _decode_line(next(fhd), encoding) 

if (names is True) and (comments is not None): 

if comments in first_line: 

first_line = ( 

''.join(first_line.split(comments)[1:])) 

first_values = split_line(first_line) 

except StopIteration: 

# return an empty array if the datafile is empty 

first_line = '' 

first_values = [] 

warnings.warn('genfromtxt: Empty input file: "%s"' % fname, stacklevel=2) 

 

# Should we take the first values as names ? 

if names is True: 

fval = first_values[0].strip() 

if comments is not None: 

if fval in comments: 

del first_values[0] 

 

# Check the columns to use: make sure `usecols` is a list 

if usecols is not None: 

try: 

usecols = [_.strip() for _ in usecols.split(",")] 

except AttributeError: 

try: 

usecols = list(usecols) 

except TypeError: 

usecols = [usecols, ] 

nbcols = len(usecols or first_values) 

 

# Check the names and overwrite the dtype.names if needed 

if names is True: 

names = validate_names([str(_.strip()) for _ in first_values]) 

first_line = '' 

elif _is_string_like(names): 

names = validate_names([_.strip() for _ in names.split(',')]) 

elif names: 

names = validate_names(names) 

# Get the dtype 

if dtype is not None: 

dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names, 

excludelist=excludelist, 

deletechars=deletechars, 

case_sensitive=case_sensitive, 

replace_space=replace_space) 

# Make sure the names is a list (for 2.5) 

if names is not None: 

names = list(names) 

 

if usecols: 

for (i, current) in enumerate(usecols): 

# if usecols is a list of names, convert to a list of indices 

if _is_string_like(current): 

usecols[i] = names.index(current) 

elif current < 0: 

usecols[i] = current + len(first_values) 

# If the dtype is not None, make sure we update it 

if (dtype is not None) and (len(dtype) > nbcols): 

descr = dtype.descr 

dtype = np.dtype([descr[_] for _ in usecols]) 

names = list(dtype.names) 

# If `names` is not None, update the names 

elif (names is not None) and (len(names) > nbcols): 

names = [names[_] for _ in usecols] 

elif (names is not None) and (dtype is not None): 

names = list(dtype.names) 

 

# Process the missing values ............................... 

# Rename missing_values for convenience 

user_missing_values = missing_values or () 

if isinstance(user_missing_values, bytes): 

user_missing_values = user_missing_values.decode('latin1') 

 

# Define the list of missing_values (one column: one list) 

missing_values = [list(['']) for _ in range(nbcols)] 

 

# We have a dictionary: process it field by field 

if isinstance(user_missing_values, dict): 

# Loop on the items 

for (key, val) in user_missing_values.items(): 

# Is the key a string ? 

if _is_string_like(key): 

try: 

# Transform it into an integer 

key = names.index(key) 

except ValueError: 

# We couldn't find it: the name must have been dropped 

continue 

# Redefine the key as needed if it's a column number 

if usecols: 

try: 

key = usecols.index(key) 

except ValueError: 

pass 

# Transform the value as a list of string 

if isinstance(val, (list, tuple)): 

val = [str(_) for _ in val] 

else: 

val = [str(val), ] 

# Add the value(s) to the current list of missing 

if key is None: 

# None acts as default 

for miss in missing_values: 

miss.extend(val) 

else: 

missing_values[key].extend(val) 

# We have a sequence : each item matches a column 

elif isinstance(user_missing_values, (list, tuple)): 

for (value, entry) in zip(user_missing_values, missing_values): 

value = str(value) 

if value not in entry: 

entry.append(value) 

# We have a string : apply it to all entries 

elif isinstance(user_missing_values, basestring): 

user_value = user_missing_values.split(",") 

for entry in missing_values: 

entry.extend(user_value) 

# We have something else: apply it to all entries 

else: 

for entry in missing_values: 

entry.extend([str(user_missing_values)]) 

 

# Process the filling_values ............................... 

# Rename the input for convenience 

user_filling_values = filling_values 

if user_filling_values is None: 

user_filling_values = [] 

# Define the default 

filling_values = [None] * nbcols 

# We have a dictionary : update each entry individually 

if isinstance(user_filling_values, dict): 

for (key, val) in user_filling_values.items(): 

if _is_string_like(key): 

try: 

# Transform it into an integer 

key = names.index(key) 

except ValueError: 

# We couldn't find it: the name must have been dropped, 

continue 

# Redefine the key if it's a column number and usecols is defined 

if usecols: 

try: 

key = usecols.index(key) 

except ValueError: 

pass 

# Add the value to the list 

filling_values[key] = val 

# We have a sequence : update on a one-to-one basis 

elif isinstance(user_filling_values, (list, tuple)): 

n = len(user_filling_values) 

if (n <= nbcols): 

filling_values[:n] = user_filling_values 

else: 

filling_values = user_filling_values[:nbcols] 

# We have something else : use it for all entries 

else: 

filling_values = [user_filling_values] * nbcols 

 

# Initialize the converters ................................ 

if dtype is None: 

# Note: we can't use a [...]*nbcols, as we would have 3 times the same 

# ... converter, instead of 3 different converters. 

converters = [StringConverter(None, missing_values=miss, default=fill) 

for (miss, fill) in zip(missing_values, filling_values)] 

else: 

dtype_flat = flatten_dtype(dtype, flatten_base=True) 

# Initialize the converters 

if len(dtype_flat) > 1: 

# Flexible type : get a converter from each dtype 

zipit = zip(dtype_flat, missing_values, filling_values) 

converters = [StringConverter(dt, locked=True, 

missing_values=miss, default=fill) 

for (dt, miss, fill) in zipit] 

else: 

# Set to a default converter (but w/ different missing values) 

zipit = zip(missing_values, filling_values) 

converters = [StringConverter(dtype, locked=True, 

missing_values=miss, default=fill) 

for (miss, fill) in zipit] 

# Update the converters to use the user-defined ones 

uc_update = [] 

for (j, conv) in user_converters.items(): 

# If the converter is specified by column names, use the index instead 

if _is_string_like(j): 

try: 

j = names.index(j) 

i = j 

except ValueError: 

continue 

elif usecols: 

try: 

i = usecols.index(j) 

except ValueError: 

# Unused converter specified 

continue 

else: 

i = j 

# Find the value to test - first_line is not filtered by usecols: 

if len(first_line): 

testing_value = first_values[j] 

else: 

testing_value = None 

if conv is bytes: 

user_conv = asbytes 

elif byte_converters: 

# converters may use decode to workaround numpy's old behaviour, 

# so encode the string again before passing to the user converter 

def tobytes_first(x, conv): 

if type(x) is bytes: 

return conv(x) 

return conv(x.encode("latin1")) 

import functools 

user_conv = functools.partial(tobytes_first, conv=conv) 

else: 

user_conv = conv 

converters[i].update(user_conv, locked=True, 

testing_value=testing_value, 

default=filling_values[i], 

missing_values=missing_values[i],) 

uc_update.append((i, user_conv)) 

# Make sure we have the corrected keys in user_converters... 

user_converters.update(uc_update) 

 

# Fixme: possible error as following variable never used. 

# miss_chars = [_.missing_values for _ in converters] 

 

# Initialize the output lists ... 

# ... rows 

rows = [] 

append_to_rows = rows.append 

# ... masks 

if usemask: 

masks = [] 

append_to_masks = masks.append 

# ... invalid 

invalid = [] 

append_to_invalid = invalid.append 

 

# Parse each line 

for (i, line) in enumerate(itertools.chain([first_line, ], fhd)): 

values = split_line(line) 

nbvalues = len(values) 

# Skip an empty line 

if nbvalues == 0: 

continue 

if usecols: 

# Select only the columns we need 

try: 

values = [values[_] for _ in usecols] 

except IndexError: 

append_to_invalid((i + skip_header + 1, nbvalues)) 

continue 

elif nbvalues != nbcols: 

append_to_invalid((i + skip_header + 1, nbvalues)) 

continue 

# Store the values 

append_to_rows(tuple(values)) 

if usemask: 

append_to_masks(tuple([v.strip() in m 

for (v, m) in zip(values, 

missing_values)])) 

if len(rows) == max_rows: 

break 

 

if own_fhd: 

fhd.close() 

 

# Upgrade the converters (if needed) 

if dtype is None: 

for (i, converter) in enumerate(converters): 

current_column = [itemgetter(i)(_m) for _m in rows] 

try: 

converter.iterupgrade(current_column) 

except ConverterLockError: 

errmsg = "Converter #%i is locked and cannot be upgraded: " % i 

current_column = map(itemgetter(i), rows) 

for (j, value) in enumerate(current_column): 

try: 

converter.upgrade(value) 

except (ConverterError, ValueError): 

errmsg += "(occurred line #%i for value '%s')" 

errmsg %= (j + 1 + skip_header, value) 

raise ConverterError(errmsg) 

 

# Check that we don't have invalid values 

nbinvalid = len(invalid) 

if nbinvalid > 0: 

nbrows = len(rows) + nbinvalid - skip_footer 

# Construct the error message 

template = " Line #%%i (got %%i columns instead of %i)" % nbcols 

if skip_footer > 0: 

nbinvalid_skipped = len([_ for _ in invalid 

if _[0] > nbrows + skip_header]) 

invalid = invalid[:nbinvalid - nbinvalid_skipped] 

skip_footer -= nbinvalid_skipped 

# 

# nbrows -= skip_footer 

# errmsg = [template % (i, nb) 

# for (i, nb) in invalid if i < nbrows] 

# else: 

errmsg = [template % (i, nb) 

for (i, nb) in invalid] 

if len(errmsg): 

errmsg.insert(0, "Some errors were detected !") 

errmsg = "\n".join(errmsg) 

# Raise an exception ? 

if invalid_raise: 

raise ValueError(errmsg) 

# Issue a warning ? 

else: 

warnings.warn(errmsg, ConversionWarning, stacklevel=2) 

 

# Strip the last skip_footer data 

if skip_footer > 0: 

rows = rows[:-skip_footer] 

if usemask: 

masks = masks[:-skip_footer] 

 

# Convert each value according to the converter: 

# We want to modify the list in place to avoid creating a new one... 

if loose: 

rows = list( 

zip(*[[conv._loose_call(_r) for _r in map(itemgetter(i), rows)] 

for (i, conv) in enumerate(converters)])) 

else: 

rows = list( 

zip(*[[conv._strict_call(_r) for _r in map(itemgetter(i), rows)] 

for (i, conv) in enumerate(converters)])) 

 

# Reset the dtype 

data = rows 

if dtype is None: 

# Get the dtypes from the types of the converters 

column_types = [conv.type for conv in converters] 

# Find the columns with strings... 

strcolidx = [i for (i, v) in enumerate(column_types) 

if v == np.unicode_] 

 

if byte_converters and strcolidx: 

# convert strings back to bytes for backward compatibility 

warnings.warn( 

"Reading unicode strings without specifying the encoding " 

"argument is deprecated. Set the encoding, use None for the " 

"system default.", 

np.VisibleDeprecationWarning, stacklevel=2) 

def encode_unicode_cols(row_tup): 

row = list(row_tup) 

for i in strcolidx: 

row[i] = row[i].encode('latin1') 

return tuple(row) 

 

try: 

data = [encode_unicode_cols(r) for r in data] 

except UnicodeEncodeError: 

pass 

else: 

for i in strcolidx: 

column_types[i] = np.bytes_ 

 

# Update string types to be the right length 

sized_column_types = column_types[:] 

for i, col_type in enumerate(column_types): 

if np.issubdtype(col_type, np.character): 

n_chars = max(len(row[i]) for row in data) 

sized_column_types[i] = (col_type, n_chars) 

 

if names is None: 

# If the dtype is uniform (before sizing strings) 

base = { 

c_type 

for c, c_type in zip(converters, column_types) 

if c._checked} 

if len(base) == 1: 

uniform_type, = base 

(ddtype, mdtype) = (uniform_type, bool) 

else: 

ddtype = [(defaultfmt % i, dt) 

for (i, dt) in enumerate(sized_column_types)] 

if usemask: 

mdtype = [(defaultfmt % i, bool) 

for (i, dt) in enumerate(sized_column_types)] 

else: 

ddtype = list(zip(names, sized_column_types)) 

mdtype = list(zip(names, [bool] * len(sized_column_types))) 

output = np.array(data, dtype=ddtype) 

if usemask: 

outputmask = np.array(masks, dtype=mdtype) 

else: 

# Overwrite the initial dtype names if needed 

if names and dtype.names: 

dtype.names = names 

# Case 1. We have a structured type 

if len(dtype_flat) > 1: 

# Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])] 

# First, create the array using a flattened dtype: 

# [('a', int), ('b1', int), ('b2', float)] 

# Then, view the array using the specified dtype. 

if 'O' in (_.char for _ in dtype_flat): 

if has_nested_fields(dtype): 

raise NotImplementedError( 

"Nested fields involving objects are not supported...") 

else: 

output = np.array(data, dtype=dtype) 

else: 

rows = np.array(data, dtype=[('', _) for _ in dtype_flat]) 

output = rows.view(dtype) 

# Now, process the rowmasks the same way 

if usemask: 

rowmasks = np.array( 

masks, dtype=np.dtype([('', bool) for t in dtype_flat])) 

# Construct the new dtype 

mdtype = make_mask_descr(dtype) 

outputmask = rowmasks.view(mdtype) 

# Case #2. We have a basic dtype 

else: 

# We used some user-defined converters 

if user_converters: 

ishomogeneous = True 

descr = [] 

for i, ttype in enumerate([conv.type for conv in converters]): 

# Keep the dtype of the current converter 

if i in user_converters: 

ishomogeneous &= (ttype == dtype.type) 

if np.issubdtype(ttype, np.character): 

ttype = (ttype, max(len(row[i]) for row in data)) 

descr.append(('', ttype)) 

else: 

descr.append(('', dtype)) 

# So we changed the dtype ? 

if not ishomogeneous: 

# We have more than one field 

if len(descr) > 1: 

dtype = np.dtype(descr) 

# We have only one field: drop the name if not needed. 

else: 

dtype = np.dtype(ttype) 

# 

output = np.array(data, dtype) 

if usemask: 

if dtype.names: 

mdtype = [(_, bool) for _ in dtype.names] 

else: 

mdtype = bool 

outputmask = np.array(masks, dtype=mdtype) 

# Try to take care of the missing data we missed 

names = output.dtype.names 

if usemask and names: 

for (name, conv) in zip(names, converters): 

missing_values = [conv(_) for _ in conv.missing_values 

if _ != ''] 

for mval in missing_values: 

outputmask[name] |= (output[name] == mval) 

# Construct the final array 

if usemask: 

output = output.view(MaskedArray) 

output._mask = outputmask 

if unpack: 

return output.squeeze().T 

return output.squeeze() 

 

 

def ndfromtxt(fname, **kwargs): 

""" 

Load ASCII data stored in a file and return it as a single array. 

 

Parameters 

---------- 

fname, kwargs : For a description of input parameters, see `genfromtxt`. 

 

See Also 

-------- 

numpy.genfromtxt : generic function. 

 

""" 

kwargs['usemask'] = False 

return genfromtxt(fname, **kwargs) 

 

 

def mafromtxt(fname, **kwargs): 

""" 

Load ASCII data stored in a text file and return a masked array. 

 

Parameters 

---------- 

fname, kwargs : For a description of input parameters, see `genfromtxt`. 

 

See Also 

-------- 

numpy.genfromtxt : generic function to load ASCII data. 

 

""" 

kwargs['usemask'] = True 

return genfromtxt(fname, **kwargs) 

 

 

def recfromtxt(fname, **kwargs): 

""" 

Load ASCII data from a file and return it in a record array. 

 

If ``usemask=False`` a standard `recarray` is returned, 

if ``usemask=True`` a MaskedRecords array is returned. 

 

Parameters 

---------- 

fname, kwargs : For a description of input parameters, see `genfromtxt`. 

 

See Also 

-------- 

numpy.genfromtxt : generic function 

 

Notes 

----- 

By default, `dtype` is None, which means that the data-type of the output 

array will be determined from the data. 

 

""" 

kwargs.setdefault("dtype", None) 

usemask = kwargs.get('usemask', False) 

output = genfromtxt(fname, **kwargs) 

if usemask: 

from numpy.ma.mrecords import MaskedRecords 

output = output.view(MaskedRecords) 

else: 

output = output.view(np.recarray) 

return output 

 

 

def recfromcsv(fname, **kwargs): 

""" 

Load ASCII data stored in a comma-separated file. 

 

The returned array is a record array (if ``usemask=False``, see 

`recarray`) or a masked record array (if ``usemask=True``, 

see `ma.mrecords.MaskedRecords`). 

 

Parameters 

---------- 

fname, kwargs : For a description of input parameters, see `genfromtxt`. 

 

See Also 

-------- 

numpy.genfromtxt : generic function to load ASCII data. 

 

Notes 

----- 

By default, `dtype` is None, which means that the data-type of the output 

array will be determined from the data. 

 

""" 

# Set default kwargs for genfromtxt as relevant to csv import. 

kwargs.setdefault("case_sensitive", "lower") 

kwargs.setdefault("names", True) 

kwargs.setdefault("delimiter", ",") 

kwargs.setdefault("dtype", None) 

output = genfromtxt(fname, **kwargs) 

 

usemask = kwargs.get("usemask", False) 

if usemask: 

from numpy.ma.mrecords import MaskedRecords 

output = output.view(MaskedRecords) 

else: 

output = output.view(np.recarray) 

return output