1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

from __future__ import division, absolute_import, print_function 

 

import functools 

import warnings 

 

import numpy.core.numeric as _nx 

from numpy.core.numeric import ( 

asarray, zeros, outer, concatenate, array, asanyarray 

) 

from numpy.core.fromnumeric import product, reshape, transpose 

from numpy.core.multiarray import normalize_axis_index 

from numpy.core import overrides 

from numpy.core import vstack, atleast_3d 

from numpy.core.shape_base import ( 

_arrays_for_stack_dispatcher, _warn_for_nonsequence) 

from numpy.lib.index_tricks import ndindex 

from numpy.matrixlib.defmatrix import matrix # this raises all the right alarm bells 

 

 

__all__ = [ 

'column_stack', 'row_stack', 'dstack', 'array_split', 'split', 

'hsplit', 'vsplit', 'dsplit', 'apply_over_axes', 'expand_dims', 

'apply_along_axis', 'kron', 'tile', 'get_array_wrap', 'take_along_axis', 

'put_along_axis' 

] 

 

 

array_function_dispatch = functools.partial( 

overrides.array_function_dispatch, module='numpy') 

 

 

def _make_along_axis_idx(arr_shape, indices, axis): 

# compute dimensions to iterate over 

if not _nx.issubdtype(indices.dtype, _nx.integer): 

raise IndexError('`indices` must be an integer array') 

if len(arr_shape) != indices.ndim: 

raise ValueError( 

"`indices` and `arr` must have the same number of dimensions") 

shape_ones = (1,) * indices.ndim 

dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim)) 

 

# build a fancy index, consisting of orthogonal aranges, with the 

# requested index inserted at the right location 

fancy_index = [] 

for dim, n in zip(dest_dims, arr_shape): 

if dim is None: 

fancy_index.append(indices) 

else: 

ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:] 

fancy_index.append(_nx.arange(n).reshape(ind_shape)) 

 

return tuple(fancy_index) 

 

 

def _take_along_axis_dispatcher(arr, indices, axis): 

return (arr, indices) 

 

 

@array_function_dispatch(_take_along_axis_dispatcher) 

def take_along_axis(arr, indices, axis): 

""" 

Take values from the input array by matching 1d index and data slices. 

 

This iterates over matching 1d slices oriented along the specified axis in 

the index and data arrays, and uses the former to look up values in the 

latter. These slices can be different lengths. 

 

Functions returning an index along an axis, like `argsort` and 

`argpartition`, produce suitable indices for this function. 

 

.. versionadded:: 1.15.0 

 

Parameters 

---------- 

arr: ndarray (Ni..., M, Nk...) 

Source array 

indices: ndarray (Ni..., J, Nk...) 

Indices to take along each 1d slice of `arr`. This must match the 

dimension of arr, but dimensions Ni and Nj only need to broadcast 

against `arr`. 

axis: int 

The axis to take 1d slices along. If axis is None, the input array is 

treated as if it had first been flattened to 1d, for consistency with 

`sort` and `argsort`. 

 

Returns 

------- 

out: ndarray (Ni..., J, Nk...) 

The indexed result. 

 

Notes 

----- 

This is equivalent to (but faster than) the following use of `ndindex` and 

`s_`, which sets each of ``ii`` and ``kk`` to a tuple of indices:: 

 

Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:] 

J = indices.shape[axis] # Need not equal M 

out = np.empty(Nk + (J,) + Nk) 

 

for ii in ndindex(Ni): 

for kk in ndindex(Nk): 

a_1d = a [ii + s_[:,] + kk] 

indices_1d = indices[ii + s_[:,] + kk] 

out_1d = out [ii + s_[:,] + kk] 

for j in range(J): 

out_1d[j] = a_1d[indices_1d[j]] 

 

Equivalently, eliminating the inner loop, the last two lines would be:: 

 

out_1d[:] = a_1d[indices_1d] 

 

See Also 

-------- 

take : Take along an axis, using the same indices for every 1d slice 

put_along_axis : 

Put values into the destination array by matching 1d index and data slices 

 

Examples 

-------- 

 

For this sample array 

 

>>> a = np.array([[10, 30, 20], [60, 40, 50]]) 

 

We can sort either by using sort directly, or argsort and this function 

 

>>> np.sort(a, axis=1) 

array([[10, 20, 30], 

[40, 50, 60]]) 

>>> ai = np.argsort(a, axis=1); ai 

array([[0, 2, 1], 

[1, 2, 0]], dtype=int64) 

>>> np.take_along_axis(a, ai, axis=1) 

array([[10, 20, 30], 

[40, 50, 60]]) 

 

The same works for max and min, if you expand the dimensions: 

 

>>> np.expand_dims(np.max(a, axis=1), axis=1) 

array([[30], 

[60]]) 

>>> ai = np.expand_dims(np.argmax(a, axis=1), axis=1) 

>>> ai 

array([[1], 

[0], dtype=int64) 

>>> np.take_along_axis(a, ai, axis=1) 

array([[30], 

[60]]) 

 

If we want to get the max and min at the same time, we can stack the 

indices first 

 

>>> ai_min = np.expand_dims(np.argmin(a, axis=1), axis=1) 

>>> ai_max = np.expand_dims(np.argmax(a, axis=1), axis=1) 

>>> ai = np.concatenate([ai_min, ai_max], axis=axis) 

>> ai 

array([[0, 1], 

[1, 0]], dtype=int64) 

>>> np.take_along_axis(a, ai, axis=1) 

array([[10, 30], 

[40, 60]]) 

""" 

# normalize inputs 

if axis is None: 

arr = arr.flat 

arr_shape = (len(arr),) # flatiter has no .shape 

axis = 0 

else: 

axis = normalize_axis_index(axis, arr.ndim) 

arr_shape = arr.shape 

 

# use the fancy index 

return arr[_make_along_axis_idx(arr_shape, indices, axis)] 

 

 

def _put_along_axis_dispatcher(arr, indices, values, axis): 

return (arr, indices, values) 

 

 

@array_function_dispatch(_put_along_axis_dispatcher) 

def put_along_axis(arr, indices, values, axis): 

""" 

Put values into the destination array by matching 1d index and data slices. 

 

This iterates over matching 1d slices oriented along the specified axis in 

the index and data arrays, and uses the former to place values into the 

latter. These slices can be different lengths. 

 

Functions returning an index along an axis, like `argsort` and 

`argpartition`, produce suitable indices for this function. 

 

.. versionadded:: 1.15.0 

 

Parameters 

---------- 

arr: ndarray (Ni..., M, Nk...) 

Destination array. 

indices: ndarray (Ni..., J, Nk...) 

Indices to change along each 1d slice of `arr`. This must match the 

dimension of arr, but dimensions in Ni and Nj may be 1 to broadcast 

against `arr`. 

values: array_like (Ni..., J, Nk...) 

values to insert at those indices. Its shape and dimension are 

broadcast to match that of `indices`. 

axis: int 

The axis to take 1d slices along. If axis is None, the destination 

array is treated as if a flattened 1d view had been created of it. 

 

Notes 

----- 

This is equivalent to (but faster than) the following use of `ndindex` and 

`s_`, which sets each of ``ii`` and ``kk`` to a tuple of indices:: 

 

Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:] 

J = indices.shape[axis] # Need not equal M 

 

for ii in ndindex(Ni): 

for kk in ndindex(Nk): 

a_1d = a [ii + s_[:,] + kk] 

indices_1d = indices[ii + s_[:,] + kk] 

values_1d = values [ii + s_[:,] + kk] 

for j in range(J): 

a_1d[indices_1d[j]] = values_1d[j] 

 

Equivalently, eliminating the inner loop, the last two lines would be:: 

 

a_1d[indices_1d] = values_1d 

 

See Also 

-------- 

take_along_axis : 

Take values from the input array by matching 1d index and data slices 

 

Examples 

-------- 

 

For this sample array 

 

>>> a = np.array([[10, 30, 20], [60, 40, 50]]) 

 

We can replace the maximum values with: 

 

>>> ai = np.expand_dims(np.argmax(a, axis=1), axis=1) 

>>> ai 

array([[1], 

[0]], dtype=int64) 

>>> np.put_along_axis(a, ai, 99, axis=1) 

>>> a 

array([[10, 99, 20], 

[99, 40, 50]]) 

 

""" 

# normalize inputs 

if axis is None: 

arr = arr.flat 

axis = 0 

arr_shape = (len(arr),) # flatiter has no .shape 

else: 

axis = normalize_axis_index(axis, arr.ndim) 

arr_shape = arr.shape 

 

# use the fancy index 

arr[_make_along_axis_idx(arr_shape, indices, axis)] = values 

 

 

def _apply_along_axis_dispatcher(func1d, axis, arr, *args, **kwargs): 

return (arr,) 

 

 

@array_function_dispatch(_apply_along_axis_dispatcher) 

def apply_along_axis(func1d, axis, arr, *args, **kwargs): 

""" 

Apply a function to 1-D slices along the given axis. 

 

Execute `func1d(a, *args)` where `func1d` operates on 1-D arrays and `a` 

is a 1-D slice of `arr` along `axis`. 

 

This is equivalent to (but faster than) the following use of `ndindex` and 

`s_`, which sets each of ``ii``, ``jj``, and ``kk`` to a tuple of indices:: 

 

Ni, Nk = a.shape[:axis], a.shape[axis+1:] 

for ii in ndindex(Ni): 

for kk in ndindex(Nk): 

f = func1d(arr[ii + s_[:,] + kk]) 

Nj = f.shape 

for jj in ndindex(Nj): 

out[ii + jj + kk] = f[jj] 

 

Equivalently, eliminating the inner loop, this can be expressed as:: 

 

Ni, Nk = a.shape[:axis], a.shape[axis+1:] 

for ii in ndindex(Ni): 

for kk in ndindex(Nk): 

out[ii + s_[...,] + kk] = func1d(arr[ii + s_[:,] + kk]) 

 

Parameters 

---------- 

func1d : function (M,) -> (Nj...) 

This function should accept 1-D arrays. It is applied to 1-D 

slices of `arr` along the specified axis. 

axis : integer 

Axis along which `arr` is sliced. 

arr : ndarray (Ni..., M, Nk...) 

Input array. 

args : any 

Additional arguments to `func1d`. 

kwargs : any 

Additional named arguments to `func1d`. 

 

.. versionadded:: 1.9.0 

 

 

Returns 

------- 

out : ndarray (Ni..., Nj..., Nk...) 

The output array. The shape of `out` is identical to the shape of 

`arr`, except along the `axis` dimension. This axis is removed, and 

replaced with new dimensions equal to the shape of the return value 

of `func1d`. So if `func1d` returns a scalar `out` will have one 

fewer dimensions than `arr`. 

 

See Also 

-------- 

apply_over_axes : Apply a function repeatedly over multiple axes. 

 

Examples 

-------- 

>>> def my_func(a): 

... \"\"\"Average first and last element of a 1-D array\"\"\" 

... return (a[0] + a[-1]) * 0.5 

>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]]) 

>>> np.apply_along_axis(my_func, 0, b) 

array([ 4., 5., 6.]) 

>>> np.apply_along_axis(my_func, 1, b) 

array([ 2., 5., 8.]) 

 

For a function that returns a 1D array, the number of dimensions in 

`outarr` is the same as `arr`. 

 

>>> b = np.array([[8,1,7], [4,3,9], [5,2,6]]) 

>>> np.apply_along_axis(sorted, 1, b) 

array([[1, 7, 8], 

[3, 4, 9], 

[2, 5, 6]]) 

 

For a function that returns a higher dimensional array, those dimensions 

are inserted in place of the `axis` dimension. 

 

>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]]) 

>>> np.apply_along_axis(np.diag, -1, b) 

array([[[1, 0, 0], 

[0, 2, 0], 

[0, 0, 3]], 

[[4, 0, 0], 

[0, 5, 0], 

[0, 0, 6]], 

[[7, 0, 0], 

[0, 8, 0], 

[0, 0, 9]]]) 

""" 

# handle negative axes 

arr = asanyarray(arr) 

nd = arr.ndim 

axis = normalize_axis_index(axis, nd) 

 

# arr, with the iteration axis at the end 

in_dims = list(range(nd)) 

inarr_view = transpose(arr, in_dims[:axis] + in_dims[axis+1:] + [axis]) 

 

# compute indices for the iteration axes, and append a trailing ellipsis to 

# prevent 0d arrays decaying to scalars, which fixes gh-8642 

inds = ndindex(inarr_view.shape[:-1]) 

inds = (ind + (Ellipsis,) for ind in inds) 

 

# invoke the function on the first item 

try: 

ind0 = next(inds) 

except StopIteration: 

raise ValueError('Cannot apply_along_axis when any iteration dimensions are 0') 

res = asanyarray(func1d(inarr_view[ind0], *args, **kwargs)) 

 

# build a buffer for storing evaluations of func1d. 

# remove the requested axis, and add the new ones on the end. 

# laid out so that each write is contiguous. 

# for a tuple index inds, buff[inds] = func1d(inarr_view[inds]) 

buff = zeros(inarr_view.shape[:-1] + res.shape, res.dtype) 

 

# permutation of axes such that out = buff.transpose(buff_permute) 

buff_dims = list(range(buff.ndim)) 

buff_permute = ( 

buff_dims[0 : axis] + 

buff_dims[buff.ndim-res.ndim : buff.ndim] + 

buff_dims[axis : buff.ndim-res.ndim] 

) 

 

# matrices have a nasty __array_prepare__ and __array_wrap__ 

if not isinstance(res, matrix): 

buff = res.__array_prepare__(buff) 

 

# save the first result, then compute and save all remaining results 

buff[ind0] = res 

for ind in inds: 

buff[ind] = asanyarray(func1d(inarr_view[ind], *args, **kwargs)) 

 

if not isinstance(res, matrix): 

# wrap the array, to preserve subclasses 

buff = res.__array_wrap__(buff) 

 

# finally, rotate the inserted axes back to where they belong 

return transpose(buff, buff_permute) 

 

else: 

# matrices have to be transposed first, because they collapse dimensions! 

out_arr = transpose(buff, buff_permute) 

return res.__array_wrap__(out_arr) 

 

 

def _apply_over_axes_dispatcher(func, a, axes): 

return (a,) 

 

 

@array_function_dispatch(_apply_over_axes_dispatcher) 

def apply_over_axes(func, a, axes): 

""" 

Apply a function repeatedly over multiple axes. 

 

`func` is called as `res = func(a, axis)`, where `axis` is the first 

element of `axes`. The result `res` of the function call must have 

either the same dimensions as `a` or one less dimension. If `res` 

has one less dimension than `a`, a dimension is inserted before 

`axis`. The call to `func` is then repeated for each axis in `axes`, 

with `res` as the first argument. 

 

Parameters 

---------- 

func : function 

This function must take two arguments, `func(a, axis)`. 

a : array_like 

Input array. 

axes : array_like 

Axes over which `func` is applied; the elements must be integers. 

 

Returns 

------- 

apply_over_axis : ndarray 

The output array. The number of dimensions is the same as `a`, 

but the shape can be different. This depends on whether `func` 

changes the shape of its output with respect to its input. 

 

See Also 

-------- 

apply_along_axis : 

Apply a function to 1-D slices of an array along the given axis. 

 

Notes 

------ 

This function is equivalent to tuple axis arguments to reorderable ufuncs 

with keepdims=True. Tuple axis arguments to ufuncs have been available since 

version 1.7.0. 

 

Examples 

-------- 

>>> a = np.arange(24).reshape(2,3,4) 

>>> a 

array([[[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 

[ 8, 9, 10, 11]], 

[[12, 13, 14, 15], 

[16, 17, 18, 19], 

[20, 21, 22, 23]]]) 

 

Sum over axes 0 and 2. The result has same number of dimensions 

as the original array: 

 

>>> np.apply_over_axes(np.sum, a, [0,2]) 

array([[[ 60], 

[ 92], 

[124]]]) 

 

Tuple axis arguments to ufuncs are equivalent: 

 

>>> np.sum(a, axis=(0,2), keepdims=True) 

array([[[ 60], 

[ 92], 

[124]]]) 

 

""" 

val = asarray(a) 

N = a.ndim 

if array(axes).ndim == 0: 

axes = (axes,) 

for axis in axes: 

if axis < 0: 

axis = N + axis 

args = (val, axis) 

res = func(*args) 

if res.ndim == val.ndim: 

val = res 

else: 

res = expand_dims(res, axis) 

if res.ndim == val.ndim: 

val = res 

else: 

raise ValueError("function is not returning " 

"an array of the correct shape") 

return val 

 

 

def _expand_dims_dispatcher(a, axis): 

return (a,) 

 

 

@array_function_dispatch(_expand_dims_dispatcher) 

def expand_dims(a, axis): 

""" 

Expand the shape of an array. 

 

Insert a new axis that will appear at the `axis` position in the expanded 

array shape. 

 

.. note:: Previous to NumPy 1.13.0, neither ``axis < -a.ndim - 1`` nor 

``axis > a.ndim`` raised errors or put the new axis where documented. 

Those axis values are now deprecated and will raise an AxisError in the 

future. 

 

Parameters 

---------- 

a : array_like 

Input array. 

axis : int 

Position in the expanded axes where the new axis is placed. 

 

Returns 

------- 

res : ndarray 

Output array. The number of dimensions is one greater than that of 

the input array. 

 

See Also 

-------- 

squeeze : The inverse operation, removing singleton dimensions 

reshape : Insert, remove, and combine dimensions, and resize existing ones 

doc.indexing, atleast_1d, atleast_2d, atleast_3d 

 

Examples 

-------- 

>>> x = np.array([1,2]) 

>>> x.shape 

(2,) 

 

The following is equivalent to ``x[np.newaxis,:]`` or ``x[np.newaxis]``: 

 

>>> y = np.expand_dims(x, axis=0) 

>>> y 

array([[1, 2]]) 

>>> y.shape 

(1, 2) 

 

>>> y = np.expand_dims(x, axis=1) # Equivalent to x[:,np.newaxis] 

>>> y 

array([[1], 

[2]]) 

>>> y.shape 

(2, 1) 

 

Note that some examples may use ``None`` instead of ``np.newaxis``. These 

are the same objects: 

 

>>> np.newaxis is None 

True 

 

""" 

if isinstance(a, matrix): 

a = asarray(a) 

else: 

a = asanyarray(a) 

 

shape = a.shape 

if axis > a.ndim or axis < -a.ndim - 1: 

# 2017-05-17, 1.13.0 

warnings.warn("Both axis > a.ndim and axis < -a.ndim - 1 are " 

"deprecated and will raise an AxisError in the future.", 

DeprecationWarning, stacklevel=2) 

# When the deprecation period expires, delete this if block, 

if axis < 0: 

axis = axis + a.ndim + 1 

# and uncomment the following line. 

# axis = normalize_axis_index(axis, a.ndim + 1) 

return a.reshape(shape[:axis] + (1,) + shape[axis:]) 

 

 

row_stack = vstack 

 

 

def _column_stack_dispatcher(tup): 

return _arrays_for_stack_dispatcher(tup) 

 

 

@array_function_dispatch(_column_stack_dispatcher) 

def column_stack(tup): 

""" 

Stack 1-D arrays as columns into a 2-D array. 

 

Take a sequence of 1-D arrays and stack them as columns 

to make a single 2-D array. 2-D arrays are stacked as-is, 

just like with `hstack`. 1-D arrays are turned into 2-D columns 

first. 

 

Parameters 

---------- 

tup : sequence of 1-D or 2-D arrays. 

Arrays to stack. All of them must have the same first dimension. 

 

Returns 

------- 

stacked : 2-D array 

The array formed by stacking the given arrays. 

 

See Also 

-------- 

stack, hstack, vstack, concatenate 

 

Examples 

-------- 

>>> a = np.array((1,2,3)) 

>>> b = np.array((2,3,4)) 

>>> np.column_stack((a,b)) 

array([[1, 2], 

[2, 3], 

[3, 4]]) 

 

""" 

_warn_for_nonsequence(tup) 

arrays = [] 

for v in tup: 

arr = array(v, copy=False, subok=True) 

if arr.ndim < 2: 

arr = array(arr, copy=False, subok=True, ndmin=2).T 

arrays.append(arr) 

return _nx.concatenate(arrays, 1) 

 

 

def _dstack_dispatcher(tup): 

return _arrays_for_stack_dispatcher(tup) 

 

 

@array_function_dispatch(_dstack_dispatcher) 

def dstack(tup): 

""" 

Stack arrays in sequence depth wise (along third axis). 

 

This is equivalent to concatenation along the third axis after 2-D arrays 

of shape `(M,N)` have been reshaped to `(M,N,1)` and 1-D arrays of shape 

`(N,)` have been reshaped to `(1,N,1)`. Rebuilds arrays divided by 

`dsplit`. 

 

This function makes most sense for arrays with up to 3 dimensions. For 

instance, for pixel-data with a height (first axis), width (second axis), 

and r/g/b channels (third axis). The functions `concatenate`, `stack` and 

`block` provide more general stacking and concatenation operations. 

 

Parameters 

---------- 

tup : sequence of arrays 

The arrays must have the same shape along all but the third axis. 

1-D or 2-D arrays must have the same shape. 

 

Returns 

------- 

stacked : ndarray 

The array formed by stacking the given arrays, will be at least 3-D. 

 

See Also 

-------- 

stack : Join a sequence of arrays along a new axis. 

vstack : Stack along first axis. 

hstack : Stack along second axis. 

concatenate : Join a sequence of arrays along an existing axis. 

dsplit : Split array along third axis. 

 

Examples 

-------- 

>>> a = np.array((1,2,3)) 

>>> b = np.array((2,3,4)) 

>>> np.dstack((a,b)) 

array([[[1, 2], 

[2, 3], 

[3, 4]]]) 

 

>>> a = np.array([[1],[2],[3]]) 

>>> b = np.array([[2],[3],[4]]) 

>>> np.dstack((a,b)) 

array([[[1, 2]], 

[[2, 3]], 

[[3, 4]]]) 

 

""" 

_warn_for_nonsequence(tup) 

return _nx.concatenate([atleast_3d(_m) for _m in tup], 2) 

 

 

def _replace_zero_by_x_arrays(sub_arys): 

for i in range(len(sub_arys)): 

if _nx.ndim(sub_arys[i]) == 0: 

sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype) 

elif _nx.sometrue(_nx.equal(_nx.shape(sub_arys[i]), 0)): 

sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype) 

return sub_arys 

 

 

def _array_split_dispatcher(ary, indices_or_sections, axis=None): 

return (ary, indices_or_sections) 

 

 

@array_function_dispatch(_array_split_dispatcher) 

def array_split(ary, indices_or_sections, axis=0): 

""" 

Split an array into multiple sub-arrays. 

 

Please refer to the ``split`` documentation. The only difference 

between these functions is that ``array_split`` allows 

`indices_or_sections` to be an integer that does *not* equally 

divide the axis. For an array of length l that should be split 

into n sections, it returns l % n sub-arrays of size l//n + 1 

and the rest of size l//n. 

 

See Also 

-------- 

split : Split array into multiple sub-arrays of equal size. 

 

Examples 

-------- 

>>> x = np.arange(8.0) 

>>> np.array_split(x, 3) 

[array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7.])] 

 

>>> x = np.arange(7.0) 

>>> np.array_split(x, 3) 

[array([ 0., 1., 2.]), array([ 3., 4.]), array([ 5., 6.])] 

 

""" 

try: 

Ntotal = ary.shape[axis] 

except AttributeError: 

Ntotal = len(ary) 

try: 

# handle array case. 

Nsections = len(indices_or_sections) + 1 

div_points = [0] + list(indices_or_sections) + [Ntotal] 

except TypeError: 

# indices_or_sections is a scalar, not an array. 

Nsections = int(indices_or_sections) 

if Nsections <= 0: 

raise ValueError('number sections must be larger than 0.') 

Neach_section, extras = divmod(Ntotal, Nsections) 

section_sizes = ([0] + 

extras * [Neach_section+1] + 

(Nsections-extras) * [Neach_section]) 

div_points = _nx.array(section_sizes, dtype=_nx.intp).cumsum() 

 

sub_arys = [] 

sary = _nx.swapaxes(ary, axis, 0) 

for i in range(Nsections): 

st = div_points[i] 

end = div_points[i + 1] 

sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0)) 

 

return sub_arys 

 

 

def _split_dispatcher(ary, indices_or_sections, axis=None): 

return (ary, indices_or_sections) 

 

 

@array_function_dispatch(_split_dispatcher) 

def split(ary, indices_or_sections, axis=0): 

""" 

Split an array into multiple sub-arrays. 

 

Parameters 

---------- 

ary : ndarray 

Array to be divided into sub-arrays. 

indices_or_sections : int or 1-D array 

If `indices_or_sections` is an integer, N, the array will be divided 

into N equal arrays along `axis`. If such a split is not possible, 

an error is raised. 

 

If `indices_or_sections` is a 1-D array of sorted integers, the entries 

indicate where along `axis` the array is split. For example, 

``[2, 3]`` would, for ``axis=0``, result in 

 

- ary[:2] 

- ary[2:3] 

- ary[3:] 

 

If an index exceeds the dimension of the array along `axis`, 

an empty sub-array is returned correspondingly. 

axis : int, optional 

The axis along which to split, default is 0. 

 

Returns 

------- 

sub-arrays : list of ndarrays 

A list of sub-arrays. 

 

Raises 

------ 

ValueError 

If `indices_or_sections` is given as an integer, but 

a split does not result in equal division. 

 

See Also 

-------- 

array_split : Split an array into multiple sub-arrays of equal or 

near-equal size. Does not raise an exception if 

an equal division cannot be made. 

hsplit : Split array into multiple sub-arrays horizontally (column-wise). 

vsplit : Split array into multiple sub-arrays vertically (row wise). 

dsplit : Split array into multiple sub-arrays along the 3rd axis (depth). 

concatenate : Join a sequence of arrays along an existing axis. 

stack : Join a sequence of arrays along a new axis. 

hstack : Stack arrays in sequence horizontally (column wise). 

vstack : Stack arrays in sequence vertically (row wise). 

dstack : Stack arrays in sequence depth wise (along third dimension). 

 

Examples 

-------- 

>>> x = np.arange(9.0) 

>>> np.split(x, 3) 

[array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7., 8.])] 

 

>>> x = np.arange(8.0) 

>>> np.split(x, [3, 5, 6, 10]) 

[array([ 0., 1., 2.]), 

array([ 3., 4.]), 

array([ 5.]), 

array([ 6., 7.]), 

array([], dtype=float64)] 

 

""" 

try: 

len(indices_or_sections) 

except TypeError: 

sections = indices_or_sections 

N = ary.shape[axis] 

if N % sections: 

raise ValueError( 

'array split does not result in an equal division') 

res = array_split(ary, indices_or_sections, axis) 

return res 

 

 

def _hvdsplit_dispatcher(ary, indices_or_sections): 

return (ary, indices_or_sections) 

 

 

@array_function_dispatch(_hvdsplit_dispatcher) 

def hsplit(ary, indices_or_sections): 

""" 

Split an array into multiple sub-arrays horizontally (column-wise). 

 

Please refer to the `split` documentation. `hsplit` is equivalent 

to `split` with ``axis=1``, the array is always split along the second 

axis regardless of the array dimension. 

 

See Also 

-------- 

split : Split an array into multiple sub-arrays of equal size. 

 

Examples 

-------- 

>>> x = np.arange(16.0).reshape(4, 4) 

>>> x 

array([[ 0., 1., 2., 3.], 

[ 4., 5., 6., 7.], 

[ 8., 9., 10., 11.], 

[ 12., 13., 14., 15.]]) 

>>> np.hsplit(x, 2) 

[array([[ 0., 1.], 

[ 4., 5.], 

[ 8., 9.], 

[ 12., 13.]]), 

array([[ 2., 3.], 

[ 6., 7.], 

[ 10., 11.], 

[ 14., 15.]])] 

>>> np.hsplit(x, np.array([3, 6])) 

[array([[ 0., 1., 2.], 

[ 4., 5., 6.], 

[ 8., 9., 10.], 

[ 12., 13., 14.]]), 

array([[ 3.], 

[ 7.], 

[ 11.], 

[ 15.]]), 

array([], dtype=float64)] 

 

With a higher dimensional array the split is still along the second axis. 

 

>>> x = np.arange(8.0).reshape(2, 2, 2) 

>>> x 

array([[[ 0., 1.], 

[ 2., 3.]], 

[[ 4., 5.], 

[ 6., 7.]]]) 

>>> np.hsplit(x, 2) 

[array([[[ 0., 1.]], 

[[ 4., 5.]]]), 

array([[[ 2., 3.]], 

[[ 6., 7.]]])] 

 

""" 

if _nx.ndim(ary) == 0: 

raise ValueError('hsplit only works on arrays of 1 or more dimensions') 

if ary.ndim > 1: 

return split(ary, indices_or_sections, 1) 

else: 

return split(ary, indices_or_sections, 0) 

 

 

@array_function_dispatch(_hvdsplit_dispatcher) 

def vsplit(ary, indices_or_sections): 

""" 

Split an array into multiple sub-arrays vertically (row-wise). 

 

Please refer to the ``split`` documentation. ``vsplit`` is equivalent 

to ``split`` with `axis=0` (default), the array is always split along the 

first axis regardless of the array dimension. 

 

See Also 

-------- 

split : Split an array into multiple sub-arrays of equal size. 

 

Examples 

-------- 

>>> x = np.arange(16.0).reshape(4, 4) 

>>> x 

array([[ 0., 1., 2., 3.], 

[ 4., 5., 6., 7.], 

[ 8., 9., 10., 11.], 

[ 12., 13., 14., 15.]]) 

>>> np.vsplit(x, 2) 

[array([[ 0., 1., 2., 3.], 

[ 4., 5., 6., 7.]]), 

array([[ 8., 9., 10., 11.], 

[ 12., 13., 14., 15.]])] 

>>> np.vsplit(x, np.array([3, 6])) 

[array([[ 0., 1., 2., 3.], 

[ 4., 5., 6., 7.], 

[ 8., 9., 10., 11.]]), 

array([[ 12., 13., 14., 15.]]), 

array([], dtype=float64)] 

 

With a higher dimensional array the split is still along the first axis. 

 

>>> x = np.arange(8.0).reshape(2, 2, 2) 

>>> x 

array([[[ 0., 1.], 

[ 2., 3.]], 

[[ 4., 5.], 

[ 6., 7.]]]) 

>>> np.vsplit(x, 2) 

[array([[[ 0., 1.], 

[ 2., 3.]]]), 

array([[[ 4., 5.], 

[ 6., 7.]]])] 

 

""" 

if _nx.ndim(ary) < 2: 

raise ValueError('vsplit only works on arrays of 2 or more dimensions') 

return split(ary, indices_or_sections, 0) 

 

 

@array_function_dispatch(_hvdsplit_dispatcher) 

def dsplit(ary, indices_or_sections): 

""" 

Split array into multiple sub-arrays along the 3rd axis (depth). 

 

Please refer to the `split` documentation. `dsplit` is equivalent 

to `split` with ``axis=2``, the array is always split along the third 

axis provided the array dimension is greater than or equal to 3. 

 

See Also 

-------- 

split : Split an array into multiple sub-arrays of equal size. 

 

Examples 

-------- 

>>> x = np.arange(16.0).reshape(2, 2, 4) 

>>> x 

array([[[ 0., 1., 2., 3.], 

[ 4., 5., 6., 7.]], 

[[ 8., 9., 10., 11.], 

[ 12., 13., 14., 15.]]]) 

>>> np.dsplit(x, 2) 

[array([[[ 0., 1.], 

[ 4., 5.]], 

[[ 8., 9.], 

[ 12., 13.]]]), 

array([[[ 2., 3.], 

[ 6., 7.]], 

[[ 10., 11.], 

[ 14., 15.]]])] 

>>> np.dsplit(x, np.array([3, 6])) 

[array([[[ 0., 1., 2.], 

[ 4., 5., 6.]], 

[[ 8., 9., 10.], 

[ 12., 13., 14.]]]), 

array([[[ 3.], 

[ 7.]], 

[[ 11.], 

[ 15.]]]), 

array([], dtype=float64)] 

 

""" 

if _nx.ndim(ary) < 3: 

raise ValueError('dsplit only works on arrays of 3 or more dimensions') 

return split(ary, indices_or_sections, 2) 

 

def get_array_prepare(*args): 

"""Find the wrapper for the array with the highest priority. 

 

In case of ties, leftmost wins. If no wrapper is found, return None 

""" 

wrappers = sorted((getattr(x, '__array_priority__', 0), -i, 

x.__array_prepare__) for i, x in enumerate(args) 

if hasattr(x, '__array_prepare__')) 

if wrappers: 

return wrappers[-1][-1] 

return None 

 

def get_array_wrap(*args): 

"""Find the wrapper for the array with the highest priority. 

 

In case of ties, leftmost wins. If no wrapper is found, return None 

""" 

wrappers = sorted((getattr(x, '__array_priority__', 0), -i, 

x.__array_wrap__) for i, x in enumerate(args) 

if hasattr(x, '__array_wrap__')) 

if wrappers: 

return wrappers[-1][-1] 

return None 

 

 

def _kron_dispatcher(a, b): 

return (a, b) 

 

 

@array_function_dispatch(_kron_dispatcher) 

def kron(a, b): 

""" 

Kronecker product of two arrays. 

 

Computes the Kronecker product, a composite array made of blocks of the 

second array scaled by the first. 

 

Parameters 

---------- 

a, b : array_like 

 

Returns 

------- 

out : ndarray 

 

See Also 

-------- 

outer : The outer product 

 

Notes 

----- 

The function assumes that the number of dimensions of `a` and `b` 

are the same, if necessary prepending the smallest with ones. 

If `a.shape = (r0,r1,..,rN)` and `b.shape = (s0,s1,...,sN)`, 

the Kronecker product has shape `(r0*s0, r1*s1, ..., rN*SN)`. 

The elements are products of elements from `a` and `b`, organized 

explicitly by:: 

 

kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN] 

 

where:: 

 

kt = it * st + jt, t = 0,...,N 

 

In the common 2-D case (N=1), the block structure can be visualized:: 

 

[[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ], 

[ ... ... ], 

[ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]] 

 

 

Examples 

-------- 

>>> np.kron([1,10,100], [5,6,7]) 

array([ 5, 6, 7, 50, 60, 70, 500, 600, 700]) 

>>> np.kron([5,6,7], [1,10,100]) 

array([ 5, 50, 500, 6, 60, 600, 7, 70, 700]) 

 

>>> np.kron(np.eye(2), np.ones((2,2))) 

array([[ 1., 1., 0., 0.], 

[ 1., 1., 0., 0.], 

[ 0., 0., 1., 1.], 

[ 0., 0., 1., 1.]]) 

 

>>> a = np.arange(100).reshape((2,5,2,5)) 

>>> b = np.arange(24).reshape((2,3,4)) 

>>> c = np.kron(a,b) 

>>> c.shape 

(2, 10, 6, 20) 

>>> I = (1,3,0,2) 

>>> J = (0,2,1) 

>>> J1 = (0,) + J # extend to ndim=4 

>>> S1 = (1,) + b.shape 

>>> K = tuple(np.array(I) * np.array(S1) + np.array(J1)) 

>>> c[K] == a[I]*b[J] 

True 

 

""" 

b = asanyarray(b) 

a = array(a, copy=False, subok=True, ndmin=b.ndim) 

ndb, nda = b.ndim, a.ndim 

if (nda == 0 or ndb == 0): 

return _nx.multiply(a, b) 

as_ = a.shape 

bs = b.shape 

if not a.flags.contiguous: 

a = reshape(a, as_) 

if not b.flags.contiguous: 

b = reshape(b, bs) 

nd = ndb 

if (ndb != nda): 

if (ndb > nda): 

as_ = (1,)*(ndb-nda) + as_ 

else: 

bs = (1,)*(nda-ndb) + bs 

nd = nda 

result = outer(a, b).reshape(as_+bs) 

axis = nd-1 

for _ in range(nd): 

result = concatenate(result, axis=axis) 

wrapper = get_array_prepare(a, b) 

if wrapper is not None: 

result = wrapper(result) 

wrapper = get_array_wrap(a, b) 

if wrapper is not None: 

result = wrapper(result) 

return result 

 

 

def _tile_dispatcher(A, reps): 

return (A, reps) 

 

 

@array_function_dispatch(_tile_dispatcher) 

def tile(A, reps): 

""" 

Construct an array by repeating A the number of times given by reps. 

 

If `reps` has length ``d``, the result will have dimension of 

``max(d, A.ndim)``. 

 

If ``A.ndim < d``, `A` is promoted to be d-dimensional by prepending new 

axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication, 

or shape (1, 1, 3) for 3-D replication. If this is not the desired 

behavior, promote `A` to d-dimensions manually before calling this 

function. 

 

If ``A.ndim > d``, `reps` is promoted to `A`.ndim by pre-pending 1's to it. 

Thus for an `A` of shape (2, 3, 4, 5), a `reps` of (2, 2) is treated as 

(1, 1, 2, 2). 

 

Note : Although tile may be used for broadcasting, it is strongly 

recommended to use numpy's broadcasting operations and functions. 

 

Parameters 

---------- 

A : array_like 

The input array. 

reps : array_like 

The number of repetitions of `A` along each axis. 

 

Returns 

------- 

c : ndarray 

The tiled output array. 

 

See Also 

-------- 

repeat : Repeat elements of an array. 

broadcast_to : Broadcast an array to a new shape 

 

Examples 

-------- 

>>> a = np.array([0, 1, 2]) 

>>> np.tile(a, 2) 

array([0, 1, 2, 0, 1, 2]) 

>>> np.tile(a, (2, 2)) 

array([[0, 1, 2, 0, 1, 2], 

[0, 1, 2, 0, 1, 2]]) 

>>> np.tile(a, (2, 1, 2)) 

array([[[0, 1, 2, 0, 1, 2]], 

[[0, 1, 2, 0, 1, 2]]]) 

 

>>> b = np.array([[1, 2], [3, 4]]) 

>>> np.tile(b, 2) 

array([[1, 2, 1, 2], 

[3, 4, 3, 4]]) 

>>> np.tile(b, (2, 1)) 

array([[1, 2], 

[3, 4], 

[1, 2], 

[3, 4]]) 

 

>>> c = np.array([1,2,3,4]) 

>>> np.tile(c,(4,1)) 

array([[1, 2, 3, 4], 

[1, 2, 3, 4], 

[1, 2, 3, 4], 

[1, 2, 3, 4]]) 

""" 

try: 

tup = tuple(reps) 

except TypeError: 

tup = (reps,) 

d = len(tup) 

if all(x == 1 for x in tup) and isinstance(A, _nx.ndarray): 

# Fixes the problem that the function does not make a copy if A is a 

# numpy array and the repetitions are 1 in all dimensions 

return _nx.array(A, copy=True, subok=True, ndmin=d) 

else: 

# Note that no copy of zero-sized arrays is made. However since they 

# have no data there is no risk of an inadvertent overwrite. 

c = _nx.array(A, copy=False, subok=True, ndmin=d) 

if (d < c.ndim): 

tup = (1,)*(c.ndim-d) + tup 

shape_out = tuple(s*t for s, t in zip(c.shape, tup)) 

n = c.size 

if n > 0: 

for dim_in, nrep in zip(c.shape, tup): 

if nrep != 1: 

c = c.reshape(-1, n).repeat(nrep, 0) 

n //= dim_in 

return c.reshape(shape_out)