1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

""" Basic functions for manipulating 2d arrays 

 

""" 

from __future__ import division, absolute_import, print_function 

 

import functools 

 

from numpy.core.numeric import ( 

absolute, asanyarray, arange, zeros, greater_equal, multiply, ones, 

asarray, where, int8, int16, int32, int64, empty, promote_types, diagonal, 

nonzero 

) 

from numpy.core.overrides import set_module 

from numpy.core import overrides 

from numpy.core import iinfo, transpose 

 

 

__all__ = [ 

'diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'tri', 'triu', 

'tril', 'vander', 'histogram2d', 'mask_indices', 'tril_indices', 

'tril_indices_from', 'triu_indices', 'triu_indices_from', ] 

 

 

array_function_dispatch = functools.partial( 

overrides.array_function_dispatch, module='numpy') 

 

 

i1 = iinfo(int8) 

i2 = iinfo(int16) 

i4 = iinfo(int32) 

 

 

def _min_int(low, high): 

""" get small int that fits the range """ 

if high <= i1.max and low >= i1.min: 

return int8 

if high <= i2.max and low >= i2.min: 

return int16 

if high <= i4.max and low >= i4.min: 

return int32 

return int64 

 

 

def _flip_dispatcher(m): 

return (m,) 

 

 

@array_function_dispatch(_flip_dispatcher) 

def fliplr(m): 

""" 

Flip array in the left/right direction. 

 

Flip the entries in each row in the left/right direction. 

Columns are preserved, but appear in a different order than before. 

 

Parameters 

---------- 

m : array_like 

Input array, must be at least 2-D. 

 

Returns 

------- 

f : ndarray 

A view of `m` with the columns reversed. Since a view 

is returned, this operation is :math:`\\mathcal O(1)`. 

 

See Also 

-------- 

flipud : Flip array in the up/down direction. 

rot90 : Rotate array counterclockwise. 

 

Notes 

----- 

Equivalent to m[:,::-1]. Requires the array to be at least 2-D. 

 

Examples 

-------- 

>>> A = np.diag([1.,2.,3.]) 

>>> A 

array([[ 1., 0., 0.], 

[ 0., 2., 0.], 

[ 0., 0., 3.]]) 

>>> np.fliplr(A) 

array([[ 0., 0., 1.], 

[ 0., 2., 0.], 

[ 3., 0., 0.]]) 

 

>>> A = np.random.randn(2,3,5) 

>>> np.all(np.fliplr(A) == A[:,::-1,...]) 

True 

 

""" 

m = asanyarray(m) 

if m.ndim < 2: 

raise ValueError("Input must be >= 2-d.") 

return m[:, ::-1] 

 

 

@array_function_dispatch(_flip_dispatcher) 

def flipud(m): 

""" 

Flip array in the up/down direction. 

 

Flip the entries in each column in the up/down direction. 

Rows are preserved, but appear in a different order than before. 

 

Parameters 

---------- 

m : array_like 

Input array. 

 

Returns 

------- 

out : array_like 

A view of `m` with the rows reversed. Since a view is 

returned, this operation is :math:`\\mathcal O(1)`. 

 

See Also 

-------- 

fliplr : Flip array in the left/right direction. 

rot90 : Rotate array counterclockwise. 

 

Notes 

----- 

Equivalent to ``m[::-1,...]``. 

Does not require the array to be two-dimensional. 

 

Examples 

-------- 

>>> A = np.diag([1.0, 2, 3]) 

>>> A 

array([[ 1., 0., 0.], 

[ 0., 2., 0.], 

[ 0., 0., 3.]]) 

>>> np.flipud(A) 

array([[ 0., 0., 3.], 

[ 0., 2., 0.], 

[ 1., 0., 0.]]) 

 

>>> A = np.random.randn(2,3,5) 

>>> np.all(np.flipud(A) == A[::-1,...]) 

True 

 

>>> np.flipud([1,2]) 

array([2, 1]) 

 

""" 

m = asanyarray(m) 

if m.ndim < 1: 

raise ValueError("Input must be >= 1-d.") 

return m[::-1, ...] 

 

 

@set_module('numpy') 

def eye(N, M=None, k=0, dtype=float, order='C'): 

""" 

Return a 2-D array with ones on the diagonal and zeros elsewhere. 

 

Parameters 

---------- 

N : int 

Number of rows in the output. 

M : int, optional 

Number of columns in the output. If None, defaults to `N`. 

k : int, optional 

Index of the diagonal: 0 (the default) refers to the main diagonal, 

a positive value refers to an upper diagonal, and a negative value 

to a lower diagonal. 

dtype : data-type, optional 

Data-type of the returned array. 

order : {'C', 'F'}, optional 

Whether the output should be stored in row-major (C-style) or 

column-major (Fortran-style) order in memory. 

 

.. versionadded:: 1.14.0 

 

Returns 

------- 

I : ndarray of shape (N,M) 

An array where all elements are equal to zero, except for the `k`-th 

diagonal, whose values are equal to one. 

 

See Also 

-------- 

identity : (almost) equivalent function 

diag : diagonal 2-D array from a 1-D array specified by the user. 

 

Examples 

-------- 

>>> np.eye(2, dtype=int) 

array([[1, 0], 

[0, 1]]) 

>>> np.eye(3, k=1) 

array([[ 0., 1., 0.], 

[ 0., 0., 1.], 

[ 0., 0., 0.]]) 

 

""" 

if M is None: 

M = N 

m = zeros((N, M), dtype=dtype, order=order) 

if k >= M: 

return m 

if k >= 0: 

i = k 

else: 

i = (-k) * M 

m[:M-k].flat[i::M+1] = 1 

return m 

 

 

def _diag_dispatcher(v, k=None): 

return (v,) 

 

 

@array_function_dispatch(_diag_dispatcher) 

def diag(v, k=0): 

""" 

Extract a diagonal or construct a diagonal array. 

 

See the more detailed documentation for ``numpy.diagonal`` if you use this 

function to extract a diagonal and wish to write to the resulting array; 

whether it returns a copy or a view depends on what version of numpy you 

are using. 

 

Parameters 

---------- 

v : array_like 

If `v` is a 2-D array, return a copy of its `k`-th diagonal. 

If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th 

diagonal. 

k : int, optional 

Diagonal in question. The default is 0. Use `k>0` for diagonals 

above the main diagonal, and `k<0` for diagonals below the main 

diagonal. 

 

Returns 

------- 

out : ndarray 

The extracted diagonal or constructed diagonal array. 

 

See Also 

-------- 

diagonal : Return specified diagonals. 

diagflat : Create a 2-D array with the flattened input as a diagonal. 

trace : Sum along diagonals. 

triu : Upper triangle of an array. 

tril : Lower triangle of an array. 

 

Examples 

-------- 

>>> x = np.arange(9).reshape((3,3)) 

>>> x 

array([[0, 1, 2], 

[3, 4, 5], 

[6, 7, 8]]) 

 

>>> np.diag(x) 

array([0, 4, 8]) 

>>> np.diag(x, k=1) 

array([1, 5]) 

>>> np.diag(x, k=-1) 

array([3, 7]) 

 

>>> np.diag(np.diag(x)) 

array([[0, 0, 0], 

[0, 4, 0], 

[0, 0, 8]]) 

 

""" 

v = asanyarray(v) 

s = v.shape 

if len(s) == 1: 

n = s[0]+abs(k) 

res = zeros((n, n), v.dtype) 

if k >= 0: 

i = k 

else: 

i = (-k) * n 

res[:n-k].flat[i::n+1] = v 

return res 

elif len(s) == 2: 

return diagonal(v, k) 

else: 

raise ValueError("Input must be 1- or 2-d.") 

 

 

@array_function_dispatch(_diag_dispatcher) 

def diagflat(v, k=0): 

""" 

Create a two-dimensional array with the flattened input as a diagonal. 

 

Parameters 

---------- 

v : array_like 

Input data, which is flattened and set as the `k`-th 

diagonal of the output. 

k : int, optional 

Diagonal to set; 0, the default, corresponds to the "main" diagonal, 

a positive (negative) `k` giving the number of the diagonal above 

(below) the main. 

 

Returns 

------- 

out : ndarray 

The 2-D output array. 

 

See Also 

-------- 

diag : MATLAB work-alike for 1-D and 2-D arrays. 

diagonal : Return specified diagonals. 

trace : Sum along diagonals. 

 

Examples 

-------- 

>>> np.diagflat([[1,2], [3,4]]) 

array([[1, 0, 0, 0], 

[0, 2, 0, 0], 

[0, 0, 3, 0], 

[0, 0, 0, 4]]) 

 

>>> np.diagflat([1,2], 1) 

array([[0, 1, 0], 

[0, 0, 2], 

[0, 0, 0]]) 

 

""" 

try: 

wrap = v.__array_wrap__ 

except AttributeError: 

wrap = None 

v = asarray(v).ravel() 

s = len(v) 

n = s + abs(k) 

res = zeros((n, n), v.dtype) 

if (k >= 0): 

i = arange(0, n-k) 

fi = i+k+i*n 

else: 

i = arange(0, n+k) 

fi = i+(i-k)*n 

res.flat[fi] = v 

if not wrap: 

return res 

return wrap(res) 

 

 

@set_module('numpy') 

def tri(N, M=None, k=0, dtype=float): 

""" 

An array with ones at and below the given diagonal and zeros elsewhere. 

 

Parameters 

---------- 

N : int 

Number of rows in the array. 

M : int, optional 

Number of columns in the array. 

By default, `M` is taken equal to `N`. 

k : int, optional 

The sub-diagonal at and below which the array is filled. 

`k` = 0 is the main diagonal, while `k` < 0 is below it, 

and `k` > 0 is above. The default is 0. 

dtype : dtype, optional 

Data type of the returned array. The default is float. 

 

Returns 

------- 

tri : ndarray of shape (N, M) 

Array with its lower triangle filled with ones and zero elsewhere; 

in other words ``T[i,j] == 1`` for ``i <= j + k``, 0 otherwise. 

 

Examples 

-------- 

>>> np.tri(3, 5, 2, dtype=int) 

array([[1, 1, 1, 0, 0], 

[1, 1, 1, 1, 0], 

[1, 1, 1, 1, 1]]) 

 

>>> np.tri(3, 5, -1) 

array([[ 0., 0., 0., 0., 0.], 

[ 1., 0., 0., 0., 0.], 

[ 1., 1., 0., 0., 0.]]) 

 

""" 

if M is None: 

M = N 

 

m = greater_equal.outer(arange(N, dtype=_min_int(0, N)), 

arange(-k, M-k, dtype=_min_int(-k, M - k))) 

 

# Avoid making a copy if the requested type is already bool 

m = m.astype(dtype, copy=False) 

 

return m 

 

 

def _trilu_dispatcher(m, k=None): 

return (m,) 

 

 

@array_function_dispatch(_trilu_dispatcher) 

def tril(m, k=0): 

""" 

Lower triangle of an array. 

 

Return a copy of an array with elements above the `k`-th diagonal zeroed. 

 

Parameters 

---------- 

m : array_like, shape (M, N) 

Input array. 

k : int, optional 

Diagonal above which to zero elements. `k = 0` (the default) is the 

main diagonal, `k < 0` is below it and `k > 0` is above. 

 

Returns 

------- 

tril : ndarray, shape (M, N) 

Lower triangle of `m`, of same shape and data-type as `m`. 

 

See Also 

-------- 

triu : same thing, only for the upper triangle 

 

Examples 

-------- 

>>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) 

array([[ 0, 0, 0], 

[ 4, 0, 0], 

[ 7, 8, 0], 

[10, 11, 12]]) 

 

""" 

m = asanyarray(m) 

mask = tri(*m.shape[-2:], k=k, dtype=bool) 

 

return where(mask, m, zeros(1, m.dtype)) 

 

 

@array_function_dispatch(_trilu_dispatcher) 

def triu(m, k=0): 

""" 

Upper triangle of an array. 

 

Return a copy of a matrix with the elements below the `k`-th diagonal 

zeroed. 

 

Please refer to the documentation for `tril` for further details. 

 

See Also 

-------- 

tril : lower triangle of an array 

 

Examples 

-------- 

>>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) 

array([[ 1, 2, 3], 

[ 4, 5, 6], 

[ 0, 8, 9], 

[ 0, 0, 12]]) 

 

""" 

m = asanyarray(m) 

mask = tri(*m.shape[-2:], k=k-1, dtype=bool) 

 

return where(mask, zeros(1, m.dtype), m) 

 

 

def _vander_dispatcher(x, N=None, increasing=None): 

return (x,) 

 

 

# Originally borrowed from John Hunter and matplotlib 

@array_function_dispatch(_vander_dispatcher) 

def vander(x, N=None, increasing=False): 

""" 

Generate a Vandermonde matrix. 

 

The columns of the output matrix are powers of the input vector. The 

order of the powers is determined by the `increasing` boolean argument. 

Specifically, when `increasing` is False, the `i`-th output column is 

the input vector raised element-wise to the power of ``N - i - 1``. Such 

a matrix with a geometric progression in each row is named for Alexandre- 

Theophile Vandermonde. 

 

Parameters 

---------- 

x : array_like 

1-D input array. 

N : int, optional 

Number of columns in the output. If `N` is not specified, a square 

array is returned (``N = len(x)``). 

increasing : bool, optional 

Order of the powers of the columns. If True, the powers increase 

from left to right, if False (the default) they are reversed. 

 

.. versionadded:: 1.9.0 

 

Returns 

------- 

out : ndarray 

Vandermonde matrix. If `increasing` is False, the first column is 

``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `increasing` is 

True, the columns are ``x^0, x^1, ..., x^(N-1)``. 

 

See Also 

-------- 

polynomial.polynomial.polyvander 

 

Examples 

-------- 

>>> x = np.array([1, 2, 3, 5]) 

>>> N = 3 

>>> np.vander(x, N) 

array([[ 1, 1, 1], 

[ 4, 2, 1], 

[ 9, 3, 1], 

[25, 5, 1]]) 

 

>>> np.column_stack([x**(N-1-i) for i in range(N)]) 

array([[ 1, 1, 1], 

[ 4, 2, 1], 

[ 9, 3, 1], 

[25, 5, 1]]) 

 

>>> x = np.array([1, 2, 3, 5]) 

>>> np.vander(x) 

array([[ 1, 1, 1, 1], 

[ 8, 4, 2, 1], 

[ 27, 9, 3, 1], 

[125, 25, 5, 1]]) 

>>> np.vander(x, increasing=True) 

array([[ 1, 1, 1, 1], 

[ 1, 2, 4, 8], 

[ 1, 3, 9, 27], 

[ 1, 5, 25, 125]]) 

 

The determinant of a square Vandermonde matrix is the product 

of the differences between the values of the input vector: 

 

>>> np.linalg.det(np.vander(x)) 

48.000000000000043 

>>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1) 

48 

 

""" 

x = asarray(x) 

if x.ndim != 1: 

raise ValueError("x must be a one-dimensional array or sequence.") 

if N is None: 

N = len(x) 

 

v = empty((len(x), N), dtype=promote_types(x.dtype, int)) 

tmp = v[:, ::-1] if not increasing else v 

 

if N > 0: 

tmp[:, 0] = 1 

if N > 1: 

tmp[:, 1:] = x[:, None] 

multiply.accumulate(tmp[:, 1:], out=tmp[:, 1:], axis=1) 

 

return v 

 

 

def _histogram2d_dispatcher(x, y, bins=None, range=None, normed=None, 

weights=None, density=None): 

return (x, y, bins, weights) 

 

 

@array_function_dispatch(_histogram2d_dispatcher) 

def histogram2d(x, y, bins=10, range=None, normed=None, weights=None, 

density=None): 

""" 

Compute the bi-dimensional histogram of two data samples. 

 

Parameters 

---------- 

x : array_like, shape (N,) 

An array containing the x coordinates of the points to be 

histogrammed. 

y : array_like, shape (N,) 

An array containing the y coordinates of the points to be 

histogrammed. 

bins : int or array_like or [int, int] or [array, array], optional 

The bin specification: 

 

* If int, the number of bins for the two dimensions (nx=ny=bins). 

* If array_like, the bin edges for the two dimensions 

(x_edges=y_edges=bins). 

* If [int, int], the number of bins in each dimension 

(nx, ny = bins). 

* If [array, array], the bin edges in each dimension 

(x_edges, y_edges = bins). 

* A combination [int, array] or [array, int], where int 

is the number of bins and array is the bin edges. 

 

range : array_like, shape(2,2), optional 

The leftmost and rightmost edges of the bins along each dimension 

(if not specified explicitly in the `bins` parameters): 

``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range 

will be considered outliers and not tallied in the histogram. 

density : bool, optional 

If False, the default, returns the number of samples in each bin. 

If True, returns the probability *density* function at the bin, 

``bin_count / sample_count / bin_area``. 

normed : bool, optional 

An alias for the density argument that behaves identically. To avoid 

confusion with the broken normed argument to `histogram`, `density` 

should be preferred. 

weights : array_like, shape(N,), optional 

An array of values ``w_i`` weighing each sample ``(x_i, y_i)``. 

Weights are normalized to 1 if `normed` is True. If `normed` is 

False, the values of the returned histogram are equal to the sum of 

the weights belonging to the samples falling into each bin. 

 

Returns 

------- 

H : ndarray, shape(nx, ny) 

The bi-dimensional histogram of samples `x` and `y`. Values in `x` 

are histogrammed along the first dimension and values in `y` are 

histogrammed along the second dimension. 

xedges : ndarray, shape(nx+1,) 

The bin edges along the first dimension. 

yedges : ndarray, shape(ny+1,) 

The bin edges along the second dimension. 

 

See Also 

-------- 

histogram : 1D histogram 

histogramdd : Multidimensional histogram 

 

Notes 

----- 

When `normed` is True, then the returned histogram is the sample 

density, defined such that the sum over bins of the product 

``bin_value * bin_area`` is 1. 

 

Please note that the histogram does not follow the Cartesian convention 

where `x` values are on the abscissa and `y` values on the ordinate 

axis. Rather, `x` is histogrammed along the first dimension of the 

array (vertical), and `y` along the second dimension of the array 

(horizontal). This ensures compatibility with `histogramdd`. 

 

Examples 

-------- 

>>> from matplotlib.image import NonUniformImage 

>>> import matplotlib.pyplot as plt 

 

Construct a 2-D histogram with variable bin width. First define the bin 

edges: 

 

>>> xedges = [0, 1, 3, 5] 

>>> yedges = [0, 2, 3, 4, 6] 

 

Next we create a histogram H with random bin content: 

 

>>> x = np.random.normal(2, 1, 100) 

>>> y = np.random.normal(1, 1, 100) 

>>> H, xedges, yedges = np.histogram2d(x, y, bins=(xedges, yedges)) 

>>> H = H.T # Let each row list bins with common y range. 

 

:func:`imshow <matplotlib.pyplot.imshow>` can only display square bins: 

 

>>> fig = plt.figure(figsize=(7, 3)) 

>>> ax = fig.add_subplot(131, title='imshow: square bins') 

>>> plt.imshow(H, interpolation='nearest', origin='low', 

... extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]]) 

 

:func:`pcolormesh <matplotlib.pyplot.pcolormesh>` can display actual edges: 

 

>>> ax = fig.add_subplot(132, title='pcolormesh: actual edges', 

... aspect='equal') 

>>> X, Y = np.meshgrid(xedges, yedges) 

>>> ax.pcolormesh(X, Y, H) 

 

:class:`NonUniformImage <matplotlib.image.NonUniformImage>` can be used to 

display actual bin edges with interpolation: 

 

>>> ax = fig.add_subplot(133, title='NonUniformImage: interpolated', 

... aspect='equal', xlim=xedges[[0, -1]], ylim=yedges[[0, -1]]) 

>>> im = NonUniformImage(ax, interpolation='bilinear') 

>>> xcenters = (xedges[:-1] + xedges[1:]) / 2 

>>> ycenters = (yedges[:-1] + yedges[1:]) / 2 

>>> im.set_data(xcenters, ycenters, H) 

>>> ax.images.append(im) 

>>> plt.show() 

 

""" 

from numpy import histogramdd 

 

try: 

N = len(bins) 

except TypeError: 

N = 1 

 

if N != 1 and N != 2: 

xedges = yedges = asarray(bins) 

bins = [xedges, yedges] 

hist, edges = histogramdd([x, y], bins, range, normed, weights, density) 

return hist, edges[0], edges[1] 

 

 

@set_module('numpy') 

def mask_indices(n, mask_func, k=0): 

""" 

Return the indices to access (n, n) arrays, given a masking function. 

 

Assume `mask_func` is a function that, for a square array a of size 

``(n, n)`` with a possible offset argument `k`, when called as 

``mask_func(a, k)`` returns a new array with zeros in certain locations 

(functions like `triu` or `tril` do precisely this). Then this function 

returns the indices where the non-zero values would be located. 

 

Parameters 

---------- 

n : int 

The returned indices will be valid to access arrays of shape (n, n). 

mask_func : callable 

A function whose call signature is similar to that of `triu`, `tril`. 

That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`. 

`k` is an optional argument to the function. 

k : scalar 

An optional argument which is passed through to `mask_func`. Functions 

like `triu`, `tril` take a second argument that is interpreted as an 

offset. 

 

Returns 

------- 

indices : tuple of arrays. 

The `n` arrays of indices corresponding to the locations where 

``mask_func(np.ones((n, n)), k)`` is True. 

 

See Also 

-------- 

triu, tril, triu_indices, tril_indices 

 

Notes 

----- 

.. versionadded:: 1.4.0 

 

Examples 

-------- 

These are the indices that would allow you to access the upper triangular 

part of any 3x3 array: 

 

>>> iu = np.mask_indices(3, np.triu) 

 

For example, if `a` is a 3x3 array: 

 

>>> a = np.arange(9).reshape(3, 3) 

>>> a 

array([[0, 1, 2], 

[3, 4, 5], 

[6, 7, 8]]) 

>>> a[iu] 

array([0, 1, 2, 4, 5, 8]) 

 

An offset can be passed also to the masking function. This gets us the 

indices starting on the first diagonal right of the main one: 

 

>>> iu1 = np.mask_indices(3, np.triu, 1) 

 

with which we now extract only three elements: 

 

>>> a[iu1] 

array([1, 2, 5]) 

 

""" 

m = ones((n, n), int) 

a = mask_func(m, k) 

return nonzero(a != 0) 

 

 

@set_module('numpy') 

def tril_indices(n, k=0, m=None): 

""" 

Return the indices for the lower-triangle of an (n, m) array. 

 

Parameters 

---------- 

n : int 

The row dimension of the arrays for which the returned 

indices will be valid. 

k : int, optional 

Diagonal offset (see `tril` for details). 

m : int, optional 

.. versionadded:: 1.9.0 

 

The column dimension of the arrays for which the returned 

arrays will be valid. 

By default `m` is taken equal to `n`. 

 

 

Returns 

------- 

inds : tuple of arrays 

The indices for the triangle. The returned tuple contains two arrays, 

each with the indices along one dimension of the array. 

 

See also 

-------- 

triu_indices : similar function, for upper-triangular. 

mask_indices : generic function accepting an arbitrary mask function. 

tril, triu 

 

Notes 

----- 

.. versionadded:: 1.4.0 

 

Examples 

-------- 

Compute two different sets of indices to access 4x4 arrays, one for the 

lower triangular part starting at the main diagonal, and one starting two 

diagonals further right: 

 

>>> il1 = np.tril_indices(4) 

>>> il2 = np.tril_indices(4, 2) 

 

Here is how they can be used with a sample array: 

 

>>> a = np.arange(16).reshape(4, 4) 

>>> a 

array([[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 

[ 8, 9, 10, 11], 

[12, 13, 14, 15]]) 

 

Both for indexing: 

 

>>> a[il1] 

array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15]) 

 

And for assigning values: 

 

>>> a[il1] = -1 

>>> a 

array([[-1, 1, 2, 3], 

[-1, -1, 6, 7], 

[-1, -1, -1, 11], 

[-1, -1, -1, -1]]) 

 

These cover almost the whole array (two diagonals right of the main one): 

 

>>> a[il2] = -10 

>>> a 

array([[-10, -10, -10, 3], 

[-10, -10, -10, -10], 

[-10, -10, -10, -10], 

[-10, -10, -10, -10]]) 

 

""" 

return nonzero(tri(n, m, k=k, dtype=bool)) 

 

 

def _trilu_indices_form_dispatcher(arr, k=None): 

return (arr,) 

 

 

@array_function_dispatch(_trilu_indices_form_dispatcher) 

def tril_indices_from(arr, k=0): 

""" 

Return the indices for the lower-triangle of arr. 

 

See `tril_indices` for full details. 

 

Parameters 

---------- 

arr : array_like 

The indices will be valid for square arrays whose dimensions are 

the same as arr. 

k : int, optional 

Diagonal offset (see `tril` for details). 

 

See Also 

-------- 

tril_indices, tril 

 

Notes 

----- 

.. versionadded:: 1.4.0 

 

""" 

if arr.ndim != 2: 

raise ValueError("input array must be 2-d") 

return tril_indices(arr.shape[-2], k=k, m=arr.shape[-1]) 

 

 

@set_module('numpy') 

def triu_indices(n, k=0, m=None): 

""" 

Return the indices for the upper-triangle of an (n, m) array. 

 

Parameters 

---------- 

n : int 

The size of the arrays for which the returned indices will 

be valid. 

k : int, optional 

Diagonal offset (see `triu` for details). 

m : int, optional 

.. versionadded:: 1.9.0 

 

The column dimension of the arrays for which the returned 

arrays will be valid. 

By default `m` is taken equal to `n`. 

 

 

Returns 

------- 

inds : tuple, shape(2) of ndarrays, shape(`n`) 

The indices for the triangle. The returned tuple contains two arrays, 

each with the indices along one dimension of the array. Can be used 

to slice a ndarray of shape(`n`, `n`). 

 

See also 

-------- 

tril_indices : similar function, for lower-triangular. 

mask_indices : generic function accepting an arbitrary mask function. 

triu, tril 

 

Notes 

----- 

.. versionadded:: 1.4.0 

 

Examples 

-------- 

Compute two different sets of indices to access 4x4 arrays, one for the 

upper triangular part starting at the main diagonal, and one starting two 

diagonals further right: 

 

>>> iu1 = np.triu_indices(4) 

>>> iu2 = np.triu_indices(4, 2) 

 

Here is how they can be used with a sample array: 

 

>>> a = np.arange(16).reshape(4, 4) 

>>> a 

array([[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 

[ 8, 9, 10, 11], 

[12, 13, 14, 15]]) 

 

Both for indexing: 

 

>>> a[iu1] 

array([ 0, 1, 2, 3, 5, 6, 7, 10, 11, 15]) 

 

And for assigning values: 

 

>>> a[iu1] = -1 

>>> a 

array([[-1, -1, -1, -1], 

[ 4, -1, -1, -1], 

[ 8, 9, -1, -1], 

[12, 13, 14, -1]]) 

 

These cover only a small part of the whole array (two diagonals right 

of the main one): 

 

>>> a[iu2] = -10 

>>> a 

array([[ -1, -1, -10, -10], 

[ 4, -1, -1, -10], 

[ 8, 9, -1, -1], 

[ 12, 13, 14, -1]]) 

 

""" 

return nonzero(~tri(n, m, k=k-1, dtype=bool)) 

 

 

@array_function_dispatch(_trilu_indices_form_dispatcher) 

def triu_indices_from(arr, k=0): 

""" 

Return the indices for the upper-triangle of arr. 

 

See `triu_indices` for full details. 

 

Parameters 

---------- 

arr : ndarray, shape(N, N) 

The indices will be valid for square arrays. 

k : int, optional 

Diagonal offset (see `triu` for details). 

 

Returns 

------- 

triu_indices_from : tuple, shape(2) of ndarray, shape(N) 

Indices for the upper-triangle of `arr`. 

 

See Also 

-------- 

triu_indices, triu 

 

Notes 

----- 

.. versionadded:: 1.4.0 

 

""" 

if arr.ndim != 2: 

raise ValueError("input array must be 2-d") 

return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1])