1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

from __future__ import division, absolute_import, print_function 

 

import os 

import sys 

import types 

import re 

import warnings 

 

from numpy.core.numerictypes import issubclass_, issubsctype, issubdtype 

from numpy.core.overrides import set_module 

from numpy.core import ndarray, ufunc, asarray 

import numpy as np 

 

# getargspec and formatargspec were removed in Python 3.6 

from numpy.compat import getargspec, formatargspec 

 

__all__ = [ 

'issubclass_', 'issubsctype', 'issubdtype', 'deprecate', 

'deprecate_with_doc', 'get_include', 'info', 'source', 'who', 

'lookfor', 'byte_bounds', 'safe_eval' 

] 

 

def get_include(): 

""" 

Return the directory that contains the NumPy \\*.h header files. 

 

Extension modules that need to compile against NumPy should use this 

function to locate the appropriate include directory. 

 

Notes 

----- 

When using ``distutils``, for example in ``setup.py``. 

:: 

 

import numpy as np 

... 

Extension('extension_name', ... 

include_dirs=[np.get_include()]) 

... 

 

""" 

import numpy 

if numpy.show_config is None: 

# running from numpy source directory 

d = os.path.join(os.path.dirname(numpy.__file__), 'core', 'include') 

else: 

# using installed numpy core headers 

import numpy.core as core 

d = os.path.join(os.path.dirname(core.__file__), 'include') 

return d 

 

 

def _set_function_name(func, name): 

func.__name__ = name 

return func 

 

 

class _Deprecate(object): 

""" 

Decorator class to deprecate old functions. 

 

Refer to `deprecate` for details. 

 

See Also 

-------- 

deprecate 

 

""" 

 

def __init__(self, old_name=None, new_name=None, message=None): 

self.old_name = old_name 

self.new_name = new_name 

self.message = message 

 

def __call__(self, func, *args, **kwargs): 

""" 

Decorator call. Refer to ``decorate``. 

 

""" 

old_name = self.old_name 

new_name = self.new_name 

message = self.message 

 

if old_name is None: 

try: 

old_name = func.__name__ 

except AttributeError: 

old_name = func.__name__ 

if new_name is None: 

depdoc = "`%s` is deprecated!" % old_name 

else: 

depdoc = "`%s` is deprecated, use `%s` instead!" % \ 

(old_name, new_name) 

 

if message is not None: 

depdoc += "\n" + message 

 

def newfunc(*args,**kwds): 

"""`arrayrange` is deprecated, use `arange` instead!""" 

warnings.warn(depdoc, DeprecationWarning, stacklevel=2) 

return func(*args, **kwds) 

 

newfunc = _set_function_name(newfunc, old_name) 

doc = func.__doc__ 

if doc is None: 

doc = depdoc 

else: 

doc = '\n\n'.join([depdoc, doc]) 

newfunc.__doc__ = doc 

try: 

d = func.__dict__ 

except AttributeError: 

pass 

else: 

newfunc.__dict__.update(d) 

return newfunc 

 

def deprecate(*args, **kwargs): 

""" 

Issues a DeprecationWarning, adds warning to `old_name`'s 

docstring, rebinds ``old_name.__name__`` and returns the new 

function object. 

 

This function may also be used as a decorator. 

 

Parameters 

---------- 

func : function 

The function to be deprecated. 

old_name : str, optional 

The name of the function to be deprecated. Default is None, in 

which case the name of `func` is used. 

new_name : str, optional 

The new name for the function. Default is None, in which case the 

deprecation message is that `old_name` is deprecated. If given, the 

deprecation message is that `old_name` is deprecated and `new_name` 

should be used instead. 

message : str, optional 

Additional explanation of the deprecation. Displayed in the 

docstring after the warning. 

 

Returns 

------- 

old_func : function 

The deprecated function. 

 

Examples 

-------- 

Note that ``olduint`` returns a value after printing Deprecation 

Warning: 

 

>>> olduint = np.deprecate(np.uint) 

>>> olduint(6) 

/usr/lib/python2.5/site-packages/numpy/lib/utils.py:114: 

DeprecationWarning: uint32 is deprecated 

warnings.warn(str1, DeprecationWarning, stacklevel=2) 

6 

 

""" 

# Deprecate may be run as a function or as a decorator 

# If run as a function, we initialise the decorator class 

# and execute its __call__ method. 

 

if args: 

fn = args[0] 

args = args[1:] 

 

return _Deprecate(*args, **kwargs)(fn) 

else: 

return _Deprecate(*args, **kwargs) 

 

deprecate_with_doc = lambda msg: _Deprecate(message=msg) 

 

 

#-------------------------------------------- 

# Determine if two arrays can share memory 

#-------------------------------------------- 

 

def byte_bounds(a): 

""" 

Returns pointers to the end-points of an array. 

 

Parameters 

---------- 

a : ndarray 

Input array. It must conform to the Python-side of the array 

interface. 

 

Returns 

------- 

(low, high) : tuple of 2 integers 

The first integer is the first byte of the array, the second 

integer is just past the last byte of the array. If `a` is not 

contiguous it will not use every byte between the (`low`, `high`) 

values. 

 

Examples 

-------- 

>>> I = np.eye(2, dtype='f'); I.dtype 

dtype('float32') 

>>> low, high = np.byte_bounds(I) 

>>> high - low == I.size*I.itemsize 

True 

>>> I = np.eye(2, dtype='G'); I.dtype 

dtype('complex192') 

>>> low, high = np.byte_bounds(I) 

>>> high - low == I.size*I.itemsize 

True 

 

""" 

ai = a.__array_interface__ 

a_data = ai['data'][0] 

astrides = ai['strides'] 

ashape = ai['shape'] 

bytes_a = asarray(a).dtype.itemsize 

 

a_low = a_high = a_data 

if astrides is None: 

# contiguous case 

a_high += a.size * bytes_a 

else: 

for shape, stride in zip(ashape, astrides): 

if stride < 0: 

a_low += (shape-1)*stride 

else: 

a_high += (shape-1)*stride 

a_high += bytes_a 

return a_low, a_high 

 

 

#----------------------------------------------------------------------------- 

# Function for output and information on the variables used. 

#----------------------------------------------------------------------------- 

 

 

def who(vardict=None): 

""" 

Print the NumPy arrays in the given dictionary. 

 

If there is no dictionary passed in or `vardict` is None then returns 

NumPy arrays in the globals() dictionary (all NumPy arrays in the 

namespace). 

 

Parameters 

---------- 

vardict : dict, optional 

A dictionary possibly containing ndarrays. Default is globals(). 

 

Returns 

------- 

out : None 

Returns 'None'. 

 

Notes 

----- 

Prints out the name, shape, bytes and type of all of the ndarrays 

present in `vardict`. 

 

Examples 

-------- 

>>> a = np.arange(10) 

>>> b = np.ones(20) 

>>> np.who() 

Name Shape Bytes Type 

=========================================================== 

a 10 40 int32 

b 20 160 float64 

Upper bound on total bytes = 200 

 

>>> d = {'x': np.arange(2.0), 'y': np.arange(3.0), 'txt': 'Some str', 

... 'idx':5} 

>>> np.who(d) 

Name Shape Bytes Type 

=========================================================== 

y 3 24 float64 

x 2 16 float64 

Upper bound on total bytes = 40 

 

""" 

if vardict is None: 

frame = sys._getframe().f_back 

vardict = frame.f_globals 

sta = [] 

cache = {} 

for name in vardict.keys(): 

if isinstance(vardict[name], ndarray): 

var = vardict[name] 

idv = id(var) 

if idv in cache.keys(): 

namestr = name + " (%s)" % cache[idv] 

original = 0 

else: 

cache[idv] = name 

namestr = name 

original = 1 

shapestr = " x ".join(map(str, var.shape)) 

bytestr = str(var.nbytes) 

sta.append([namestr, shapestr, bytestr, var.dtype.name, 

original]) 

 

maxname = 0 

maxshape = 0 

maxbyte = 0 

totalbytes = 0 

for k in range(len(sta)): 

val = sta[k] 

if maxname < len(val[0]): 

maxname = len(val[0]) 

if maxshape < len(val[1]): 

maxshape = len(val[1]) 

if maxbyte < len(val[2]): 

maxbyte = len(val[2]) 

if val[4]: 

totalbytes += int(val[2]) 

 

if len(sta) > 0: 

sp1 = max(10, maxname) 

sp2 = max(10, maxshape) 

sp3 = max(10, maxbyte) 

prval = "Name %s Shape %s Bytes %s Type" % (sp1*' ', sp2*' ', sp3*' ') 

print(prval + "\n" + "="*(len(prval)+5) + "\n") 

 

for k in range(len(sta)): 

val = sta[k] 

print("%s %s %s %s %s %s %s" % (val[0], ' '*(sp1-len(val[0])+4), 

val[1], ' '*(sp2-len(val[1])+5), 

val[2], ' '*(sp3-len(val[2])+5), 

val[3])) 

print("\nUpper bound on total bytes = %d" % totalbytes) 

return 

 

#----------------------------------------------------------------------------- 

 

 

# NOTE: pydoc defines a help function which works similarly to this 

# except it uses a pager to take over the screen. 

 

# combine name and arguments and split to multiple lines of width 

# characters. End lines on a comma and begin argument list indented with 

# the rest of the arguments. 

def _split_line(name, arguments, width): 

firstwidth = len(name) 

k = firstwidth 

newstr = name 

sepstr = ", " 

arglist = arguments.split(sepstr) 

for argument in arglist: 

if k == firstwidth: 

addstr = "" 

else: 

addstr = sepstr 

k = k + len(argument) + len(addstr) 

if k > width: 

k = firstwidth + 1 + len(argument) 

newstr = newstr + ",\n" + " "*(firstwidth+2) + argument 

else: 

newstr = newstr + addstr + argument 

return newstr 

 

_namedict = None 

_dictlist = None 

 

# Traverse all module directories underneath globals 

# to see if something is defined 

def _makenamedict(module='numpy'): 

module = __import__(module, globals(), locals(), []) 

thedict = {module.__name__:module.__dict__} 

dictlist = [module.__name__] 

totraverse = [module.__dict__] 

while True: 

if len(totraverse) == 0: 

break 

thisdict = totraverse.pop(0) 

for x in thisdict.keys(): 

if isinstance(thisdict[x], types.ModuleType): 

modname = thisdict[x].__name__ 

if modname not in dictlist: 

moddict = thisdict[x].__dict__ 

dictlist.append(modname) 

totraverse.append(moddict) 

thedict[modname] = moddict 

return thedict, dictlist 

 

 

def _info(obj, output=sys.stdout): 

"""Provide information about ndarray obj. 

 

Parameters 

---------- 

obj : ndarray 

Must be ndarray, not checked. 

output 

Where printed output goes. 

 

Notes 

----- 

Copied over from the numarray module prior to its removal. 

Adapted somewhat as only numpy is an option now. 

 

Called by info. 

 

""" 

extra = "" 

tic = "" 

bp = lambda x: x 

cls = getattr(obj, '__class__', type(obj)) 

nm = getattr(cls, '__name__', cls) 

strides = obj.strides 

endian = obj.dtype.byteorder 

 

print("class: ", nm, file=output) 

print("shape: ", obj.shape, file=output) 

print("strides: ", strides, file=output) 

print("itemsize: ", obj.itemsize, file=output) 

print("aligned: ", bp(obj.flags.aligned), file=output) 

print("contiguous: ", bp(obj.flags.contiguous), file=output) 

print("fortran: ", obj.flags.fortran, file=output) 

print( 

"data pointer: %s%s" % (hex(obj.ctypes._as_parameter_.value), extra), 

file=output 

) 

print("byteorder: ", end=' ', file=output) 

if endian in ['|', '=']: 

print("%s%s%s" % (tic, sys.byteorder, tic), file=output) 

byteswap = False 

elif endian == '>': 

print("%sbig%s" % (tic, tic), file=output) 

byteswap = sys.byteorder != "big" 

else: 

print("%slittle%s" % (tic, tic), file=output) 

byteswap = sys.byteorder != "little" 

print("byteswap: ", bp(byteswap), file=output) 

print("type: %s" % obj.dtype, file=output) 

 

 

@set_module('numpy') 

def info(object=None, maxwidth=76, output=sys.stdout, toplevel='numpy'): 

""" 

Get help information for a function, class, or module. 

 

Parameters 

---------- 

object : object or str, optional 

Input object or name to get information about. If `object` is a 

numpy object, its docstring is given. If it is a string, available 

modules are searched for matching objects. If None, information 

about `info` itself is returned. 

maxwidth : int, optional 

Printing width. 

output : file like object, optional 

File like object that the output is written to, default is 

``stdout``. The object has to be opened in 'w' or 'a' mode. 

toplevel : str, optional 

Start search at this level. 

 

See Also 

-------- 

source, lookfor 

 

Notes 

----- 

When used interactively with an object, ``np.info(obj)`` is equivalent 

to ``help(obj)`` on the Python prompt or ``obj?`` on the IPython 

prompt. 

 

Examples 

-------- 

>>> np.info(np.polyval) # doctest: +SKIP 

polyval(p, x) 

Evaluate the polynomial p at x. 

... 

 

When using a string for `object` it is possible to get multiple results. 

 

>>> np.info('fft') # doctest: +SKIP 

*** Found in numpy *** 

Core FFT routines 

... 

*** Found in numpy.fft *** 

fft(a, n=None, axis=-1) 

... 

*** Repeat reference found in numpy.fft.fftpack *** 

*** Total of 3 references found. *** 

 

""" 

global _namedict, _dictlist 

# Local import to speed up numpy's import time. 

import pydoc 

import inspect 

 

if (hasattr(object, '_ppimport_importer') or 

hasattr(object, '_ppimport_module')): 

object = object._ppimport_module 

elif hasattr(object, '_ppimport_attr'): 

object = object._ppimport_attr 

 

if object is None: 

info(info) 

elif isinstance(object, ndarray): 

_info(object, output=output) 

elif isinstance(object, str): 

if _namedict is None: 

_namedict, _dictlist = _makenamedict(toplevel) 

numfound = 0 

objlist = [] 

for namestr in _dictlist: 

try: 

obj = _namedict[namestr][object] 

if id(obj) in objlist: 

print("\n " 

"*** Repeat reference found in %s *** " % namestr, 

file=output 

) 

else: 

objlist.append(id(obj)) 

print(" *** Found in %s ***" % namestr, file=output) 

info(obj) 

print("-"*maxwidth, file=output) 

numfound += 1 

except KeyError: 

pass 

if numfound == 0: 

print("Help for %s not found." % object, file=output) 

else: 

print("\n " 

"*** Total of %d references found. ***" % numfound, 

file=output 

) 

 

elif inspect.isfunction(object): 

name = object.__name__ 

arguments = formatargspec(*getargspec(object)) 

 

if len(name+arguments) > maxwidth: 

argstr = _split_line(name, arguments, maxwidth) 

else: 

argstr = name + arguments 

 

print(" " + argstr + "\n", file=output) 

print(inspect.getdoc(object), file=output) 

 

elif inspect.isclass(object): 

name = object.__name__ 

arguments = "()" 

try: 

if hasattr(object, '__init__'): 

arguments = formatargspec( 

*getargspec(object.__init__.__func__) 

) 

arglist = arguments.split(', ') 

if len(arglist) > 1: 

arglist[1] = "("+arglist[1] 

arguments = ", ".join(arglist[1:]) 

except Exception: 

pass 

 

if len(name+arguments) > maxwidth: 

argstr = _split_line(name, arguments, maxwidth) 

else: 

argstr = name + arguments 

 

print(" " + argstr + "\n", file=output) 

doc1 = inspect.getdoc(object) 

if doc1 is None: 

if hasattr(object, '__init__'): 

print(inspect.getdoc(object.__init__), file=output) 

else: 

print(inspect.getdoc(object), file=output) 

 

methods = pydoc.allmethods(object) 

if methods != []: 

print("\n\nMethods:\n", file=output) 

for meth in methods: 

if meth[0] == '_': 

continue 

thisobj = getattr(object, meth, None) 

if thisobj is not None: 

methstr, other = pydoc.splitdoc( 

inspect.getdoc(thisobj) or "None" 

) 

print(" %s -- %s" % (meth, methstr), file=output) 

 

elif (sys.version_info[0] < 3 

and isinstance(object, types.InstanceType)): 

# check for __call__ method 

# types.InstanceType is the type of the instances of oldstyle classes 

print("Instance of class: ", object.__class__.__name__, file=output) 

print(file=output) 

if hasattr(object, '__call__'): 

arguments = formatargspec( 

*getargspec(object.__call__.__func__) 

) 

arglist = arguments.split(', ') 

if len(arglist) > 1: 

arglist[1] = "("+arglist[1] 

arguments = ", ".join(arglist[1:]) 

else: 

arguments = "()" 

 

if hasattr(object, 'name'): 

name = "%s" % object.name 

else: 

name = "<name>" 

if len(name+arguments) > maxwidth: 

argstr = _split_line(name, arguments, maxwidth) 

else: 

argstr = name + arguments 

 

print(" " + argstr + "\n", file=output) 

doc = inspect.getdoc(object.__call__) 

if doc is not None: 

print(inspect.getdoc(object.__call__), file=output) 

print(inspect.getdoc(object), file=output) 

 

else: 

print(inspect.getdoc(object), file=output) 

 

elif inspect.ismethod(object): 

name = object.__name__ 

arguments = formatargspec( 

*getargspec(object.__func__) 

) 

arglist = arguments.split(', ') 

if len(arglist) > 1: 

arglist[1] = "("+arglist[1] 

arguments = ", ".join(arglist[1:]) 

else: 

arguments = "()" 

 

if len(name+arguments) > maxwidth: 

argstr = _split_line(name, arguments, maxwidth) 

else: 

argstr = name + arguments 

 

print(" " + argstr + "\n", file=output) 

print(inspect.getdoc(object), file=output) 

 

elif hasattr(object, '__doc__'): 

print(inspect.getdoc(object), file=output) 

 

 

@set_module('numpy') 

def source(object, output=sys.stdout): 

""" 

Print or write to a file the source code for a NumPy object. 

 

The source code is only returned for objects written in Python. Many 

functions and classes are defined in C and will therefore not return 

useful information. 

 

Parameters 

---------- 

object : numpy object 

Input object. This can be any object (function, class, module, 

...). 

output : file object, optional 

If `output` not supplied then source code is printed to screen 

(sys.stdout). File object must be created with either write 'w' or 

append 'a' modes. 

 

See Also 

-------- 

lookfor, info 

 

Examples 

-------- 

>>> np.source(np.interp) #doctest: +SKIP 

In file: /usr/lib/python2.6/dist-packages/numpy/lib/function_base.py 

def interp(x, xp, fp, left=None, right=None): 

\"\"\".... (full docstring printed)\"\"\" 

if isinstance(x, (float, int, number)): 

return compiled_interp([x], xp, fp, left, right).item() 

else: 

return compiled_interp(x, xp, fp, left, right) 

 

The source code is only returned for objects written in Python. 

 

>>> np.source(np.array) #doctest: +SKIP 

Not available for this object. 

 

""" 

# Local import to speed up numpy's import time. 

import inspect 

try: 

print("In file: %s\n" % inspect.getsourcefile(object), file=output) 

print(inspect.getsource(object), file=output) 

except Exception: 

print("Not available for this object.", file=output) 

 

 

# Cache for lookfor: {id(module): {name: (docstring, kind, index), ...}...} 

# where kind: "func", "class", "module", "object" 

# and index: index in breadth-first namespace traversal 

_lookfor_caches = {} 

 

# regexp whose match indicates that the string may contain a function 

# signature 

_function_signature_re = re.compile(r"[a-z0-9_]+\(.*[,=].*\)", re.I) 

 

 

@set_module('numpy') 

def lookfor(what, module=None, import_modules=True, regenerate=False, 

output=None): 

""" 

Do a keyword search on docstrings. 

 

A list of objects that matched the search is displayed, 

sorted by relevance. All given keywords need to be found in the 

docstring for it to be returned as a result, but the order does 

not matter. 

 

Parameters 

---------- 

what : str 

String containing words to look for. 

module : str or list, optional 

Name of module(s) whose docstrings to go through. 

import_modules : bool, optional 

Whether to import sub-modules in packages. Default is True. 

regenerate : bool, optional 

Whether to re-generate the docstring cache. Default is False. 

output : file-like, optional 

File-like object to write the output to. If omitted, use a pager. 

 

See Also 

-------- 

source, info 

 

Notes 

----- 

Relevance is determined only roughly, by checking if the keywords occur 

in the function name, at the start of a docstring, etc. 

 

Examples 

-------- 

>>> np.lookfor('binary representation') 

Search results for 'binary representation' 

------------------------------------------ 

numpy.binary_repr 

Return the binary representation of the input number as a string. 

numpy.core.setup_common.long_double_representation 

Given a binary dump as given by GNU od -b, look for long double 

numpy.base_repr 

Return a string representation of a number in the given base system. 

... 

 

""" 

import pydoc 

 

# Cache 

cache = _lookfor_generate_cache(module, import_modules, regenerate) 

 

# Search 

# XXX: maybe using a real stemming search engine would be better? 

found = [] 

whats = str(what).lower().split() 

if not whats: 

return 

 

for name, (docstring, kind, index) in cache.items(): 

if kind in ('module', 'object'): 

# don't show modules or objects 

continue 

ok = True 

doc = docstring.lower() 

for w in whats: 

if w not in doc: 

ok = False 

break 

if ok: 

found.append(name) 

 

# Relevance sort 

# XXX: this is full Harrison-Stetson heuristics now, 

# XXX: it probably could be improved 

 

kind_relevance = {'func': 1000, 'class': 1000, 

'module': -1000, 'object': -1000} 

 

def relevance(name, docstr, kind, index): 

r = 0 

# do the keywords occur within the start of the docstring? 

first_doc = "\n".join(docstr.lower().strip().split("\n")[:3]) 

r += sum([200 for w in whats if w in first_doc]) 

# do the keywords occur in the function name? 

r += sum([30 for w in whats if w in name]) 

# is the full name long? 

r += -len(name) * 5 

# is the object of bad type? 

r += kind_relevance.get(kind, -1000) 

# is the object deep in namespace hierarchy? 

r += -name.count('.') * 10 

r += max(-index / 100, -100) 

return r 

 

def relevance_value(a): 

return relevance(a, *cache[a]) 

found.sort(key=relevance_value) 

 

# Pretty-print 

s = "Search results for '%s'" % (' '.join(whats)) 

help_text = [s, "-"*len(s)] 

for name in found[::-1]: 

doc, kind, ix = cache[name] 

 

doclines = [line.strip() for line in doc.strip().split("\n") 

if line.strip()] 

 

# find a suitable short description 

try: 

first_doc = doclines[0].strip() 

if _function_signature_re.search(first_doc): 

first_doc = doclines[1].strip() 

except IndexError: 

first_doc = "" 

help_text.append("%s\n %s" % (name, first_doc)) 

 

if not found: 

help_text.append("Nothing found.") 

 

# Output 

if output is not None: 

output.write("\n".join(help_text)) 

elif len(help_text) > 10: 

pager = pydoc.getpager() 

pager("\n".join(help_text)) 

else: 

print("\n".join(help_text)) 

 

def _lookfor_generate_cache(module, import_modules, regenerate): 

""" 

Generate docstring cache for given module. 

 

Parameters 

---------- 

module : str, None, module 

Module for which to generate docstring cache 

import_modules : bool 

Whether to import sub-modules in packages. 

regenerate : bool 

Re-generate the docstring cache 

 

Returns 

------- 

cache : dict {obj_full_name: (docstring, kind, index), ...} 

Docstring cache for the module, either cached one (regenerate=False) 

or newly generated. 

 

""" 

global _lookfor_caches 

# Local import to speed up numpy's import time. 

import inspect 

 

if sys.version_info[0] >= 3: 

# In Python3 stderr, stdout are text files. 

from io import StringIO 

else: 

from StringIO import StringIO 

 

if module is None: 

module = "numpy" 

 

if isinstance(module, str): 

try: 

__import__(module) 

except ImportError: 

return {} 

module = sys.modules[module] 

elif isinstance(module, list) or isinstance(module, tuple): 

cache = {} 

for mod in module: 

cache.update(_lookfor_generate_cache(mod, import_modules, 

regenerate)) 

return cache 

 

if id(module) in _lookfor_caches and not regenerate: 

return _lookfor_caches[id(module)] 

 

# walk items and collect docstrings 

cache = {} 

_lookfor_caches[id(module)] = cache 

seen = {} 

index = 0 

stack = [(module.__name__, module)] 

while stack: 

name, item = stack.pop(0) 

if id(item) in seen: 

continue 

seen[id(item)] = True 

 

index += 1 

kind = "object" 

 

if inspect.ismodule(item): 

kind = "module" 

try: 

_all = item.__all__ 

except AttributeError: 

_all = None 

 

# import sub-packages 

if import_modules and hasattr(item, '__path__'): 

for pth in item.__path__: 

for mod_path in os.listdir(pth): 

this_py = os.path.join(pth, mod_path) 

init_py = os.path.join(pth, mod_path, '__init__.py') 

if (os.path.isfile(this_py) and 

mod_path.endswith('.py')): 

to_import = mod_path[:-3] 

elif os.path.isfile(init_py): 

to_import = mod_path 

else: 

continue 

if to_import == '__init__': 

continue 

 

try: 

old_stdout = sys.stdout 

old_stderr = sys.stderr 

try: 

sys.stdout = StringIO() 

sys.stderr = StringIO() 

__import__("%s.%s" % (name, to_import)) 

finally: 

sys.stdout = old_stdout 

sys.stderr = old_stderr 

# Catch SystemExit, too 

except BaseException: 

continue 

 

for n, v in _getmembers(item): 

try: 

item_name = getattr(v, '__name__', "%s.%s" % (name, n)) 

mod_name = getattr(v, '__module__', None) 

except NameError: 

# ref. SWIG's global cvars 

# NameError: Unknown C global variable 

item_name = "%s.%s" % (name, n) 

mod_name = None 

if '.' not in item_name and mod_name: 

item_name = "%s.%s" % (mod_name, item_name) 

 

if not item_name.startswith(name + '.'): 

# don't crawl "foreign" objects 

if isinstance(v, ufunc): 

# ... unless they are ufuncs 

pass 

else: 

continue 

elif not (inspect.ismodule(v) or _all is None or n in _all): 

continue 

stack.append(("%s.%s" % (name, n), v)) 

elif inspect.isclass(item): 

kind = "class" 

for n, v in _getmembers(item): 

stack.append(("%s.%s" % (name, n), v)) 

elif hasattr(item, "__call__"): 

kind = "func" 

 

try: 

doc = inspect.getdoc(item) 

except NameError: 

# ref SWIG's NameError: Unknown C global variable 

doc = None 

if doc is not None: 

cache[name] = (doc, kind, index) 

 

return cache 

 

def _getmembers(item): 

import inspect 

try: 

members = inspect.getmembers(item) 

except Exception: 

members = [(x, getattr(item, x)) for x in dir(item) 

if hasattr(item, x)] 

return members 

 

#----------------------------------------------------------------------------- 

 

# The following SafeEval class and company are adapted from Michael Spencer's 

# ASPN Python Cookbook recipe: https://code.activestate.com/recipes/364469/ 

# 

# Accordingly it is mostly Copyright 2006 by Michael Spencer. 

# The recipe, like most of the other ASPN Python Cookbook recipes was made 

# available under the Python license. 

# https://en.wikipedia.org/wiki/Python_License 

 

# It has been modified to: 

# * handle unary -/+ 

# * support True/False/None 

# * raise SyntaxError instead of a custom exception. 

 

class SafeEval(object): 

""" 

Object to evaluate constant string expressions. 

 

This includes strings with lists, dicts and tuples using the abstract 

syntax tree created by ``compiler.parse``. 

 

.. deprecated:: 1.10.0 

 

See Also 

-------- 

safe_eval 

 

""" 

def __init__(self): 

# 2014-10-15, 1.10 

warnings.warn("SafeEval is deprecated in 1.10 and will be removed.", 

DeprecationWarning, stacklevel=2) 

 

def visit(self, node): 

cls = node.__class__ 

meth = getattr(self, 'visit' + cls.__name__, self.default) 

return meth(node) 

 

def default(self, node): 

raise SyntaxError("Unsupported source construct: %s" 

% node.__class__) 

 

def visitExpression(self, node): 

return self.visit(node.body) 

 

def visitNum(self, node): 

return node.n 

 

def visitStr(self, node): 

return node.s 

 

def visitBytes(self, node): 

return node.s 

 

def visitDict(self, node,**kw): 

return dict([(self.visit(k), self.visit(v)) 

for k, v in zip(node.keys, node.values)]) 

 

def visitTuple(self, node): 

return tuple([self.visit(i) for i in node.elts]) 

 

def visitList(self, node): 

return [self.visit(i) for i in node.elts] 

 

def visitUnaryOp(self, node): 

import ast 

if isinstance(node.op, ast.UAdd): 

return +self.visit(node.operand) 

elif isinstance(node.op, ast.USub): 

return -self.visit(node.operand) 

else: 

raise SyntaxError("Unknown unary op: %r" % node.op) 

 

def visitName(self, node): 

if node.id == 'False': 

return False 

elif node.id == 'True': 

return True 

elif node.id == 'None': 

return None 

else: 

raise SyntaxError("Unknown name: %s" % node.id) 

 

def visitNameConstant(self, node): 

return node.value 

 

 

def safe_eval(source): 

""" 

Protected string evaluation. 

 

Evaluate a string containing a Python literal expression without 

allowing the execution of arbitrary non-literal code. 

 

Parameters 

---------- 

source : str 

The string to evaluate. 

 

Returns 

------- 

obj : object 

The result of evaluating `source`. 

 

Raises 

------ 

SyntaxError 

If the code has invalid Python syntax, or if it contains 

non-literal code. 

 

Examples 

-------- 

>>> np.safe_eval('1') 

1 

>>> np.safe_eval('[1, 2, 3]') 

[1, 2, 3] 

>>> np.safe_eval('{"foo": ("bar", 10.0)}') 

{'foo': ('bar', 10.0)} 

 

>>> np.safe_eval('import os') 

Traceback (most recent call last): 

... 

SyntaxError: invalid syntax 

 

>>> np.safe_eval('open("/home/user/.ssh/id_dsa").read()') 

Traceback (most recent call last): 

... 

SyntaxError: Unsupported source construct: compiler.ast.CallFunc 

 

""" 

# Local import to speed up numpy's import time. 

import ast 

 

return ast.literal_eval(source) 

 

 

def _median_nancheck(data, result, axis, out): 

""" 

Utility function to check median result from data for NaN values at the end 

and return NaN in that case. Input result can also be a MaskedArray. 

 

Parameters 

---------- 

data : array 

Input data to median function 

result : Array or MaskedArray 

Result of median function 

axis : {int, sequence of int, None}, optional 

Axis or axes along which the median was computed. 

out : ndarray, optional 

Output array in which to place the result. 

Returns 

------- 

median : scalar or ndarray 

Median or NaN in axes which contained NaN in the input. 

""" 

if data.size == 0: 

return result 

data = np.moveaxis(data, axis, -1) 

n = np.isnan(data[..., -1]) 

# masked NaN values are ok 

if np.ma.isMaskedArray(n): 

n = n.filled(False) 

if result.ndim == 0: 

if n == True: 

warnings.warn("Invalid value encountered in median", 

RuntimeWarning, stacklevel=3) 

if out is not None: 

out[...] = data.dtype.type(np.nan) 

result = out 

else: 

result = data.dtype.type(np.nan) 

elif np.count_nonzero(n.ravel()) > 0: 

warnings.warn("Invalid value encountered in median for" + 

" %d results" % np.count_nonzero(n.ravel()), 

RuntimeWarning, stacklevel=3) 

result[n] = np.nan 

return result 

 

#-----------------------------------------------------------------------------