1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

"""Lite version of scipy.linalg. 

 

Notes 

----- 

This module is a lite version of the linalg.py module in SciPy which 

contains high-level Python interface to the LAPACK library. The lite 

version only accesses the following LAPACK functions: dgesv, zgesv, 

dgeev, zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf, 

zgetrf, dpotrf, zpotrf, dgeqrf, zgeqrf, zungqr, dorgqr. 

""" 

from __future__ import division, absolute_import, print_function 

 

 

__all__ = ['matrix_power', 'solve', 'tensorsolve', 'tensorinv', 'inv', 

'cholesky', 'eigvals', 'eigvalsh', 'pinv', 'slogdet', 'det', 

'svd', 'eig', 'eigh', 'lstsq', 'norm', 'qr', 'cond', 'matrix_rank', 

'LinAlgError', 'multi_dot'] 

 

import functools 

import operator 

import warnings 

 

from numpy.core import ( 

array, asarray, zeros, empty, empty_like, intc, single, double, 

csingle, cdouble, inexact, complexfloating, newaxis, all, Inf, dot, 

add, multiply, sqrt, fastCopyAndTranspose, sum, isfinite, 

finfo, errstate, geterrobj, moveaxis, amin, amax, product, abs, 

atleast_2d, intp, asanyarray, object_, matmul, 

swapaxes, divide, count_nonzero, isnan 

) 

from numpy.core.multiarray import normalize_axis_index 

from numpy.core.overrides import set_module 

from numpy.core import overrides 

from numpy.lib.twodim_base import triu, eye 

from numpy.linalg import lapack_lite, _umath_linalg 

 

 

array_function_dispatch = functools.partial( 

overrides.array_function_dispatch, module='numpy.linalg') 

 

 

# For Python2/3 compatibility 

_N = b'N' 

_V = b'V' 

_A = b'A' 

_S = b'S' 

_L = b'L' 

 

fortran_int = intc 

 

 

@set_module('numpy.linalg') 

class LinAlgError(Exception): 

""" 

Generic Python-exception-derived object raised by linalg functions. 

 

General purpose exception class, derived from Python's exception.Exception 

class, programmatically raised in linalg functions when a Linear 

Algebra-related condition would prevent further correct execution of the 

function. 

 

Parameters 

---------- 

None 

 

Examples 

-------- 

>>> from numpy import linalg as LA 

>>> LA.inv(np.zeros((2,2))) 

Traceback (most recent call last): 

File "<stdin>", line 1, in <module> 

File "...linalg.py", line 350, 

in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype))) 

File "...linalg.py", line 249, 

in solve 

raise LinAlgError('Singular matrix') 

numpy.linalg.LinAlgError: Singular matrix 

 

""" 

 

 

def _determine_error_states(): 

errobj = geterrobj() 

bufsize = errobj[0] 

 

with errstate(invalid='call', over='ignore', 

divide='ignore', under='ignore'): 

invalid_call_errmask = geterrobj()[1] 

 

return [bufsize, invalid_call_errmask, None] 

 

# Dealing with errors in _umath_linalg 

_linalg_error_extobj = _determine_error_states() 

del _determine_error_states 

 

def _raise_linalgerror_singular(err, flag): 

raise LinAlgError("Singular matrix") 

 

def _raise_linalgerror_nonposdef(err, flag): 

raise LinAlgError("Matrix is not positive definite") 

 

def _raise_linalgerror_eigenvalues_nonconvergence(err, flag): 

raise LinAlgError("Eigenvalues did not converge") 

 

def _raise_linalgerror_svd_nonconvergence(err, flag): 

raise LinAlgError("SVD did not converge") 

 

def _raise_linalgerror_lstsq(err, flag): 

raise LinAlgError("SVD did not converge in Linear Least Squares") 

 

def get_linalg_error_extobj(callback): 

extobj = list(_linalg_error_extobj) # make a copy 

extobj[2] = callback 

return extobj 

 

def _makearray(a): 

new = asarray(a) 

wrap = getattr(a, "__array_prepare__", new.__array_wrap__) 

return new, wrap 

 

def isComplexType(t): 

return issubclass(t, complexfloating) 

 

_real_types_map = {single : single, 

double : double, 

csingle : single, 

cdouble : double} 

 

_complex_types_map = {single : csingle, 

double : cdouble, 

csingle : csingle, 

cdouble : cdouble} 

 

def _realType(t, default=double): 

return _real_types_map.get(t, default) 

 

def _complexType(t, default=cdouble): 

return _complex_types_map.get(t, default) 

 

def _linalgRealType(t): 

"""Cast the type t to either double or cdouble.""" 

return double 

 

def _commonType(*arrays): 

# in lite version, use higher precision (always double or cdouble) 

result_type = single 

is_complex = False 

for a in arrays: 

if issubclass(a.dtype.type, inexact): 

if isComplexType(a.dtype.type): 

is_complex = True 

rt = _realType(a.dtype.type, default=None) 

if rt is None: 

# unsupported inexact scalar 

raise TypeError("array type %s is unsupported in linalg" % 

(a.dtype.name,)) 

else: 

rt = double 

if rt is double: 

result_type = double 

if is_complex: 

t = cdouble 

result_type = _complex_types_map[result_type] 

else: 

t = double 

return t, result_type 

 

 

# _fastCopyAndTranpose assumes the input is 2D (as all the calls in here are). 

 

_fastCT = fastCopyAndTranspose 

 

def _to_native_byte_order(*arrays): 

ret = [] 

for arr in arrays: 

if arr.dtype.byteorder not in ('=', '|'): 

ret.append(asarray(arr, dtype=arr.dtype.newbyteorder('='))) 

else: 

ret.append(arr) 

if len(ret) == 1: 

return ret[0] 

else: 

return ret 

 

def _fastCopyAndTranspose(type, *arrays): 

cast_arrays = () 

for a in arrays: 

if a.dtype.type is type: 

cast_arrays = cast_arrays + (_fastCT(a),) 

else: 

cast_arrays = cast_arrays + (_fastCT(a.astype(type)),) 

if len(cast_arrays) == 1: 

return cast_arrays[0] 

else: 

return cast_arrays 

 

def _assertRank2(*arrays): 

for a in arrays: 

if a.ndim != 2: 

raise LinAlgError('%d-dimensional array given. Array must be ' 

'two-dimensional' % a.ndim) 

 

def _assertRankAtLeast2(*arrays): 

for a in arrays: 

if a.ndim < 2: 

raise LinAlgError('%d-dimensional array given. Array must be ' 

'at least two-dimensional' % a.ndim) 

 

def _assertNdSquareness(*arrays): 

for a in arrays: 

m, n = a.shape[-2:] 

if m != n: 

raise LinAlgError('Last 2 dimensions of the array must be square') 

 

def _assertFinite(*arrays): 

for a in arrays: 

if not (isfinite(a).all()): 

raise LinAlgError("Array must not contain infs or NaNs") 

 

def _isEmpty2d(arr): 

# check size first for efficiency 

return arr.size == 0 and product(arr.shape[-2:]) == 0 

 

def _assertNoEmpty2d(*arrays): 

for a in arrays: 

if _isEmpty2d(a): 

raise LinAlgError("Arrays cannot be empty") 

 

def transpose(a): 

""" 

Transpose each matrix in a stack of matrices. 

 

Unlike np.transpose, this only swaps the last two axes, rather than all of 

them 

 

Parameters 

---------- 

a : (...,M,N) array_like 

 

Returns 

------- 

aT : (...,N,M) ndarray 

""" 

return swapaxes(a, -1, -2) 

 

# Linear equations 

 

def _tensorsolve_dispatcher(a, b, axes=None): 

return (a, b) 

 

 

@array_function_dispatch(_tensorsolve_dispatcher) 

def tensorsolve(a, b, axes=None): 

""" 

Solve the tensor equation ``a x = b`` for x. 

 

It is assumed that all indices of `x` are summed over in the product, 

together with the rightmost indices of `a`, as is done in, for example, 

``tensordot(a, x, axes=b.ndim)``. 

 

Parameters 

---------- 

a : array_like 

Coefficient tensor, of shape ``b.shape + Q``. `Q`, a tuple, equals 

the shape of that sub-tensor of `a` consisting of the appropriate 

number of its rightmost indices, and must be such that 

``prod(Q) == prod(b.shape)`` (in which sense `a` is said to be 

'square'). 

b : array_like 

Right-hand tensor, which can be of any shape. 

axes : tuple of ints, optional 

Axes in `a` to reorder to the right, before inversion. 

If None (default), no reordering is done. 

 

Returns 

------- 

x : ndarray, shape Q 

 

Raises 

------ 

LinAlgError 

If `a` is singular or not 'square' (in the above sense). 

 

See Also 

-------- 

numpy.tensordot, tensorinv, numpy.einsum 

 

Examples 

-------- 

>>> a = np.eye(2*3*4) 

>>> a.shape = (2*3, 4, 2, 3, 4) 

>>> b = np.random.randn(2*3, 4) 

>>> x = np.linalg.tensorsolve(a, b) 

>>> x.shape 

(2, 3, 4) 

>>> np.allclose(np.tensordot(a, x, axes=3), b) 

True 

 

""" 

a, wrap = _makearray(a) 

b = asarray(b) 

an = a.ndim 

 

if axes is not None: 

allaxes = list(range(0, an)) 

for k in axes: 

allaxes.remove(k) 

allaxes.insert(an, k) 

a = a.transpose(allaxes) 

 

oldshape = a.shape[-(an-b.ndim):] 

prod = 1 

for k in oldshape: 

prod *= k 

 

a = a.reshape(-1, prod) 

b = b.ravel() 

res = wrap(solve(a, b)) 

res.shape = oldshape 

return res 

 

 

def _solve_dispatcher(a, b): 

return (a, b) 

 

 

@array_function_dispatch(_solve_dispatcher) 

def solve(a, b): 

""" 

Solve a linear matrix equation, or system of linear scalar equations. 

 

Computes the "exact" solution, `x`, of the well-determined, i.e., full 

rank, linear matrix equation `ax = b`. 

 

Parameters 

---------- 

a : (..., M, M) array_like 

Coefficient matrix. 

b : {(..., M,), (..., M, K)}, array_like 

Ordinate or "dependent variable" values. 

 

Returns 

------- 

x : {(..., M,), (..., M, K)} ndarray 

Solution to the system a x = b. Returned shape is identical to `b`. 

 

Raises 

------ 

LinAlgError 

If `a` is singular or not square. 

 

Notes 

----- 

 

.. versionadded:: 1.8.0 

 

Broadcasting rules apply, see the `numpy.linalg` documentation for 

details. 

 

The solutions are computed using LAPACK routine _gesv 

 

`a` must be square and of full-rank, i.e., all rows (or, equivalently, 

columns) must be linearly independent; if either is not true, use 

`lstsq` for the least-squares best "solution" of the 

system/equation. 

 

References 

---------- 

.. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, 

FL, Academic Press, Inc., 1980, pg. 22. 

 

Examples 

-------- 

Solve the system of equations ``3 * x0 + x1 = 9`` and ``x0 + 2 * x1 = 8``: 

 

>>> a = np.array([[3,1], [1,2]]) 

>>> b = np.array([9,8]) 

>>> x = np.linalg.solve(a, b) 

>>> x 

array([ 2., 3.]) 

 

Check that the solution is correct: 

 

>>> np.allclose(np.dot(a, x), b) 

True 

 

""" 

a, _ = _makearray(a) 

_assertRankAtLeast2(a) 

_assertNdSquareness(a) 

b, wrap = _makearray(b) 

t, result_t = _commonType(a, b) 

 

# We use the b = (..., M,) logic, only if the number of extra dimensions 

# match exactly 

if b.ndim == a.ndim - 1: 

gufunc = _umath_linalg.solve1 

else: 

gufunc = _umath_linalg.solve 

 

signature = 'DD->D' if isComplexType(t) else 'dd->d' 

extobj = get_linalg_error_extobj(_raise_linalgerror_singular) 

r = gufunc(a, b, signature=signature, extobj=extobj) 

 

return wrap(r.astype(result_t, copy=False)) 

 

 

def _tensorinv_dispatcher(a, ind=None): 

return (a,) 

 

 

@array_function_dispatch(_tensorinv_dispatcher) 

def tensorinv(a, ind=2): 

""" 

Compute the 'inverse' of an N-dimensional array. 

 

The result is an inverse for `a` relative to the tensordot operation 

``tensordot(a, b, ind)``, i. e., up to floating-point accuracy, 

``tensordot(tensorinv(a), a, ind)`` is the "identity" tensor for the 

tensordot operation. 

 

Parameters 

---------- 

a : array_like 

Tensor to 'invert'. Its shape must be 'square', i. e., 

``prod(a.shape[:ind]) == prod(a.shape[ind:])``. 

ind : int, optional 

Number of first indices that are involved in the inverse sum. 

Must be a positive integer, default is 2. 

 

Returns 

------- 

b : ndarray 

`a`'s tensordot inverse, shape ``a.shape[ind:] + a.shape[:ind]``. 

 

Raises 

------ 

LinAlgError 

If `a` is singular or not 'square' (in the above sense). 

 

See Also 

-------- 

numpy.tensordot, tensorsolve 

 

Examples 

-------- 

>>> a = np.eye(4*6) 

>>> a.shape = (4, 6, 8, 3) 

>>> ainv = np.linalg.tensorinv(a, ind=2) 

>>> ainv.shape 

(8, 3, 4, 6) 

>>> b = np.random.randn(4, 6) 

>>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b)) 

True 

 

>>> a = np.eye(4*6) 

>>> a.shape = (24, 8, 3) 

>>> ainv = np.linalg.tensorinv(a, ind=1) 

>>> ainv.shape 

(8, 3, 24) 

>>> b = np.random.randn(24) 

>>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b)) 

True 

 

""" 

a = asarray(a) 

oldshape = a.shape 

prod = 1 

if ind > 0: 

invshape = oldshape[ind:] + oldshape[:ind] 

for k in oldshape[ind:]: 

prod *= k 

else: 

raise ValueError("Invalid ind argument.") 

a = a.reshape(prod, -1) 

ia = inv(a) 

return ia.reshape(*invshape) 

 

 

# Matrix inversion 

 

def _unary_dispatcher(a): 

return (a,) 

 

 

@array_function_dispatch(_unary_dispatcher) 

def inv(a): 

""" 

Compute the (multiplicative) inverse of a matrix. 

 

Given a square matrix `a`, return the matrix `ainv` satisfying 

``dot(a, ainv) = dot(ainv, a) = eye(a.shape[0])``. 

 

Parameters 

---------- 

a : (..., M, M) array_like 

Matrix to be inverted. 

 

Returns 

------- 

ainv : (..., M, M) ndarray or matrix 

(Multiplicative) inverse of the matrix `a`. 

 

Raises 

------ 

LinAlgError 

If `a` is not square or inversion fails. 

 

Notes 

----- 

 

.. versionadded:: 1.8.0 

 

Broadcasting rules apply, see the `numpy.linalg` documentation for 

details. 

 

Examples 

-------- 

>>> from numpy.linalg import inv 

>>> a = np.array([[1., 2.], [3., 4.]]) 

>>> ainv = inv(a) 

>>> np.allclose(np.dot(a, ainv), np.eye(2)) 

True 

>>> np.allclose(np.dot(ainv, a), np.eye(2)) 

True 

 

If a is a matrix object, then the return value is a matrix as well: 

 

>>> ainv = inv(np.matrix(a)) 

>>> ainv 

matrix([[-2. , 1. ], 

[ 1.5, -0.5]]) 

 

Inverses of several matrices can be computed at once: 

 

>>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]]) 

>>> inv(a) 

array([[[-2. , 1. ], 

[ 1.5, -0.5]], 

[[-5. , 2. ], 

[ 3. , -1. ]]]) 

 

""" 

a, wrap = _makearray(a) 

_assertRankAtLeast2(a) 

_assertNdSquareness(a) 

t, result_t = _commonType(a) 

 

signature = 'D->D' if isComplexType(t) else 'd->d' 

extobj = get_linalg_error_extobj(_raise_linalgerror_singular) 

ainv = _umath_linalg.inv(a, signature=signature, extobj=extobj) 

return wrap(ainv.astype(result_t, copy=False)) 

 

 

def _matrix_power_dispatcher(a, n): 

return (a,) 

 

 

@array_function_dispatch(_matrix_power_dispatcher) 

def matrix_power(a, n): 

""" 

Raise a square matrix to the (integer) power `n`. 

 

For positive integers `n`, the power is computed by repeated matrix 

squarings and matrix multiplications. If ``n == 0``, the identity matrix 

of the same shape as M is returned. If ``n < 0``, the inverse 

is computed and then raised to the ``abs(n)``. 

 

.. note:: Stacks of object matrices are not currently supported. 

 

Parameters 

---------- 

a : (..., M, M) array_like 

Matrix to be "powered." 

n : int 

The exponent can be any integer or long integer, positive, 

negative, or zero. 

 

Returns 

------- 

a**n : (..., M, M) ndarray or matrix object 

The return value is the same shape and type as `M`; 

if the exponent is positive or zero then the type of the 

elements is the same as those of `M`. If the exponent is 

negative the elements are floating-point. 

 

Raises 

------ 

LinAlgError 

For matrices that are not square or that (for negative powers) cannot 

be inverted numerically. 

 

Examples 

-------- 

>>> from numpy.linalg import matrix_power 

>>> i = np.array([[0, 1], [-1, 0]]) # matrix equiv. of the imaginary unit 

>>> matrix_power(i, 3) # should = -i 

array([[ 0, -1], 

[ 1, 0]]) 

>>> matrix_power(i, 0) 

array([[1, 0], 

[0, 1]]) 

>>> matrix_power(i, -3) # should = 1/(-i) = i, but w/ f.p. elements 

array([[ 0., 1.], 

[-1., 0.]]) 

 

Somewhat more sophisticated example 

 

>>> q = np.zeros((4, 4)) 

>>> q[0:2, 0:2] = -i 

>>> q[2:4, 2:4] = i 

>>> q # one of the three quaternion units not equal to 1 

array([[ 0., -1., 0., 0.], 

[ 1., 0., 0., 0.], 

[ 0., 0., 0., 1.], 

[ 0., 0., -1., 0.]]) 

>>> matrix_power(q, 2) # = -np.eye(4) 

array([[-1., 0., 0., 0.], 

[ 0., -1., 0., 0.], 

[ 0., 0., -1., 0.], 

[ 0., 0., 0., -1.]]) 

 

""" 

a = asanyarray(a) 

_assertRankAtLeast2(a) 

_assertNdSquareness(a) 

 

try: 

n = operator.index(n) 

except TypeError: 

raise TypeError("exponent must be an integer") 

 

# Fall back on dot for object arrays. Object arrays are not supported by 

# the current implementation of matmul using einsum 

if a.dtype != object: 

fmatmul = matmul 

elif a.ndim == 2: 

fmatmul = dot 

else: 

raise NotImplementedError( 

"matrix_power not supported for stacks of object arrays") 

 

if n == 0: 

a = empty_like(a) 

a[...] = eye(a.shape[-2], dtype=a.dtype) 

return a 

 

elif n < 0: 

a = inv(a) 

n = abs(n) 

 

# short-cuts. 

if n == 1: 

return a 

 

elif n == 2: 

return fmatmul(a, a) 

 

elif n == 3: 

return fmatmul(fmatmul(a, a), a) 

 

# Use binary decomposition to reduce the number of matrix multiplications. 

# Here, we iterate over the bits of n, from LSB to MSB, raise `a` to 

# increasing powers of 2, and multiply into the result as needed. 

z = result = None 

while n > 0: 

z = a if z is None else fmatmul(z, z) 

n, bit = divmod(n, 2) 

if bit: 

result = z if result is None else fmatmul(result, z) 

 

return result 

 

 

# Cholesky decomposition 

 

 

@array_function_dispatch(_unary_dispatcher) 

def cholesky(a): 

""" 

Cholesky decomposition. 

 

Return the Cholesky decomposition, `L * L.H`, of the square matrix `a`, 

where `L` is lower-triangular and .H is the conjugate transpose operator 

(which is the ordinary transpose if `a` is real-valued). `a` must be 

Hermitian (symmetric if real-valued) and positive-definite. Only `L` is 

actually returned. 

 

Parameters 

---------- 

a : (..., M, M) array_like 

Hermitian (symmetric if all elements are real), positive-definite 

input matrix. 

 

Returns 

------- 

L : (..., M, M) array_like 

Upper or lower-triangular Cholesky factor of `a`. Returns a 

matrix object if `a` is a matrix object. 

 

Raises 

------ 

LinAlgError 

If the decomposition fails, for example, if `a` is not 

positive-definite. 

 

Notes 

----- 

 

.. versionadded:: 1.8.0 

 

Broadcasting rules apply, see the `numpy.linalg` documentation for 

details. 

 

The Cholesky decomposition is often used as a fast way of solving 

 

.. math:: A \\mathbf{x} = \\mathbf{b} 

 

(when `A` is both Hermitian/symmetric and positive-definite). 

 

First, we solve for :math:`\\mathbf{y}` in 

 

.. math:: L \\mathbf{y} = \\mathbf{b}, 

 

and then for :math:`\\mathbf{x}` in 

 

.. math:: L.H \\mathbf{x} = \\mathbf{y}. 

 

Examples 

-------- 

>>> A = np.array([[1,-2j],[2j,5]]) 

>>> A 

array([[ 1.+0.j, 0.-2.j], 

[ 0.+2.j, 5.+0.j]]) 

>>> L = np.linalg.cholesky(A) 

>>> L 

array([[ 1.+0.j, 0.+0.j], 

[ 0.+2.j, 1.+0.j]]) 

>>> np.dot(L, L.T.conj()) # verify that L * L.H = A 

array([[ 1.+0.j, 0.-2.j], 

[ 0.+2.j, 5.+0.j]]) 

>>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like? 

>>> np.linalg.cholesky(A) # an ndarray object is returned 

array([[ 1.+0.j, 0.+0.j], 

[ 0.+2.j, 1.+0.j]]) 

>>> # But a matrix object is returned if A is a matrix object 

>>> LA.cholesky(np.matrix(A)) 

matrix([[ 1.+0.j, 0.+0.j], 

[ 0.+2.j, 1.+0.j]]) 

 

""" 

extobj = get_linalg_error_extobj(_raise_linalgerror_nonposdef) 

gufunc = _umath_linalg.cholesky_lo 

a, wrap = _makearray(a) 

_assertRankAtLeast2(a) 

_assertNdSquareness(a) 

t, result_t = _commonType(a) 

signature = 'D->D' if isComplexType(t) else 'd->d' 

r = gufunc(a, signature=signature, extobj=extobj) 

return wrap(r.astype(result_t, copy=False)) 

 

 

# QR decompostion 

 

def _qr_dispatcher(a, mode=None): 

return (a,) 

 

 

@array_function_dispatch(_qr_dispatcher) 

def qr(a, mode='reduced'): 

""" 

Compute the qr factorization of a matrix. 

 

Factor the matrix `a` as *qr*, where `q` is orthonormal and `r` is 

upper-triangular. 

 

Parameters 

---------- 

a : array_like, shape (M, N) 

Matrix to be factored. 

mode : {'reduced', 'complete', 'r', 'raw', 'full', 'economic'}, optional 

If K = min(M, N), then 

 

* 'reduced' : returns q, r with dimensions (M, K), (K, N) (default) 

* 'complete' : returns q, r with dimensions (M, M), (M, N) 

* 'r' : returns r only with dimensions (K, N) 

* 'raw' : returns h, tau with dimensions (N, M), (K,) 

* 'full' : alias of 'reduced', deprecated 

* 'economic' : returns h from 'raw', deprecated. 

 

The options 'reduced', 'complete, and 'raw' are new in numpy 1.8, 

see the notes for more information. The default is 'reduced', and to 

maintain backward compatibility with earlier versions of numpy both 

it and the old default 'full' can be omitted. Note that array h 

returned in 'raw' mode is transposed for calling Fortran. The 

'economic' mode is deprecated. The modes 'full' and 'economic' may 

be passed using only the first letter for backwards compatibility, 

but all others must be spelled out. See the Notes for more 

explanation. 

 

 

Returns 

------- 

q : ndarray of float or complex, optional 

A matrix with orthonormal columns. When mode = 'complete' the 

result is an orthogonal/unitary matrix depending on whether or not 

a is real/complex. The determinant may be either +/- 1 in that 

case. 

r : ndarray of float or complex, optional 

The upper-triangular matrix. 

(h, tau) : ndarrays of np.double or np.cdouble, optional 

The array h contains the Householder reflectors that generate q 

along with r. The tau array contains scaling factors for the 

reflectors. In the deprecated 'economic' mode only h is returned. 

 

Raises 

------ 

LinAlgError 

If factoring fails. 

 

Notes 

----- 

This is an interface to the LAPACK routines dgeqrf, zgeqrf, 

dorgqr, and zungqr. 

 

For more information on the qr factorization, see for example: 

https://en.wikipedia.org/wiki/QR_factorization 

 

Subclasses of `ndarray` are preserved except for the 'raw' mode. So if 

`a` is of type `matrix`, all the return values will be matrices too. 

 

New 'reduced', 'complete', and 'raw' options for mode were added in 

NumPy 1.8.0 and the old option 'full' was made an alias of 'reduced'. In 

addition the options 'full' and 'economic' were deprecated. Because 

'full' was the previous default and 'reduced' is the new default, 

backward compatibility can be maintained by letting `mode` default. 

The 'raw' option was added so that LAPACK routines that can multiply 

arrays by q using the Householder reflectors can be used. Note that in 

this case the returned arrays are of type np.double or np.cdouble and 

the h array is transposed to be FORTRAN compatible. No routines using 

the 'raw' return are currently exposed by numpy, but some are available 

in lapack_lite and just await the necessary work. 

 

Examples 

-------- 

>>> a = np.random.randn(9, 6) 

>>> q, r = np.linalg.qr(a) 

>>> np.allclose(a, np.dot(q, r)) # a does equal qr 

True 

>>> r2 = np.linalg.qr(a, mode='r') 

>>> r3 = np.linalg.qr(a, mode='economic') 

>>> np.allclose(r, r2) # mode='r' returns the same r as mode='full' 

True 

>>> # But only triu parts are guaranteed equal when mode='economic' 

>>> np.allclose(r, np.triu(r3[:6,:6], k=0)) 

True 

 

Example illustrating a common use of `qr`: solving of least squares 

problems 

 

What are the least-squares-best `m` and `y0` in ``y = y0 + mx`` for 

the following data: {(0,1), (1,0), (1,2), (2,1)}. (Graph the points 

and you'll see that it should be y0 = 0, m = 1.) The answer is provided 

by solving the over-determined matrix equation ``Ax = b``, where:: 

 

A = array([[0, 1], [1, 1], [1, 1], [2, 1]]) 

x = array([[y0], [m]]) 

b = array([[1], [0], [2], [1]]) 

 

If A = qr such that q is orthonormal (which is always possible via 

Gram-Schmidt), then ``x = inv(r) * (q.T) * b``. (In numpy practice, 

however, we simply use `lstsq`.) 

 

>>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]]) 

>>> A 

array([[0, 1], 

[1, 1], 

[1, 1], 

[2, 1]]) 

>>> b = np.array([1, 0, 2, 1]) 

>>> q, r = LA.qr(A) 

>>> p = np.dot(q.T, b) 

>>> np.dot(LA.inv(r), p) 

array([ 1.1e-16, 1.0e+00]) 

 

""" 

if mode not in ('reduced', 'complete', 'r', 'raw'): 

if mode in ('f', 'full'): 

# 2013-04-01, 1.8 

msg = "".join(( 

"The 'full' option is deprecated in favor of 'reduced'.\n", 

"For backward compatibility let mode default.")) 

warnings.warn(msg, DeprecationWarning, stacklevel=2) 

mode = 'reduced' 

elif mode in ('e', 'economic'): 

# 2013-04-01, 1.8 

msg = "The 'economic' option is deprecated." 

warnings.warn(msg, DeprecationWarning, stacklevel=2) 

mode = 'economic' 

else: 

raise ValueError("Unrecognized mode '%s'" % mode) 

 

a, wrap = _makearray(a) 

_assertRank2(a) 

m, n = a.shape 

t, result_t = _commonType(a) 

a = _fastCopyAndTranspose(t, a) 

a = _to_native_byte_order(a) 

mn = min(m, n) 

tau = zeros((mn,), t) 

 

if isComplexType(t): 

lapack_routine = lapack_lite.zgeqrf 

routine_name = 'zgeqrf' 

else: 

lapack_routine = lapack_lite.dgeqrf 

routine_name = 'dgeqrf' 

 

# calculate optimal size of work data 'work' 

lwork = 1 

work = zeros((lwork,), t) 

results = lapack_routine(m, n, a, max(1, m), tau, work, -1, 0) 

if results['info'] != 0: 

raise LinAlgError('%s returns %d' % (routine_name, results['info'])) 

 

# do qr decomposition 

lwork = max(1, n, int(abs(work[0]))) 

work = zeros((lwork,), t) 

results = lapack_routine(m, n, a, max(1, m), tau, work, lwork, 0) 

if results['info'] != 0: 

raise LinAlgError('%s returns %d' % (routine_name, results['info'])) 

 

# handle modes that don't return q 

if mode == 'r': 

r = _fastCopyAndTranspose(result_t, a[:, :mn]) 

return wrap(triu(r)) 

 

if mode == 'raw': 

return a, tau 

 

if mode == 'economic': 

if t != result_t : 

a = a.astype(result_t, copy=False) 

return wrap(a.T) 

 

# generate q from a 

if mode == 'complete' and m > n: 

mc = m 

q = empty((m, m), t) 

else: 

mc = mn 

q = empty((n, m), t) 

q[:n] = a 

 

if isComplexType(t): 

lapack_routine = lapack_lite.zungqr 

routine_name = 'zungqr' 

else: 

lapack_routine = lapack_lite.dorgqr 

routine_name = 'dorgqr' 

 

# determine optimal lwork 

lwork = 1 

work = zeros((lwork,), t) 

results = lapack_routine(m, mc, mn, q, max(1, m), tau, work, -1, 0) 

if results['info'] != 0: 

raise LinAlgError('%s returns %d' % (routine_name, results['info'])) 

 

# compute q 

lwork = max(1, n, int(abs(work[0]))) 

work = zeros((lwork,), t) 

results = lapack_routine(m, mc, mn, q, max(1, m), tau, work, lwork, 0) 

if results['info'] != 0: 

raise LinAlgError('%s returns %d' % (routine_name, results['info'])) 

 

q = _fastCopyAndTranspose(result_t, q[:mc]) 

r = _fastCopyAndTranspose(result_t, a[:, :mc]) 

 

return wrap(q), wrap(triu(r)) 

 

 

# Eigenvalues 

 

 

@array_function_dispatch(_unary_dispatcher) 

def eigvals(a): 

""" 

Compute the eigenvalues of a general matrix. 

 

Main difference between `eigvals` and `eig`: the eigenvectors aren't 

returned. 

 

Parameters 

---------- 

a : (..., M, M) array_like 

A complex- or real-valued matrix whose eigenvalues will be computed. 

 

Returns 

------- 

w : (..., M,) ndarray 

The eigenvalues, each repeated according to its multiplicity. 

They are not necessarily ordered, nor are they necessarily 

real for real matrices. 

 

Raises 

------ 

LinAlgError 

If the eigenvalue computation does not converge. 

 

See Also 

-------- 

eig : eigenvalues and right eigenvectors of general arrays 

eigvalsh : eigenvalues of real symmetric or complex Hermitian  

(conjugate symmetric) arrays. 

eigh : eigenvalues and eigenvectors of real symmetric or complex 

Hermitian (conjugate symmetric) arrays. 

 

Notes 

----- 

 

.. versionadded:: 1.8.0 

 

Broadcasting rules apply, see the `numpy.linalg` documentation for 

details. 

 

This is implemented using the _geev LAPACK routines which compute 

the eigenvalues and eigenvectors of general square arrays. 

 

Examples 

-------- 

Illustration, using the fact that the eigenvalues of a diagonal matrix 

are its diagonal elements, that multiplying a matrix on the left 

by an orthogonal matrix, `Q`, and on the right by `Q.T` (the transpose 

of `Q`), preserves the eigenvalues of the "middle" matrix. In other words, 

if `Q` is orthogonal, then ``Q * A * Q.T`` has the same eigenvalues as 

``A``: 

 

>>> from numpy import linalg as LA 

>>> x = np.random.random() 

>>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]]) 

>>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :]) 

(1.0, 1.0, 0.0) 

 

Now multiply a diagonal matrix by Q on one side and by Q.T on the other: 

 

>>> D = np.diag((-1,1)) 

>>> LA.eigvals(D) 

array([-1., 1.]) 

>>> A = np.dot(Q, D) 

>>> A = np.dot(A, Q.T) 

>>> LA.eigvals(A) 

array([ 1., -1.]) 

 

""" 

a, wrap = _makearray(a) 

_assertRankAtLeast2(a) 

_assertNdSquareness(a) 

_assertFinite(a) 

t, result_t = _commonType(a) 

 

extobj = get_linalg_error_extobj( 

_raise_linalgerror_eigenvalues_nonconvergence) 

signature = 'D->D' if isComplexType(t) else 'd->D' 

w = _umath_linalg.eigvals(a, signature=signature, extobj=extobj) 

 

if not isComplexType(t): 

if all(w.imag == 0): 

w = w.real 

result_t = _realType(result_t) 

else: 

result_t = _complexType(result_t) 

 

return w.astype(result_t, copy=False) 

 

 

def _eigvalsh_dispatcher(a, UPLO=None): 

return (a,) 

 

 

@array_function_dispatch(_eigvalsh_dispatcher) 

def eigvalsh(a, UPLO='L'): 

""" 

Compute the eigenvalues of a complex Hermitian or real symmetric matrix. 

 

Main difference from eigh: the eigenvectors are not computed. 

 

Parameters 

---------- 

a : (..., M, M) array_like 

A complex- or real-valued matrix whose eigenvalues are to be 

computed. 

UPLO : {'L', 'U'}, optional 

Specifies whether the calculation is done with the lower triangular 

part of `a` ('L', default) or the upper triangular part ('U'). 

Irrespective of this value only the real parts of the diagonal will 

be considered in the computation to preserve the notion of a Hermitian 

matrix. It therefore follows that the imaginary part of the diagonal 

will always be treated as zero. 

 

Returns 

------- 

w : (..., M,) ndarray 

The eigenvalues in ascending order, each repeated according to 

its multiplicity. 

 

Raises 

------ 

LinAlgError 

If the eigenvalue computation does not converge. 

 

See Also 

-------- 

eigh : eigenvalues and eigenvectors of real symmetric or complex Hermitian 

(conjugate symmetric) arrays. 

eigvals : eigenvalues of general real or complex arrays. 

eig : eigenvalues and right eigenvectors of general real or complex 

arrays. 

 

Notes 

----- 

 

.. versionadded:: 1.8.0 

 

Broadcasting rules apply, see the `numpy.linalg` documentation for 

details. 

 

The eigenvalues are computed using LAPACK routines _syevd, _heevd 

 

Examples 

-------- 

>>> from numpy import linalg as LA 

>>> a = np.array([[1, -2j], [2j, 5]]) 

>>> LA.eigvalsh(a) 

array([ 0.17157288, 5.82842712]) 

 

>>> # demonstrate the treatment of the imaginary part of the diagonal 

>>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]]) 

>>> a 

array([[ 5.+2.j, 9.-2.j], 

[ 0.+2.j, 2.-1.j]]) 

>>> # with UPLO='L' this is numerically equivalent to using LA.eigvals() 

>>> # with: 

>>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]]) 

>>> b 

array([[ 5.+0.j, 0.-2.j], 

[ 0.+2.j, 2.+0.j]]) 

>>> wa = LA.eigvalsh(a) 

>>> wb = LA.eigvals(b) 

>>> wa; wb 

array([ 1., 6.]) 

array([ 6.+0.j, 1.+0.j]) 

 

""" 

UPLO = UPLO.upper() 

if UPLO not in ('L', 'U'): 

raise ValueError("UPLO argument must be 'L' or 'U'") 

 

extobj = get_linalg_error_extobj( 

_raise_linalgerror_eigenvalues_nonconvergence) 

if UPLO == 'L': 

gufunc = _umath_linalg.eigvalsh_lo 

else: 

gufunc = _umath_linalg.eigvalsh_up 

 

a, wrap = _makearray(a) 

_assertRankAtLeast2(a) 

_assertNdSquareness(a) 

t, result_t = _commonType(a) 

signature = 'D->d' if isComplexType(t) else 'd->d' 

w = gufunc(a, signature=signature, extobj=extobj) 

return w.astype(_realType(result_t), copy=False) 

 

def _convertarray(a): 

t, result_t = _commonType(a) 

a = _fastCT(a.astype(t)) 

return a, t, result_t 

 

 

# Eigenvectors 

 

 

@array_function_dispatch(_unary_dispatcher) 

def eig(a): 

""" 

Compute the eigenvalues and right eigenvectors of a square array. 

 

Parameters 

---------- 

a : (..., M, M) array 

Matrices for which the eigenvalues and right eigenvectors will 

be computed 

 

Returns 

------- 

w : (..., M) array 

The eigenvalues, each repeated according to its multiplicity. 

The eigenvalues are not necessarily ordered. The resulting 

array will be of complex type, unless the imaginary part is 

zero in which case it will be cast to a real type. When `a` 

is real the resulting eigenvalues will be real (0 imaginary 

part) or occur in conjugate pairs 

 

v : (..., M, M) array 

The normalized (unit "length") eigenvectors, such that the 

column ``v[:,i]`` is the eigenvector corresponding to the 

eigenvalue ``w[i]``. 

 

Raises 

------ 

LinAlgError 

If the eigenvalue computation does not converge. 

 

See Also 

-------- 

eigvals : eigenvalues of a non-symmetric array. 

 

eigh : eigenvalues and eigenvectors of a real symmetric or complex  

Hermitian (conjugate symmetric) array. 

 

eigvalsh : eigenvalues of a real symmetric or complex Hermitian 

(conjugate symmetric) array. 

 

Notes 

----- 

 

.. versionadded:: 1.8.0 

 

Broadcasting rules apply, see the `numpy.linalg` documentation for 

details. 

 

This is implemented using the _geev LAPACK routines which compute 

the eigenvalues and eigenvectors of general square arrays. 

 

The number `w` is an eigenvalue of `a` if there exists a vector 

`v` such that ``dot(a,v) = w * v``. Thus, the arrays `a`, `w`, and 

`v` satisfy the equations ``dot(a[:,:], v[:,i]) = w[i] * v[:,i]`` 

for :math:`i \\in \\{0,...,M-1\\}`. 

 

The array `v` of eigenvectors may not be of maximum rank, that is, some 

of the columns may be linearly dependent, although round-off error may 

obscure that fact. If the eigenvalues are all different, then theoretically 

the eigenvectors are linearly independent. Likewise, the (complex-valued) 

matrix of eigenvectors `v` is unitary if the matrix `a` is normal, i.e., 

if ``dot(a, a.H) = dot(a.H, a)``, where `a.H` denotes the conjugate 

transpose of `a`. 

 

Finally, it is emphasized that `v` consists of the *right* (as in 

right-hand side) eigenvectors of `a`. A vector `y` satisfying 

``dot(y.T, a) = z * y.T`` for some number `z` is called a *left* 

eigenvector of `a`, and, in general, the left and right eigenvectors 

of a matrix are not necessarily the (perhaps conjugate) transposes 

of each other. 

 

References 

---------- 

G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, 

Academic Press, Inc., 1980, Various pp. 

 

Examples 

-------- 

>>> from numpy import linalg as LA 

 

(Almost) trivial example with real e-values and e-vectors. 

 

>>> w, v = LA.eig(np.diag((1, 2, 3))) 

>>> w; v 

array([ 1., 2., 3.]) 

array([[ 1., 0., 0.], 

[ 0., 1., 0.], 

[ 0., 0., 1.]]) 

 

Real matrix possessing complex e-values and e-vectors; note that the 

e-values are complex conjugates of each other. 

 

>>> w, v = LA.eig(np.array([[1, -1], [1, 1]])) 

>>> w; v 

array([ 1. + 1.j, 1. - 1.j]) 

array([[ 0.70710678+0.j , 0.70710678+0.j ], 

[ 0.00000000-0.70710678j, 0.00000000+0.70710678j]]) 

 

Complex-valued matrix with real e-values (but complex-valued e-vectors); 

note that a.conj().T = a, i.e., a is Hermitian. 

 

>>> a = np.array([[1, 1j], [-1j, 1]]) 

>>> w, v = LA.eig(a) 

>>> w; v 

array([ 2.00000000e+00+0.j, 5.98651912e-36+0.j]) # i.e., {2, 0} 

array([[ 0.00000000+0.70710678j, 0.70710678+0.j ], 

[ 0.70710678+0.j , 0.00000000+0.70710678j]]) 

 

Be careful about round-off error! 

 

>>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]]) 

>>> # Theor. e-values are 1 +/- 1e-9 

>>> w, v = LA.eig(a) 

>>> w; v 

array([ 1., 1.]) 

array([[ 1., 0.], 

[ 0., 1.]]) 

 

""" 

a, wrap = _makearray(a) 

_assertRankAtLeast2(a) 

_assertNdSquareness(a) 

_assertFinite(a) 

t, result_t = _commonType(a) 

 

extobj = get_linalg_error_extobj( 

_raise_linalgerror_eigenvalues_nonconvergence) 

signature = 'D->DD' if isComplexType(t) else 'd->DD' 

w, vt = _umath_linalg.eig(a, signature=signature, extobj=extobj) 

 

if not isComplexType(t) and all(w.imag == 0.0): 

w = w.real 

vt = vt.real 

result_t = _realType(result_t) 

else: 

result_t = _complexType(result_t) 

 

vt = vt.astype(result_t, copy=False) 

return w.astype(result_t, copy=False), wrap(vt) 

 

 

@array_function_dispatch(_eigvalsh_dispatcher) 

def eigh(a, UPLO='L'): 

""" 

Return the eigenvalues and eigenvectors of a complex Hermitian 

(conjugate symmetric) or a real symmetric matrix. 

 

Returns two objects, a 1-D array containing the eigenvalues of `a`, and 

a 2-D square array or matrix (depending on the input type) of the 

corresponding eigenvectors (in columns). 

 

Parameters 

---------- 

a : (..., M, M) array 

Hermitian or real symmetric matrices whose eigenvalues and 

eigenvectors are to be computed. 

UPLO : {'L', 'U'}, optional 

Specifies whether the calculation is done with the lower triangular 

part of `a` ('L', default) or the upper triangular part ('U'). 

Irrespective of this value only the real parts of the diagonal will 

be considered in the computation to preserve the notion of a Hermitian 

matrix. It therefore follows that the imaginary part of the diagonal 

will always be treated as zero. 

 

Returns 

------- 

w : (..., M) ndarray 

The eigenvalues in ascending order, each repeated according to 

its multiplicity. 

v : {(..., M, M) ndarray, (..., M, M) matrix} 

The column ``v[:, i]`` is the normalized eigenvector corresponding 

to the eigenvalue ``w[i]``. Will return a matrix object if `a` is 

a matrix object. 

 

Raises 

------ 

LinAlgError 

If the eigenvalue computation does not converge. 

 

See Also 

-------- 

eigvalsh : eigenvalues of real symmetric or complex Hermitian 

(conjugate symmetric) arrays. 

eig : eigenvalues and right eigenvectors for non-symmetric arrays. 

eigvals : eigenvalues of non-symmetric arrays. 

 

Notes 

----- 

 

.. versionadded:: 1.8.0 

 

Broadcasting rules apply, see the `numpy.linalg` documentation for 

details. 

 

The eigenvalues/eigenvectors are computed using LAPACK routines _syevd, 

_heevd 

 

The eigenvalues of real symmetric or complex Hermitian matrices are 

always real. [1]_ The array `v` of (column) eigenvectors is unitary 

and `a`, `w`, and `v` satisfy the equations 

``dot(a, v[:, i]) = w[i] * v[:, i]``. 

 

References 

---------- 

.. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, 

FL, Academic Press, Inc., 1980, pg. 222. 

 

Examples 

-------- 

>>> from numpy import linalg as LA 

>>> a = np.array([[1, -2j], [2j, 5]]) 

>>> a 

array([[ 1.+0.j, 0.-2.j], 

[ 0.+2.j, 5.+0.j]]) 

>>> w, v = LA.eigh(a) 

>>> w; v 

array([ 0.17157288, 5.82842712]) 

array([[-0.92387953+0.j , -0.38268343+0.j ], 

[ 0.00000000+0.38268343j, 0.00000000-0.92387953j]]) 

 

>>> np.dot(a, v[:, 0]) - w[0] * v[:, 0] # verify 1st e-val/vec pair 

array([2.77555756e-17 + 0.j, 0. + 1.38777878e-16j]) 

>>> np.dot(a, v[:, 1]) - w[1] * v[:, 1] # verify 2nd e-val/vec pair 

array([ 0.+0.j, 0.+0.j]) 

 

>>> A = np.matrix(a) # what happens if input is a matrix object 

>>> A 

matrix([[ 1.+0.j, 0.-2.j], 

[ 0.+2.j, 5.+0.j]]) 

>>> w, v = LA.eigh(A) 

>>> w; v 

array([ 0.17157288, 5.82842712]) 

matrix([[-0.92387953+0.j , -0.38268343+0.j ], 

[ 0.00000000+0.38268343j, 0.00000000-0.92387953j]]) 

 

>>> # demonstrate the treatment of the imaginary part of the diagonal 

>>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]]) 

>>> a 

array([[ 5.+2.j, 9.-2.j], 

[ 0.+2.j, 2.-1.j]]) 

>>> # with UPLO='L' this is numerically equivalent to using LA.eig() with: 

>>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]]) 

>>> b 

array([[ 5.+0.j, 0.-2.j], 

[ 0.+2.j, 2.+0.j]]) 

>>> wa, va = LA.eigh(a) 

>>> wb, vb = LA.eig(b) 

>>> wa; wb 

array([ 1., 6.]) 

array([ 6.+0.j, 1.+0.j]) 

>>> va; vb 

array([[-0.44721360-0.j , -0.89442719+0.j ], 

[ 0.00000000+0.89442719j, 0.00000000-0.4472136j ]]) 

array([[ 0.89442719+0.j , 0.00000000-0.4472136j], 

[ 0.00000000-0.4472136j, 0.89442719+0.j ]]) 

""" 

UPLO = UPLO.upper() 

if UPLO not in ('L', 'U'): 

raise ValueError("UPLO argument must be 'L' or 'U'") 

 

a, wrap = _makearray(a) 

_assertRankAtLeast2(a) 

_assertNdSquareness(a) 

t, result_t = _commonType(a) 

 

extobj = get_linalg_error_extobj( 

_raise_linalgerror_eigenvalues_nonconvergence) 

if UPLO == 'L': 

gufunc = _umath_linalg.eigh_lo 

else: 

gufunc = _umath_linalg.eigh_up 

 

signature = 'D->dD' if isComplexType(t) else 'd->dd' 

w, vt = gufunc(a, signature=signature, extobj=extobj) 

w = w.astype(_realType(result_t), copy=False) 

vt = vt.astype(result_t, copy=False) 

return w, wrap(vt) 

 

 

# Singular value decomposition 

 

def _svd_dispatcher(a, full_matrices=None, compute_uv=None): 

return (a,) 

 

 

@array_function_dispatch(_svd_dispatcher) 

def svd(a, full_matrices=True, compute_uv=True): 

""" 

Singular Value Decomposition. 

 

When `a` is a 2D array, it is factorized as ``u @ np.diag(s) @ vh 

= (u * s) @ vh``, where `u` and `vh` are 2D unitary arrays and `s` is a 1D 

array of `a`'s singular values. When `a` is higher-dimensional, SVD is 

applied in stacked mode as explained below. 

 

Parameters 

---------- 

a : (..., M, N) array_like 

A real or complex array with ``a.ndim >= 2``. 

full_matrices : bool, optional 

If True (default), `u` and `vh` have the shapes ``(..., M, M)`` and 

``(..., N, N)``, respectively. Otherwise, the shapes are 

``(..., M, K)`` and ``(..., K, N)``, respectively, where 

``K = min(M, N)``. 

compute_uv : bool, optional 

Whether or not to compute `u` and `vh` in addition to `s`. True 

by default. 

 

Returns 

------- 

u : { (..., M, M), (..., M, K) } array 

Unitary array(s). The first ``a.ndim - 2`` dimensions have the same 

size as those of the input `a`. The size of the last two dimensions 

depends on the value of `full_matrices`. Only returned when 

`compute_uv` is True. 

s : (..., K) array 

Vector(s) with the singular values, within each vector sorted in 

descending order. The first ``a.ndim - 2`` dimensions have the same 

size as those of the input `a`. 

vh : { (..., N, N), (..., K, N) } array 

Unitary array(s). The first ``a.ndim - 2`` dimensions have the same 

size as those of the input `a`. The size of the last two dimensions 

depends on the value of `full_matrices`. Only returned when 

`compute_uv` is True. 

 

Raises 

------ 

LinAlgError 

If SVD computation does not converge. 

 

Notes 

----- 

 

.. versionchanged:: 1.8.0 

Broadcasting rules apply, see the `numpy.linalg` documentation for 

details. 

 

The decomposition is performed using LAPACK routine ``_gesdd``. 

 

SVD is usually described for the factorization of a 2D matrix :math:`A`. 

The higher-dimensional case will be discussed below. In the 2D case, SVD is 

written as :math:`A = U S V^H`, where :math:`A = a`, :math:`U= u`, 

:math:`S= \\mathtt{np.diag}(s)` and :math:`V^H = vh`. The 1D array `s` 

contains the singular values of `a` and `u` and `vh` are unitary. The rows 

of `vh` are the eigenvectors of :math:`A^H A` and the columns of `u` are 

the eigenvectors of :math:`A A^H`. In both cases the corresponding 

(possibly non-zero) eigenvalues are given by ``s**2``. 

 

If `a` has more than two dimensions, then broadcasting rules apply, as 

explained in :ref:`routines.linalg-broadcasting`. This means that SVD is 

working in "stacked" mode: it iterates over all indices of the first 

``a.ndim - 2`` dimensions and for each combination SVD is applied to the 

last two indices. The matrix `a` can be reconstructed from the 

decomposition with either ``(u * s[..., None, :]) @ vh`` or 

``u @ (s[..., None] * vh)``. (The ``@`` operator can be replaced by the 

function ``np.matmul`` for python versions below 3.5.) 

 

If `a` is a ``matrix`` object (as opposed to an ``ndarray``), then so are 

all the return values. 

 

Examples 

-------- 

>>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6) 

>>> b = np.random.randn(2, 7, 8, 3) + 1j*np.random.randn(2, 7, 8, 3) 

 

Reconstruction based on full SVD, 2D case: 

 

>>> u, s, vh = np.linalg.svd(a, full_matrices=True) 

>>> u.shape, s.shape, vh.shape 

((9, 9), (6,), (6, 6)) 

>>> np.allclose(a, np.dot(u[:, :6] * s, vh)) 

True 

>>> smat = np.zeros((9, 6), dtype=complex) 

>>> smat[:6, :6] = np.diag(s) 

>>> np.allclose(a, np.dot(u, np.dot(smat, vh))) 

True 

 

Reconstruction based on reduced SVD, 2D case: 

 

>>> u, s, vh = np.linalg.svd(a, full_matrices=False) 

>>> u.shape, s.shape, vh.shape 

((9, 6), (6,), (6, 6)) 

>>> np.allclose(a, np.dot(u * s, vh)) 

True 

>>> smat = np.diag(s) 

>>> np.allclose(a, np.dot(u, np.dot(smat, vh))) 

True 

 

Reconstruction based on full SVD, 4D case: 

 

>>> u, s, vh = np.linalg.svd(b, full_matrices=True) 

>>> u.shape, s.shape, vh.shape 

((2, 7, 8, 8), (2, 7, 3), (2, 7, 3, 3)) 

>>> np.allclose(b, np.matmul(u[..., :3] * s[..., None, :], vh)) 

True 

>>> np.allclose(b, np.matmul(u[..., :3], s[..., None] * vh)) 

True 

 

Reconstruction based on reduced SVD, 4D case: 

 

>>> u, s, vh = np.linalg.svd(b, full_matrices=False) 

>>> u.shape, s.shape, vh.shape 

((2, 7, 8, 3), (2, 7, 3), (2, 7, 3, 3)) 

>>> np.allclose(b, np.matmul(u * s[..., None, :], vh)) 

True 

>>> np.allclose(b, np.matmul(u, s[..., None] * vh)) 

True 

 

""" 

a, wrap = _makearray(a) 

_assertRankAtLeast2(a) 

t, result_t = _commonType(a) 

 

extobj = get_linalg_error_extobj(_raise_linalgerror_svd_nonconvergence) 

 

m, n = a.shape[-2:] 

if compute_uv: 

if full_matrices: 

if m < n: 

gufunc = _umath_linalg.svd_m_f 

else: 

gufunc = _umath_linalg.svd_n_f 

else: 

if m < n: 

gufunc = _umath_linalg.svd_m_s 

else: 

gufunc = _umath_linalg.svd_n_s 

 

signature = 'D->DdD' if isComplexType(t) else 'd->ddd' 

u, s, vh = gufunc(a, signature=signature, extobj=extobj) 

u = u.astype(result_t, copy=False) 

s = s.astype(_realType(result_t), copy=False) 

vh = vh.astype(result_t, copy=False) 

return wrap(u), s, wrap(vh) 

else: 

if m < n: 

gufunc = _umath_linalg.svd_m 

else: 

gufunc = _umath_linalg.svd_n 

 

signature = 'D->d' if isComplexType(t) else 'd->d' 

s = gufunc(a, signature=signature, extobj=extobj) 

s = s.astype(_realType(result_t), copy=False) 

return s 

 

 

def _cond_dispatcher(x, p=None): 

return (x,) 

 

 

@array_function_dispatch(_cond_dispatcher) 

def cond(x, p=None): 

""" 

Compute the condition number of a matrix. 

 

This function is capable of returning the condition number using 

one of seven different norms, depending on the value of `p` (see 

Parameters below). 

 

Parameters 

---------- 

x : (..., M, N) array_like 

The matrix whose condition number is sought. 

p : {None, 1, -1, 2, -2, inf, -inf, 'fro'}, optional 

Order of the norm: 

 

===== ============================ 

p norm for matrices 

===== ============================ 

None 2-norm, computed directly using the ``SVD`` 

'fro' Frobenius norm 

inf max(sum(abs(x), axis=1)) 

-inf min(sum(abs(x), axis=1)) 

1 max(sum(abs(x), axis=0)) 

-1 min(sum(abs(x), axis=0)) 

2 2-norm (largest sing. value) 

-2 smallest singular value 

===== ============================ 

 

inf means the numpy.inf object, and the Frobenius norm is 

the root-of-sum-of-squares norm. 

 

Returns 

------- 

c : {float, inf} 

The condition number of the matrix. May be infinite. 

 

See Also 

-------- 

numpy.linalg.norm 

 

Notes 

----- 

The condition number of `x` is defined as the norm of `x` times the 

norm of the inverse of `x` [1]_; the norm can be the usual L2-norm 

(root-of-sum-of-squares) or one of a number of other matrix norms. 

 

References 

---------- 

.. [1] G. Strang, *Linear Algebra and Its Applications*, Orlando, FL, 

Academic Press, Inc., 1980, pg. 285. 

 

Examples 

-------- 

>>> from numpy import linalg as LA 

>>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]]) 

>>> a 

array([[ 1, 0, -1], 

[ 0, 1, 0], 

[ 1, 0, 1]]) 

>>> LA.cond(a) 

1.4142135623730951 

>>> LA.cond(a, 'fro') 

3.1622776601683795 

>>> LA.cond(a, np.inf) 

2.0 

>>> LA.cond(a, -np.inf) 

1.0 

>>> LA.cond(a, 1) 

2.0 

>>> LA.cond(a, -1) 

1.0 

>>> LA.cond(a, 2) 

1.4142135623730951 

>>> LA.cond(a, -2) 

0.70710678118654746 

>>> min(LA.svd(a, compute_uv=0))*min(LA.svd(LA.inv(a), compute_uv=0)) 

0.70710678118654746 

 

""" 

x = asarray(x) # in case we have a matrix 

_assertNoEmpty2d(x) 

if p is None or p == 2 or p == -2: 

s = svd(x, compute_uv=False) 

with errstate(all='ignore'): 

if p == -2: 

r = s[..., -1] / s[..., 0] 

else: 

r = s[..., 0] / s[..., -1] 

else: 

# Call inv(x) ignoring errors. The result array will 

# contain nans in the entries where inversion failed. 

_assertRankAtLeast2(x) 

_assertNdSquareness(x) 

t, result_t = _commonType(x) 

signature = 'D->D' if isComplexType(t) else 'd->d' 

with errstate(all='ignore'): 

invx = _umath_linalg.inv(x, signature=signature) 

r = norm(x, p, axis=(-2, -1)) * norm(invx, p, axis=(-2, -1)) 

r = r.astype(result_t, copy=False) 

 

# Convert nans to infs unless the original array had nan entries 

r = asarray(r) 

nan_mask = isnan(r) 

if nan_mask.any(): 

nan_mask &= ~isnan(x).any(axis=(-2, -1)) 

if r.ndim > 0: 

r[nan_mask] = Inf 

elif nan_mask: 

r[()] = Inf 

 

# Convention is to return scalars instead of 0d arrays 

if r.ndim == 0: 

r = r[()] 

 

return r 

 

 

def _matrix_rank_dispatcher(M, tol=None, hermitian=None): 

return (M,) 

 

 

@array_function_dispatch(_matrix_rank_dispatcher) 

def matrix_rank(M, tol=None, hermitian=False): 

""" 

Return matrix rank of array using SVD method 

 

Rank of the array is the number of singular values of the array that are 

greater than `tol`. 

 

.. versionchanged:: 1.14 

Can now operate on stacks of matrices 

 

Parameters 

---------- 

M : {(M,), (..., M, N)} array_like 

input vector or stack of matrices 

tol : (...) array_like, float, optional 

threshold below which SVD values are considered zero. If `tol` is 

None, and ``S`` is an array with singular values for `M`, and 

``eps`` is the epsilon value for datatype of ``S``, then `tol` is 

set to ``S.max() * max(M.shape) * eps``. 

 

.. versionchanged:: 1.14 

Broadcasted against the stack of matrices 

hermitian : bool, optional 

If True, `M` is assumed to be Hermitian (symmetric if real-valued), 

enabling a more efficient method for finding singular values. 

Defaults to False. 

 

.. versionadded:: 1.14 

 

Notes 

----- 

The default threshold to detect rank deficiency is a test on the magnitude 

of the singular values of `M`. By default, we identify singular values less 

than ``S.max() * max(M.shape) * eps`` as indicating rank deficiency (with 

the symbols defined above). This is the algorithm MATLAB uses [1]. It also 

appears in *Numerical recipes* in the discussion of SVD solutions for linear 

least squares [2]. 

 

This default threshold is designed to detect rank deficiency accounting for 

the numerical errors of the SVD computation. Imagine that there is a column 

in `M` that is an exact (in floating point) linear combination of other 

columns in `M`. Computing the SVD on `M` will not produce a singular value 

exactly equal to 0 in general: any difference of the smallest SVD value from 

0 will be caused by numerical imprecision in the calculation of the SVD. 

Our threshold for small SVD values takes this numerical imprecision into 

account, and the default threshold will detect such numerical rank 

deficiency. The threshold may declare a matrix `M` rank deficient even if 

the linear combination of some columns of `M` is not exactly equal to 

another column of `M` but only numerically very close to another column of 

`M`. 

 

We chose our default threshold because it is in wide use. Other thresholds 

are possible. For example, elsewhere in the 2007 edition of *Numerical 

recipes* there is an alternative threshold of ``S.max() * 

np.finfo(M.dtype).eps / 2. * np.sqrt(m + n + 1.)``. The authors describe 

this threshold as being based on "expected roundoff error" (p 71). 

 

The thresholds above deal with floating point roundoff error in the 

calculation of the SVD. However, you may have more information about the 

sources of error in `M` that would make you consider other tolerance values 

to detect *effective* rank deficiency. The most useful measure of the 

tolerance depends on the operations you intend to use on your matrix. For 

example, if your data come from uncertain measurements with uncertainties 

greater than floating point epsilon, choosing a tolerance near that 

uncertainty may be preferable. The tolerance may be absolute if the 

uncertainties are absolute rather than relative. 

 

References 

---------- 

.. [1] MATLAB reference documention, "Rank" 

https://www.mathworks.com/help/techdoc/ref/rank.html 

.. [2] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, 

"Numerical Recipes (3rd edition)", Cambridge University Press, 2007, 

page 795. 

 

Examples 

-------- 

>>> from numpy.linalg import matrix_rank 

>>> matrix_rank(np.eye(4)) # Full rank matrix 

4 

>>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix 

>>> matrix_rank(I) 

3 

>>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0 

1 

>>> matrix_rank(np.zeros((4,))) 

0 

""" 

M = asarray(M) 

if M.ndim < 2: 

return int(not all(M==0)) 

if hermitian: 

S = abs(eigvalsh(M)) 

else: 

S = svd(M, compute_uv=False) 

if tol is None: 

tol = S.max(axis=-1, keepdims=True) * max(M.shape[-2:]) * finfo(S.dtype).eps 

else: 

tol = asarray(tol)[..., newaxis] 

return count_nonzero(S > tol, axis=-1) 

 

 

# Generalized inverse 

 

def _pinv_dispatcher(a, rcond=None): 

return (a,) 

 

 

@array_function_dispatch(_pinv_dispatcher) 

def pinv(a, rcond=1e-15): 

""" 

Compute the (Moore-Penrose) pseudo-inverse of a matrix. 

 

Calculate the generalized inverse of a matrix using its 

singular-value decomposition (SVD) and including all 

*large* singular values. 

 

.. versionchanged:: 1.14 

Can now operate on stacks of matrices 

 

Parameters 

---------- 

a : (..., M, N) array_like 

Matrix or stack of matrices to be pseudo-inverted. 

rcond : (...) array_like of float 

Cutoff for small singular values. 

Singular values smaller (in modulus) than 

`rcond` * largest_singular_value (again, in modulus) 

are set to zero. Broadcasts against the stack of matrices 

 

Returns 

------- 

B : (..., N, M) ndarray 

The pseudo-inverse of `a`. If `a` is a `matrix` instance, then so 

is `B`. 

 

Raises 

------ 

LinAlgError 

If the SVD computation does not converge. 

 

Notes 

----- 

The pseudo-inverse of a matrix A, denoted :math:`A^+`, is 

defined as: "the matrix that 'solves' [the least-squares problem] 

:math:`Ax = b`," i.e., if :math:`\\bar{x}` is said solution, then 

:math:`A^+` is that matrix such that :math:`\\bar{x} = A^+b`. 

 

It can be shown that if :math:`Q_1 \\Sigma Q_2^T = A` is the singular 

value decomposition of A, then 

:math:`A^+ = Q_2 \\Sigma^+ Q_1^T`, where :math:`Q_{1,2}` are 

orthogonal matrices, :math:`\\Sigma` is a diagonal matrix consisting 

of A's so-called singular values, (followed, typically, by 

zeros), and then :math:`\\Sigma^+` is simply the diagonal matrix 

consisting of the reciprocals of A's singular values 

(again, followed by zeros). [1]_ 

 

References 

---------- 

.. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, 

FL, Academic Press, Inc., 1980, pp. 139-142. 

 

Examples 

-------- 

The following example checks that ``a * a+ * a == a`` and 

``a+ * a * a+ == a+``: 

 

>>> a = np.random.randn(9, 6) 

>>> B = np.linalg.pinv(a) 

>>> np.allclose(a, np.dot(a, np.dot(B, a))) 

True 

>>> np.allclose(B, np.dot(B, np.dot(a, B))) 

True 

 

""" 

a, wrap = _makearray(a) 

rcond = asarray(rcond) 

if _isEmpty2d(a): 

m, n = a.shape[-2:] 

res = empty(a.shape[:-2] + (n, m), dtype=a.dtype) 

return wrap(res) 

a = a.conjugate() 

u, s, vt = svd(a, full_matrices=False) 

 

# discard small singular values 

cutoff = rcond[..., newaxis] * amax(s, axis=-1, keepdims=True) 

large = s > cutoff 

s = divide(1, s, where=large, out=s) 

s[~large] = 0 

 

res = matmul(transpose(vt), multiply(s[..., newaxis], transpose(u))) 

return wrap(res) 

 

 

# Determinant 

 

 

@array_function_dispatch(_unary_dispatcher) 

def slogdet(a): 

""" 

Compute the sign and (natural) logarithm of the determinant of an array. 

 

If an array has a very small or very large determinant, then a call to 

`det` may overflow or underflow. This routine is more robust against such 

issues, because it computes the logarithm of the determinant rather than 

the determinant itself. 

 

Parameters 

---------- 

a : (..., M, M) array_like 

Input array, has to be a square 2-D array. 

 

Returns 

------- 

sign : (...) array_like 

A number representing the sign of the determinant. For a real matrix, 

this is 1, 0, or -1. For a complex matrix, this is a complex number 

with absolute value 1 (i.e., it is on the unit circle), or else 0. 

logdet : (...) array_like 

The natural log of the absolute value of the determinant. 

 

If the determinant is zero, then `sign` will be 0 and `logdet` will be 

-Inf. In all cases, the determinant is equal to ``sign * np.exp(logdet)``. 

 

See Also 

-------- 

det 

 

Notes 

----- 

 

.. versionadded:: 1.8.0 

 

Broadcasting rules apply, see the `numpy.linalg` documentation for 

details. 

 

.. versionadded:: 1.6.0 

 

The determinant is computed via LU factorization using the LAPACK 

routine z/dgetrf. 

 

 

Examples 

-------- 

The determinant of a 2-D array ``[[a, b], [c, d]]`` is ``ad - bc``: 

 

>>> a = np.array([[1, 2], [3, 4]]) 

>>> (sign, logdet) = np.linalg.slogdet(a) 

>>> (sign, logdet) 

(-1, 0.69314718055994529) 

>>> sign * np.exp(logdet) 

-2.0 

 

Computing log-determinants for a stack of matrices: 

 

>>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ]) 

>>> a.shape 

(3, 2, 2) 

>>> sign, logdet = np.linalg.slogdet(a) 

>>> (sign, logdet) 

(array([-1., -1., -1.]), array([ 0.69314718, 1.09861229, 2.07944154])) 

>>> sign * np.exp(logdet) 

array([-2., -3., -8.]) 

 

This routine succeeds where ordinary `det` does not: 

 

>>> np.linalg.det(np.eye(500) * 0.1) 

0.0 

>>> np.linalg.slogdet(np.eye(500) * 0.1) 

(1, -1151.2925464970228) 

 

""" 

a = asarray(a) 

_assertRankAtLeast2(a) 

_assertNdSquareness(a) 

t, result_t = _commonType(a) 

real_t = _realType(result_t) 

signature = 'D->Dd' if isComplexType(t) else 'd->dd' 

sign, logdet = _umath_linalg.slogdet(a, signature=signature) 

sign = sign.astype(result_t, copy=False) 

logdet = logdet.astype(real_t, copy=False) 

return sign, logdet 

 

 

@array_function_dispatch(_unary_dispatcher) 

def det(a): 

""" 

Compute the determinant of an array. 

 

Parameters 

---------- 

a : (..., M, M) array_like 

Input array to compute determinants for. 

 

Returns 

------- 

det : (...) array_like 

Determinant of `a`. 

 

See Also 

-------- 

slogdet : Another way to represent the determinant, more suitable 

for large matrices where underflow/overflow may occur. 

 

Notes 

----- 

 

.. versionadded:: 1.8.0 

 

Broadcasting rules apply, see the `numpy.linalg` documentation for 

details. 

 

The determinant is computed via LU factorization using the LAPACK 

routine z/dgetrf. 

 

Examples 

-------- 

The determinant of a 2-D array [[a, b], [c, d]] is ad - bc: 

 

>>> a = np.array([[1, 2], [3, 4]]) 

>>> np.linalg.det(a) 

-2.0 

 

Computing determinants for a stack of matrices: 

 

>>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ]) 

>>> a.shape 

(3, 2, 2) 

>>> np.linalg.det(a) 

array([-2., -3., -8.]) 

 

""" 

a = asarray(a) 

_assertRankAtLeast2(a) 

_assertNdSquareness(a) 

t, result_t = _commonType(a) 

signature = 'D->D' if isComplexType(t) else 'd->d' 

r = _umath_linalg.det(a, signature=signature) 

r = r.astype(result_t, copy=False) 

return r 

 

 

# Linear Least Squares 

 

def _lstsq_dispatcher(a, b, rcond=None): 

return (a, b) 

 

 

@array_function_dispatch(_lstsq_dispatcher) 

def lstsq(a, b, rcond="warn"): 

""" 

Return the least-squares solution to a linear matrix equation. 

 

Solves the equation `a x = b` by computing a vector `x` that 

minimizes the Euclidean 2-norm `|| b - a x ||^2`. The equation may 

be under-, well-, or over- determined (i.e., the number of 

linearly independent rows of `a` can be less than, equal to, or 

greater than its number of linearly independent columns). If `a` 

is square and of full rank, then `x` (but for round-off error) is 

the "exact" solution of the equation. 

 

Parameters 

---------- 

a : (M, N) array_like 

"Coefficient" matrix. 

b : {(M,), (M, K)} array_like 

Ordinate or "dependent variable" values. If `b` is two-dimensional, 

the least-squares solution is calculated for each of the `K` columns 

of `b`. 

rcond : float, optional 

Cut-off ratio for small singular values of `a`. 

For the purposes of rank determination, singular values are treated 

as zero if they are smaller than `rcond` times the largest singular 

value of `a`. 

 

.. versionchanged:: 1.14.0 

If not set, a FutureWarning is given. The previous default 

of ``-1`` will use the machine precision as `rcond` parameter, 

the new default will use the machine precision times `max(M, N)`. 

To silence the warning and use the new default, use ``rcond=None``, 

to keep using the old behavior, use ``rcond=-1``. 

 

Returns 

------- 

x : {(N,), (N, K)} ndarray 

Least-squares solution. If `b` is two-dimensional, 

the solutions are in the `K` columns of `x`. 

residuals : {(1,), (K,), (0,)} ndarray 

Sums of residuals; squared Euclidean 2-norm for each column in 

``b - a*x``. 

If the rank of `a` is < N or M <= N, this is an empty array. 

If `b` is 1-dimensional, this is a (1,) shape array. 

Otherwise the shape is (K,). 

rank : int 

Rank of matrix `a`. 

s : (min(M, N),) ndarray 

Singular values of `a`. 

 

Raises 

------ 

LinAlgError 

If computation does not converge. 

 

Notes 

----- 

If `b` is a matrix, then all array results are returned as matrices. 

 

Examples 

-------- 

Fit a line, ``y = mx + c``, through some noisy data-points: 

 

>>> x = np.array([0, 1, 2, 3]) 

>>> y = np.array([-1, 0.2, 0.9, 2.1]) 

 

By examining the coefficients, we see that the line should have a 

gradient of roughly 1 and cut the y-axis at, more or less, -1. 

 

We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]`` 

and ``p = [[m], [c]]``. Now use `lstsq` to solve for `p`: 

 

>>> A = np.vstack([x, np.ones(len(x))]).T 

>>> A 

array([[ 0., 1.], 

[ 1., 1.], 

[ 2., 1.], 

[ 3., 1.]]) 

 

>>> m, c = np.linalg.lstsq(A, y, rcond=None)[0] 

>>> print(m, c) 

1.0 -0.95 

 

Plot the data along with the fitted line: 

 

>>> import matplotlib.pyplot as plt 

>>> plt.plot(x, y, 'o', label='Original data', markersize=10) 

>>> plt.plot(x, m*x + c, 'r', label='Fitted line') 

>>> plt.legend() 

>>> plt.show() 

 

""" 

a, _ = _makearray(a) 

b, wrap = _makearray(b) 

is_1d = b.ndim == 1 

if is_1d: 

b = b[:, newaxis] 

_assertRank2(a, b) 

m, n = a.shape[-2:] 

m2, n_rhs = b.shape[-2:] 

if m != m2: 

raise LinAlgError('Incompatible dimensions') 

 

t, result_t = _commonType(a, b) 

# FIXME: real_t is unused 

real_t = _linalgRealType(t) 

result_real_t = _realType(result_t) 

 

# Determine default rcond value 

if rcond == "warn": 

# 2017-08-19, 1.14.0 

warnings.warn("`rcond` parameter will change to the default of " 

"machine precision times ``max(M, N)`` where M and N " 

"are the input matrix dimensions.\n" 

"To use the future default and silence this warning " 

"we advise to pass `rcond=None`, to keep using the old, " 

"explicitly pass `rcond=-1`.", 

FutureWarning, stacklevel=2) 

rcond = -1 

if rcond is None: 

rcond = finfo(t).eps * max(n, m) 

 

if m <= n: 

gufunc = _umath_linalg.lstsq_m 

else: 

gufunc = _umath_linalg.lstsq_n 

 

signature = 'DDd->Ddid' if isComplexType(t) else 'ddd->ddid' 

extobj = get_linalg_error_extobj(_raise_linalgerror_lstsq) 

if n_rhs == 0: 

# lapack can't handle n_rhs = 0 - so allocate the array one larger in that axis 

b = zeros(b.shape[:-2] + (m, n_rhs + 1), dtype=b.dtype) 

x, resids, rank, s = gufunc(a, b, rcond, signature=signature, extobj=extobj) 

if m == 0: 

x[...] = 0 

if n_rhs == 0: 

# remove the item we added 

x = x[..., :n_rhs] 

resids = resids[..., :n_rhs] 

 

# remove the axis we added 

if is_1d: 

x = x.squeeze(axis=-1) 

# we probably should squeeze resids too, but we can't 

# without breaking compatibility. 

 

# as documented 

if rank != n or m <= n: 

resids = array([], result_real_t) 

 

# coerce output arrays 

s = s.astype(result_real_t, copy=False) 

resids = resids.astype(result_real_t, copy=False) 

x = x.astype(result_t, copy=True) # Copying lets the memory in r_parts be freed 

return wrap(x), wrap(resids), rank, s 

 

 

def _multi_svd_norm(x, row_axis, col_axis, op): 

"""Compute a function of the singular values of the 2-D matrices in `x`. 

 

This is a private utility function used by numpy.linalg.norm(). 

 

Parameters 

---------- 

x : ndarray 

row_axis, col_axis : int 

The axes of `x` that hold the 2-D matrices. 

op : callable 

This should be either numpy.amin or numpy.amax or numpy.sum. 

 

Returns 

------- 

result : float or ndarray 

If `x` is 2-D, the return values is a float. 

Otherwise, it is an array with ``x.ndim - 2`` dimensions. 

The return values are either the minimum or maximum or sum of the 

singular values of the matrices, depending on whether `op` 

is `numpy.amin` or `numpy.amax` or `numpy.sum`. 

 

""" 

y = moveaxis(x, (row_axis, col_axis), (-2, -1)) 

result = op(svd(y, compute_uv=0), axis=-1) 

return result 

 

 

def _norm_dispatcher(x, ord=None, axis=None, keepdims=None): 

return (x,) 

 

 

@array_function_dispatch(_norm_dispatcher) 

def norm(x, ord=None, axis=None, keepdims=False): 

""" 

Matrix or vector norm. 

 

This function is able to return one of eight different matrix norms, 

or one of an infinite number of vector norms (described below), depending 

on the value of the ``ord`` parameter. 

 

Parameters 

---------- 

x : array_like 

Input array. If `axis` is None, `x` must be 1-D or 2-D. 

ord : {non-zero int, inf, -inf, 'fro', 'nuc'}, optional 

Order of the norm (see table under ``Notes``). inf means numpy's 

`inf` object. 

axis : {int, 2-tuple of ints, None}, optional 

If `axis` is an integer, it specifies the axis of `x` along which to 

compute the vector norms. If `axis` is a 2-tuple, it specifies the 

axes that hold 2-D matrices, and the matrix norms of these matrices 

are computed. If `axis` is None then either a vector norm (when `x` 

is 1-D) or a matrix norm (when `x` is 2-D) is returned. 

 

.. versionadded:: 1.8.0 

 

keepdims : bool, optional 

If this is set to True, the axes which are normed over are left in the 

result as dimensions with size one. With this option the result will 

broadcast correctly against the original `x`. 

 

.. versionadded:: 1.10.0 

 

Returns 

------- 

n : float or ndarray 

Norm of the matrix or vector(s). 

 

Notes 

----- 

For values of ``ord <= 0``, the result is, strictly speaking, not a 

mathematical 'norm', but it may still be useful for various numerical 

purposes. 

 

The following norms can be calculated: 

 

===== ============================ ========================== 

ord norm for matrices norm for vectors 

===== ============================ ========================== 

None Frobenius norm 2-norm 

'fro' Frobenius norm -- 

'nuc' nuclear norm -- 

inf max(sum(abs(x), axis=1)) max(abs(x)) 

-inf min(sum(abs(x), axis=1)) min(abs(x)) 

0 -- sum(x != 0) 

1 max(sum(abs(x), axis=0)) as below 

-1 min(sum(abs(x), axis=0)) as below 

2 2-norm (largest sing. value) as below 

-2 smallest singular value as below 

other -- sum(abs(x)**ord)**(1./ord) 

===== ============================ ========================== 

 

The Frobenius norm is given by [1]_: 

 

:math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}` 

 

The nuclear norm is the sum of the singular values. 

 

References 

---------- 

.. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*, 

Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15 

 

Examples 

-------- 

>>> from numpy import linalg as LA 

>>> a = np.arange(9) - 4 

>>> a 

array([-4, -3, -2, -1, 0, 1, 2, 3, 4]) 

>>> b = a.reshape((3, 3)) 

>>> b 

array([[-4, -3, -2], 

[-1, 0, 1], 

[ 2, 3, 4]]) 

 

>>> LA.norm(a) 

7.745966692414834 

>>> LA.norm(b) 

7.745966692414834 

>>> LA.norm(b, 'fro') 

7.745966692414834 

>>> LA.norm(a, np.inf) 

4.0 

>>> LA.norm(b, np.inf) 

9.0 

>>> LA.norm(a, -np.inf) 

0.0 

>>> LA.norm(b, -np.inf) 

2.0 

 

>>> LA.norm(a, 1) 

20.0 

>>> LA.norm(b, 1) 

7.0 

>>> LA.norm(a, -1) 

-4.6566128774142013e-010 

>>> LA.norm(b, -1) 

6.0 

>>> LA.norm(a, 2) 

7.745966692414834 

>>> LA.norm(b, 2) 

7.3484692283495345 

 

>>> LA.norm(a, -2) 

nan 

>>> LA.norm(b, -2) 

1.8570331885190563e-016 

>>> LA.norm(a, 3) 

5.8480354764257312 

>>> LA.norm(a, -3) 

nan 

 

Using the `axis` argument to compute vector norms: 

 

>>> c = np.array([[ 1, 2, 3], 

... [-1, 1, 4]]) 

>>> LA.norm(c, axis=0) 

array([ 1.41421356, 2.23606798, 5. ]) 

>>> LA.norm(c, axis=1) 

array([ 3.74165739, 4.24264069]) 

>>> LA.norm(c, ord=1, axis=1) 

array([ 6., 6.]) 

 

Using the `axis` argument to compute matrix norms: 

 

>>> m = np.arange(8).reshape(2,2,2) 

>>> LA.norm(m, axis=(1,2)) 

array([ 3.74165739, 11.22497216]) 

>>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :]) 

(3.7416573867739413, 11.224972160321824) 

 

""" 

x = asarray(x) 

 

if not issubclass(x.dtype.type, (inexact, object_)): 

x = x.astype(float) 

 

# Immediately handle some default, simple, fast, and common cases. 

if axis is None: 

ndim = x.ndim 

if ((ord is None) or 

(ord in ('f', 'fro') and ndim == 2) or 

(ord == 2 and ndim == 1)): 

 

x = x.ravel(order='K') 

if isComplexType(x.dtype.type): 

sqnorm = dot(x.real, x.real) + dot(x.imag, x.imag) 

else: 

sqnorm = dot(x, x) 

ret = sqrt(sqnorm) 

if keepdims: 

ret = ret.reshape(ndim*[1]) 

return ret 

 

# Normalize the `axis` argument to a tuple. 

nd = x.ndim 

if axis is None: 

axis = tuple(range(nd)) 

elif not isinstance(axis, tuple): 

try: 

axis = int(axis) 

except Exception: 

raise TypeError("'axis' must be None, an integer or a tuple of integers") 

axis = (axis,) 

 

if len(axis) == 1: 

if ord == Inf: 

return abs(x).max(axis=axis, keepdims=keepdims) 

elif ord == -Inf: 

return abs(x).min(axis=axis, keepdims=keepdims) 

elif ord == 0: 

# Zero norm 

return (x != 0).astype(x.real.dtype).sum(axis=axis, keepdims=keepdims) 

elif ord == 1: 

# special case for speedup 

return add.reduce(abs(x), axis=axis, keepdims=keepdims) 

elif ord is None or ord == 2: 

# special case for speedup 

s = (x.conj() * x).real 

return sqrt(add.reduce(s, axis=axis, keepdims=keepdims)) 

else: 

try: 

ord + 1 

except TypeError: 

raise ValueError("Invalid norm order for vectors.") 

absx = abs(x) 

absx **= ord 

ret = add.reduce(absx, axis=axis, keepdims=keepdims) 

ret **= (1 / ord) 

return ret 

elif len(axis) == 2: 

row_axis, col_axis = axis 

row_axis = normalize_axis_index(row_axis, nd) 

col_axis = normalize_axis_index(col_axis, nd) 

if row_axis == col_axis: 

raise ValueError('Duplicate axes given.') 

if ord == 2: 

ret = _multi_svd_norm(x, row_axis, col_axis, amax) 

elif ord == -2: 

ret = _multi_svd_norm(x, row_axis, col_axis, amin) 

elif ord == 1: 

if col_axis > row_axis: 

col_axis -= 1 

ret = add.reduce(abs(x), axis=row_axis).max(axis=col_axis) 

elif ord == Inf: 

if row_axis > col_axis: 

row_axis -= 1 

ret = add.reduce(abs(x), axis=col_axis).max(axis=row_axis) 

elif ord == -1: 

if col_axis > row_axis: 

col_axis -= 1 

ret = add.reduce(abs(x), axis=row_axis).min(axis=col_axis) 

elif ord == -Inf: 

if row_axis > col_axis: 

row_axis -= 1 

ret = add.reduce(abs(x), axis=col_axis).min(axis=row_axis) 

elif ord in [None, 'fro', 'f']: 

ret = sqrt(add.reduce((x.conj() * x).real, axis=axis)) 

elif ord == 'nuc': 

ret = _multi_svd_norm(x, row_axis, col_axis, sum) 

else: 

raise ValueError("Invalid norm order for matrices.") 

if keepdims: 

ret_shape = list(x.shape) 

ret_shape[axis[0]] = 1 

ret_shape[axis[1]] = 1 

ret = ret.reshape(ret_shape) 

return ret 

else: 

raise ValueError("Improper number of dimensions to norm.") 

 

 

# multi_dot 

 

def _multidot_dispatcher(arrays): 

return arrays 

 

 

@array_function_dispatch(_multidot_dispatcher) 

def multi_dot(arrays): 

""" 

Compute the dot product of two or more arrays in a single function call, 

while automatically selecting the fastest evaluation order. 

 

`multi_dot` chains `numpy.dot` and uses optimal parenthesization 

of the matrices [1]_ [2]_. Depending on the shapes of the matrices, 

this can speed up the multiplication a lot. 

 

If the first argument is 1-D it is treated as a row vector. 

If the last argument is 1-D it is treated as a column vector. 

The other arguments must be 2-D. 

 

Think of `multi_dot` as:: 

 

def multi_dot(arrays): return functools.reduce(np.dot, arrays) 

 

 

Parameters 

---------- 

arrays : sequence of array_like 

If the first argument is 1-D it is treated as row vector. 

If the last argument is 1-D it is treated as column vector. 

The other arguments must be 2-D. 

 

Returns 

------- 

output : ndarray 

Returns the dot product of the supplied arrays. 

 

See Also 

-------- 

dot : dot multiplication with two arguments. 

 

References 

---------- 

 

.. [1] Cormen, "Introduction to Algorithms", Chapter 15.2, p. 370-378 

.. [2] https://en.wikipedia.org/wiki/Matrix_chain_multiplication 

 

Examples 

-------- 

`multi_dot` allows you to write:: 

 

>>> from numpy.linalg import multi_dot 

>>> # Prepare some data 

>>> A = np.random.random(10000, 100) 

>>> B = np.random.random(100, 1000) 

>>> C = np.random.random(1000, 5) 

>>> D = np.random.random(5, 333) 

>>> # the actual dot multiplication 

>>> multi_dot([A, B, C, D]) 

 

instead of:: 

 

>>> np.dot(np.dot(np.dot(A, B), C), D) 

>>> # or 

>>> A.dot(B).dot(C).dot(D) 

 

Notes 

----- 

The cost for a matrix multiplication can be calculated with the 

following function:: 

 

def cost(A, B): 

return A.shape[0] * A.shape[1] * B.shape[1] 

 

Let's assume we have three matrices 

:math:`A_{10x100}, B_{100x5}, C_{5x50}`. 

 

The costs for the two different parenthesizations are as follows:: 

 

cost((AB)C) = 10*100*5 + 10*5*50 = 5000 + 2500 = 7500 

cost(A(BC)) = 10*100*50 + 100*5*50 = 50000 + 25000 = 75000 

 

""" 

n = len(arrays) 

# optimization only makes sense for len(arrays) > 2 

if n < 2: 

raise ValueError("Expecting at least two arrays.") 

elif n == 2: 

return dot(arrays[0], arrays[1]) 

 

arrays = [asanyarray(a) for a in arrays] 

 

# save original ndim to reshape the result array into the proper form later 

ndim_first, ndim_last = arrays[0].ndim, arrays[-1].ndim 

# Explicitly convert vectors to 2D arrays to keep the logic of the internal 

# _multi_dot_* functions as simple as possible. 

if arrays[0].ndim == 1: 

arrays[0] = atleast_2d(arrays[0]) 

if arrays[-1].ndim == 1: 

arrays[-1] = atleast_2d(arrays[-1]).T 

_assertRank2(*arrays) 

 

# _multi_dot_three is much faster than _multi_dot_matrix_chain_order 

if n == 3: 

result = _multi_dot_three(arrays[0], arrays[1], arrays[2]) 

else: 

order = _multi_dot_matrix_chain_order(arrays) 

result = _multi_dot(arrays, order, 0, n - 1) 

 

# return proper shape 

if ndim_first == 1 and ndim_last == 1: 

return result[0, 0] # scalar 

elif ndim_first == 1 or ndim_last == 1: 

return result.ravel() # 1-D 

else: 

return result 

 

 

def _multi_dot_three(A, B, C): 

""" 

Find the best order for three arrays and do the multiplication. 

 

For three arguments `_multi_dot_three` is approximately 15 times faster 

than `_multi_dot_matrix_chain_order` 

 

""" 

a0, a1b0 = A.shape 

b1c0, c1 = C.shape 

# cost1 = cost((AB)C) = a0*a1b0*b1c0 + a0*b1c0*c1 

cost1 = a0 * b1c0 * (a1b0 + c1) 

# cost2 = cost(A(BC)) = a1b0*b1c0*c1 + a0*a1b0*c1 

cost2 = a1b0 * c1 * (a0 + b1c0) 

 

if cost1 < cost2: 

return dot(dot(A, B), C) 

else: 

return dot(A, dot(B, C)) 

 

 

def _multi_dot_matrix_chain_order(arrays, return_costs=False): 

""" 

Return a np.array that encodes the optimal order of mutiplications. 

 

The optimal order array is then used by `_multi_dot()` to do the 

multiplication. 

 

Also return the cost matrix if `return_costs` is `True` 

 

The implementation CLOSELY follows Cormen, "Introduction to Algorithms", 

Chapter 15.2, p. 370-378. Note that Cormen uses 1-based indices. 

 

cost[i, j] = min([ 

cost[prefix] + cost[suffix] + cost_mult(prefix, suffix) 

for k in range(i, j)]) 

 

""" 

n = len(arrays) 

# p stores the dimensions of the matrices 

# Example for p: A_{10x100}, B_{100x5}, C_{5x50} --> p = [10, 100, 5, 50] 

p = [a.shape[0] for a in arrays] + [arrays[-1].shape[1]] 

# m is a matrix of costs of the subproblems 

# m[i,j]: min number of scalar multiplications needed to compute A_{i..j} 

m = zeros((n, n), dtype=double) 

# s is the actual ordering 

# s[i, j] is the value of k at which we split the product A_i..A_j 

s = empty((n, n), dtype=intp) 

 

for l in range(1, n): 

for i in range(n - l): 

j = i + l 

m[i, j] = Inf 

for k in range(i, j): 

q = m[i, k] + m[k+1, j] + p[i]*p[k+1]*p[j+1] 

if q < m[i, j]: 

m[i, j] = q 

s[i, j] = k # Note that Cormen uses 1-based index 

 

return (s, m) if return_costs else s 

 

 

def _multi_dot(arrays, order, i, j): 

"""Actually do the multiplication with the given order.""" 

if i == j: 

return arrays[i] 

else: 

return dot(_multi_dot(arrays, order, i, order[i, j]), 

_multi_dot(arrays, order, order[i, j] + 1, j))