1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

""" 

============= 

Masked Arrays 

============= 

 

Arrays sometimes contain invalid or missing data. When doing operations 

on such arrays, we wish to suppress invalid values, which is the purpose masked 

arrays fulfill (an example of typical use is given below). 

 

For example, examine the following array: 

 

>>> x = np.array([2, 1, 3, np.nan, 5, 2, 3, np.nan]) 

 

When we try to calculate the mean of the data, the result is undetermined: 

 

>>> np.mean(x) 

nan 

 

The mean is calculated using roughly ``np.sum(x)/len(x)``, but since 

any number added to ``NaN`` [1]_ produces ``NaN``, this doesn't work. Enter 

masked arrays: 

 

>>> m = np.ma.masked_array(x, np.isnan(x)) 

>>> m 

masked_array(data = [2.0 1.0 3.0 -- 5.0 2.0 3.0 --], 

mask = [False False False True False False False True], 

fill_value=1e+20) 

 

Here, we construct a masked array that suppress all ``NaN`` values. We 

may now proceed to calculate the mean of the other values: 

 

>>> np.mean(m) 

2.6666666666666665 

 

.. [1] Not-a-Number, a floating point value that is the result of an 

invalid operation. 

 

.. moduleauthor:: Pierre Gerard-Marchant 

.. moduleauthor:: Jarrod Millman 

 

""" 

from __future__ import division, absolute_import, print_function 

 

from . import core 

from .core import * 

 

from . import extras 

from .extras import * 

 

__all__ = ['core', 'extras'] 

__all__ += core.__all__ 

__all__ += extras.__all__ 

 

from numpy._pytesttester import PytestTester 

test = PytestTester(__name__) 

del PytestTester