1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

""" 

Masked arrays add-ons. 

 

A collection of utilities for `numpy.ma`. 

 

:author: Pierre Gerard-Marchant 

:contact: pierregm_at_uga_dot_edu 

:version: $Id: extras.py 3473 2007-10-29 15:18:13Z jarrod.millman $ 

 

""" 

from __future__ import division, absolute_import, print_function 

 

__all__ = [ 

'apply_along_axis', 'apply_over_axes', 'atleast_1d', 'atleast_2d', 

'atleast_3d', 'average', 'clump_masked', 'clump_unmasked', 

'column_stack', 'compress_cols', 'compress_nd', 'compress_rowcols', 

'compress_rows', 'count_masked', 'corrcoef', 'cov', 'diagflat', 'dot', 

'dstack', 'ediff1d', 'flatnotmasked_contiguous', 'flatnotmasked_edges', 

'hsplit', 'hstack', 'isin', 'in1d', 'intersect1d', 'mask_cols', 'mask_rowcols', 

'mask_rows', 'masked_all', 'masked_all_like', 'median', 'mr_', 

'notmasked_contiguous', 'notmasked_edges', 'polyfit', 'row_stack', 

'setdiff1d', 'setxor1d', 'stack', 'unique', 'union1d', 'vander', 'vstack', 

] 

 

import itertools 

import warnings 

 

from . import core as ma 

from .core import ( 

MaskedArray, MAError, add, array, asarray, concatenate, filled, count, 

getmask, getmaskarray, make_mask_descr, masked, masked_array, mask_or, 

nomask, ones, sort, zeros, getdata, get_masked_subclass, dot, 

mask_rowcols 

) 

 

import numpy as np 

from numpy import ndarray, array as nxarray 

import numpy.core.umath as umath 

from numpy.core.multiarray import normalize_axis_index 

from numpy.core.numeric import normalize_axis_tuple 

from numpy.lib.function_base import _ureduce 

from numpy.lib.index_tricks import AxisConcatenator 

 

 

def issequence(seq): 

""" 

Is seq a sequence (ndarray, list or tuple)? 

 

""" 

return isinstance(seq, (ndarray, tuple, list)) 

 

 

def count_masked(arr, axis=None): 

""" 

Count the number of masked elements along the given axis. 

 

Parameters 

---------- 

arr : array_like 

An array with (possibly) masked elements. 

axis : int, optional 

Axis along which to count. If None (default), a flattened 

version of the array is used. 

 

Returns 

------- 

count : int, ndarray 

The total number of masked elements (axis=None) or the number 

of masked elements along each slice of the given axis. 

 

See Also 

-------- 

MaskedArray.count : Count non-masked elements. 

 

Examples 

-------- 

>>> import numpy.ma as ma 

>>> a = np.arange(9).reshape((3,3)) 

>>> a = ma.array(a) 

>>> a[1, 0] = ma.masked 

>>> a[1, 2] = ma.masked 

>>> a[2, 1] = ma.masked 

>>> a 

masked_array(data = 

[[0 1 2] 

[-- 4 --] 

[6 -- 8]], 

mask = 

[[False False False] 

[ True False True] 

[False True False]], 

fill_value=999999) 

>>> ma.count_masked(a) 

3 

 

When the `axis` keyword is used an array is returned. 

 

>>> ma.count_masked(a, axis=0) 

array([1, 1, 1]) 

>>> ma.count_masked(a, axis=1) 

array([0, 2, 1]) 

 

""" 

m = getmaskarray(arr) 

return m.sum(axis) 

 

 

def masked_all(shape, dtype=float): 

""" 

Empty masked array with all elements masked. 

 

Return an empty masked array of the given shape and dtype, where all the 

data are masked. 

 

Parameters 

---------- 

shape : tuple 

Shape of the required MaskedArray. 

dtype : dtype, optional 

Data type of the output. 

 

Returns 

------- 

a : MaskedArray 

A masked array with all data masked. 

 

See Also 

-------- 

masked_all_like : Empty masked array modelled on an existing array. 

 

Examples 

-------- 

>>> import numpy.ma as ma 

>>> ma.masked_all((3, 3)) 

masked_array(data = 

[[-- -- --] 

[-- -- --] 

[-- -- --]], 

mask = 

[[ True True True] 

[ True True True] 

[ True True True]], 

fill_value=1e+20) 

 

The `dtype` parameter defines the underlying data type. 

 

>>> a = ma.masked_all((3, 3)) 

>>> a.dtype 

dtype('float64') 

>>> a = ma.masked_all((3, 3), dtype=np.int32) 

>>> a.dtype 

dtype('int32') 

 

""" 

a = masked_array(np.empty(shape, dtype), 

mask=np.ones(shape, make_mask_descr(dtype))) 

return a 

 

 

def masked_all_like(arr): 

""" 

Empty masked array with the properties of an existing array. 

 

Return an empty masked array of the same shape and dtype as 

the array `arr`, where all the data are masked. 

 

Parameters 

---------- 

arr : ndarray 

An array describing the shape and dtype of the required MaskedArray. 

 

Returns 

------- 

a : MaskedArray 

A masked array with all data masked. 

 

Raises 

------ 

AttributeError 

If `arr` doesn't have a shape attribute (i.e. not an ndarray) 

 

See Also 

-------- 

masked_all : Empty masked array with all elements masked. 

 

Examples 

-------- 

>>> import numpy.ma as ma 

>>> arr = np.zeros((2, 3), dtype=np.float32) 

>>> arr 

array([[ 0., 0., 0.], 

[ 0., 0., 0.]], dtype=float32) 

>>> ma.masked_all_like(arr) 

masked_array(data = 

[[-- -- --] 

[-- -- --]], 

mask = 

[[ True True True] 

[ True True True]], 

fill_value=1e+20) 

 

The dtype of the masked array matches the dtype of `arr`. 

 

>>> arr.dtype 

dtype('float32') 

>>> ma.masked_all_like(arr).dtype 

dtype('float32') 

 

""" 

a = np.empty_like(arr).view(MaskedArray) 

a._mask = np.ones(a.shape, dtype=make_mask_descr(a.dtype)) 

return a 

 

 

#####-------------------------------------------------------------------------- 

#---- --- Standard functions --- 

#####-------------------------------------------------------------------------- 

class _fromnxfunction(object): 

""" 

Defines a wrapper to adapt NumPy functions to masked arrays. 

 

 

An instance of `_fromnxfunction` can be called with the same parameters 

as the wrapped NumPy function. The docstring of `newfunc` is adapted from 

the wrapped function as well, see `getdoc`. 

 

This class should not be used directly. Instead, one of its extensions that 

provides support for a specific type of input should be used. 

 

Parameters 

---------- 

funcname : str 

The name of the function to be adapted. The function should be 

in the NumPy namespace (i.e. ``np.funcname``). 

 

""" 

 

def __init__(self, funcname): 

self.__name__ = funcname 

self.__doc__ = self.getdoc() 

 

def getdoc(self): 

""" 

Retrieve the docstring and signature from the function. 

 

The ``__doc__`` attribute of the function is used as the docstring for 

the new masked array version of the function. A note on application 

of the function to the mask is appended. 

 

.. warning:: 

If the function docstring already contained a Notes section, the 

new docstring will have two Notes sections instead of appending a note 

to the existing section. 

 

Parameters 

---------- 

None 

 

""" 

npfunc = getattr(np, self.__name__, None) 

doc = getattr(npfunc, '__doc__', None) 

if doc: 

sig = self.__name__ + ma.get_object_signature(npfunc) 

locdoc = "Notes\n-----\nThe function is applied to both the _data"\ 

" and the _mask, if any." 

return '\n'.join((sig, doc, locdoc)) 

return 

 

def __call__(self, *args, **params): 

pass 

 

 

class _fromnxfunction_single(_fromnxfunction): 

""" 

A version of `_fromnxfunction` that is called with a single array 

argument followed by auxiliary args that are passed verbatim for 

both the data and mask calls. 

""" 

def __call__(self, x, *args, **params): 

func = getattr(np, self.__name__) 

if isinstance(x, ndarray): 

_d = func(x.__array__(), *args, **params) 

_m = func(getmaskarray(x), *args, **params) 

return masked_array(_d, mask=_m) 

else: 

_d = func(np.asarray(x), *args, **params) 

_m = func(getmaskarray(x), *args, **params) 

return masked_array(_d, mask=_m) 

 

 

class _fromnxfunction_seq(_fromnxfunction): 

""" 

A version of `_fromnxfunction` that is called with a single sequence 

of arrays followed by auxiliary args that are passed verbatim for 

both the data and mask calls. 

""" 

def __call__(self, x, *args, **params): 

func = getattr(np, self.__name__) 

_d = func(tuple([np.asarray(a) for a in x]), *args, **params) 

_m = func(tuple([getmaskarray(a) for a in x]), *args, **params) 

return masked_array(_d, mask=_m) 

 

 

class _fromnxfunction_args(_fromnxfunction): 

""" 

A version of `_fromnxfunction` that is called with multiple array 

arguments. The first non-array-like input marks the beginning of the 

arguments that are passed verbatim for both the data and mask calls. 

Array arguments are processed independently and the results are 

returned in a list. If only one array is found, the return value is 

just the processed array instead of a list. 

""" 

def __call__(self, *args, **params): 

func = getattr(np, self.__name__) 

arrays = [] 

args = list(args) 

while len(args) > 0 and issequence(args[0]): 

arrays.append(args.pop(0)) 

res = [] 

for x in arrays: 

_d = func(np.asarray(x), *args, **params) 

_m = func(getmaskarray(x), *args, **params) 

res.append(masked_array(_d, mask=_m)) 

if len(arrays) == 1: 

return res[0] 

return res 

 

 

class _fromnxfunction_allargs(_fromnxfunction): 

""" 

A version of `_fromnxfunction` that is called with multiple array 

arguments. Similar to `_fromnxfunction_args` except that all args 

are converted to arrays even if they are not so already. This makes 

it possible to process scalars as 1-D arrays. Only keyword arguments 

are passed through verbatim for the data and mask calls. Arrays 

arguments are processed independently and the results are returned 

in a list. If only one arg is present, the return value is just the 

processed array instead of a list. 

""" 

def __call__(self, *args, **params): 

func = getattr(np, self.__name__) 

res = [] 

for x in args: 

_d = func(np.asarray(x), **params) 

_m = func(getmaskarray(x), **params) 

res.append(masked_array(_d, mask=_m)) 

if len(args) == 1: 

return res[0] 

return res 

 

 

atleast_1d = _fromnxfunction_allargs('atleast_1d') 

atleast_2d = _fromnxfunction_allargs('atleast_2d') 

atleast_3d = _fromnxfunction_allargs('atleast_3d') 

 

vstack = row_stack = _fromnxfunction_seq('vstack') 

hstack = _fromnxfunction_seq('hstack') 

column_stack = _fromnxfunction_seq('column_stack') 

dstack = _fromnxfunction_seq('dstack') 

stack = _fromnxfunction_seq('stack') 

 

hsplit = _fromnxfunction_single('hsplit') 

 

diagflat = _fromnxfunction_single('diagflat') 

 

 

#####-------------------------------------------------------------------------- 

#---- 

#####-------------------------------------------------------------------------- 

def flatten_inplace(seq): 

"""Flatten a sequence in place.""" 

k = 0 

while (k != len(seq)): 

while hasattr(seq[k], '__iter__'): 

seq[k:(k + 1)] = seq[k] 

k += 1 

return seq 

 

 

def apply_along_axis(func1d, axis, arr, *args, **kwargs): 

""" 

(This docstring should be overwritten) 

""" 

arr = array(arr, copy=False, subok=True) 

nd = arr.ndim 

axis = normalize_axis_index(axis, nd) 

ind = [0] * (nd - 1) 

i = np.zeros(nd, 'O') 

indlist = list(range(nd)) 

indlist.remove(axis) 

i[axis] = slice(None, None) 

outshape = np.asarray(arr.shape).take(indlist) 

i.put(indlist, ind) 

j = i.copy() 

res = func1d(arr[tuple(i.tolist())], *args, **kwargs) 

# if res is a number, then we have a smaller output array 

asscalar = np.isscalar(res) 

if not asscalar: 

try: 

len(res) 

except TypeError: 

asscalar = True 

# Note: we shouldn't set the dtype of the output from the first result 

# so we force the type to object, and build a list of dtypes. We'll 

# just take the largest, to avoid some downcasting 

dtypes = [] 

if asscalar: 

dtypes.append(np.asarray(res).dtype) 

outarr = zeros(outshape, object) 

outarr[tuple(ind)] = res 

Ntot = np.product(outshape) 

k = 1 

while k < Ntot: 

# increment the index 

ind[-1] += 1 

n = -1 

while (ind[n] >= outshape[n]) and (n > (1 - nd)): 

ind[n - 1] += 1 

ind[n] = 0 

n -= 1 

i.put(indlist, ind) 

res = func1d(arr[tuple(i.tolist())], *args, **kwargs) 

outarr[tuple(ind)] = res 

dtypes.append(asarray(res).dtype) 

k += 1 

else: 

res = array(res, copy=False, subok=True) 

j = i.copy() 

j[axis] = ([slice(None, None)] * res.ndim) 

j.put(indlist, ind) 

Ntot = np.product(outshape) 

holdshape = outshape 

outshape = list(arr.shape) 

outshape[axis] = res.shape 

dtypes.append(asarray(res).dtype) 

outshape = flatten_inplace(outshape) 

outarr = zeros(outshape, object) 

outarr[tuple(flatten_inplace(j.tolist()))] = res 

k = 1 

while k < Ntot: 

# increment the index 

ind[-1] += 1 

n = -1 

while (ind[n] >= holdshape[n]) and (n > (1 - nd)): 

ind[n - 1] += 1 

ind[n] = 0 

n -= 1 

i.put(indlist, ind) 

j.put(indlist, ind) 

res = func1d(arr[tuple(i.tolist())], *args, **kwargs) 

outarr[tuple(flatten_inplace(j.tolist()))] = res 

dtypes.append(asarray(res).dtype) 

k += 1 

max_dtypes = np.dtype(np.asarray(dtypes).max()) 

if not hasattr(arr, '_mask'): 

result = np.asarray(outarr, dtype=max_dtypes) 

else: 

result = asarray(outarr, dtype=max_dtypes) 

result.fill_value = ma.default_fill_value(result) 

return result 

apply_along_axis.__doc__ = np.apply_along_axis.__doc__ 

 

 

def apply_over_axes(func, a, axes): 

""" 

(This docstring will be overwritten) 

""" 

val = asarray(a) 

N = a.ndim 

if array(axes).ndim == 0: 

axes = (axes,) 

for axis in axes: 

if axis < 0: 

axis = N + axis 

args = (val, axis) 

res = func(*args) 

if res.ndim == val.ndim: 

val = res 

else: 

res = ma.expand_dims(res, axis) 

if res.ndim == val.ndim: 

val = res 

else: 

raise ValueError("function is not returning " 

"an array of the correct shape") 

return val 

 

if apply_over_axes.__doc__ is not None: 

apply_over_axes.__doc__ = np.apply_over_axes.__doc__[ 

:np.apply_over_axes.__doc__.find('Notes')].rstrip() + \ 

""" 

 

Examples 

-------- 

>>> a = ma.arange(24).reshape(2,3,4) 

>>> a[:,0,1] = ma.masked 

>>> a[:,1,:] = ma.masked 

>>> print(a) 

[[[0 -- 2 3] 

[-- -- -- --] 

[8 9 10 11]] 

 

[[12 -- 14 15] 

[-- -- -- --] 

[20 21 22 23]]] 

>>> print(ma.apply_over_axes(ma.sum, a, [0,2])) 

[[[46] 

[--] 

[124]]] 

 

Tuple axis arguments to ufuncs are equivalent: 

 

>>> print(ma.sum(a, axis=(0,2)).reshape((1,-1,1))) 

[[[46] 

[--] 

[124]]] 

""" 

 

 

def average(a, axis=None, weights=None, returned=False): 

""" 

Return the weighted average of array over the given axis. 

 

Parameters 

---------- 

a : array_like 

Data to be averaged. 

Masked entries are not taken into account in the computation. 

axis : int, optional 

Axis along which to average `a`. If `None`, averaging is done over 

the flattened array. 

weights : array_like, optional 

The importance that each element has in the computation of the average. 

The weights array can either be 1-D (in which case its length must be 

the size of `a` along the given axis) or of the same shape as `a`. 

If ``weights=None``, then all data in `a` are assumed to have a 

weight equal to one. If `weights` is complex, the imaginary parts 

are ignored. 

returned : bool, optional 

Flag indicating whether a tuple ``(result, sum of weights)`` 

should be returned as output (True), or just the result (False). 

Default is False. 

 

Returns 

------- 

average, [sum_of_weights] : (tuple of) scalar or MaskedArray 

The average along the specified axis. When returned is `True`, 

return a tuple with the average as the first element and the sum 

of the weights as the second element. The return type is `np.float64` 

if `a` is of integer type and floats smaller than `float64`, or the 

input data-type, otherwise. If returned, `sum_of_weights` is always 

`float64`. 

 

Examples 

-------- 

>>> a = np.ma.array([1., 2., 3., 4.], mask=[False, False, True, True]) 

>>> np.ma.average(a, weights=[3, 1, 0, 0]) 

1.25 

 

>>> x = np.ma.arange(6.).reshape(3, 2) 

>>> print(x) 

[[ 0. 1.] 

[ 2. 3.] 

[ 4. 5.]] 

>>> avg, sumweights = np.ma.average(x, axis=0, weights=[1, 2, 3], 

... returned=True) 

>>> print(avg) 

[2.66666666667 3.66666666667] 

 

""" 

a = asarray(a) 

m = getmask(a) 

 

# inspired by 'average' in numpy/lib/function_base.py 

 

if weights is None: 

avg = a.mean(axis) 

scl = avg.dtype.type(a.count(axis)) 

else: 

wgt = np.asanyarray(weights) 

 

if issubclass(a.dtype.type, (np.integer, np.bool_)): 

result_dtype = np.result_type(a.dtype, wgt.dtype, 'f8') 

else: 

result_dtype = np.result_type(a.dtype, wgt.dtype) 

 

# Sanity checks 

if a.shape != wgt.shape: 

if axis is None: 

raise TypeError( 

"Axis must be specified when shapes of a and weights " 

"differ.") 

if wgt.ndim != 1: 

raise TypeError( 

"1D weights expected when shapes of a and weights differ.") 

if wgt.shape[0] != a.shape[axis]: 

raise ValueError( 

"Length of weights not compatible with specified axis.") 

 

# setup wgt to broadcast along axis 

wgt = np.broadcast_to(wgt, (a.ndim-1)*(1,) + wgt.shape) 

wgt = wgt.swapaxes(-1, axis) 

 

if m is not nomask: 

wgt = wgt*(~a.mask) 

 

scl = wgt.sum(axis=axis, dtype=result_dtype) 

avg = np.multiply(a, wgt, dtype=result_dtype).sum(axis)/scl 

 

if returned: 

if scl.shape != avg.shape: 

scl = np.broadcast_to(scl, avg.shape).copy() 

return avg, scl 

else: 

return avg 

 

 

def median(a, axis=None, out=None, overwrite_input=False, keepdims=False): 

""" 

Compute the median along the specified axis. 

 

Returns the median of the array elements. 

 

Parameters 

---------- 

a : array_like 

Input array or object that can be converted to an array. 

axis : int, optional 

Axis along which the medians are computed. The default (None) is 

to compute the median along a flattened version of the array. 

out : ndarray, optional 

Alternative output array in which to place the result. It must 

have the same shape and buffer length as the expected output 

but the type will be cast if necessary. 

overwrite_input : bool, optional 

If True, then allow use of memory of input array (a) for 

calculations. The input array will be modified by the call to 

median. This will save memory when you do not need to preserve 

the contents of the input array. Treat the input as undefined, 

but it will probably be fully or partially sorted. Default is 

False. Note that, if `overwrite_input` is True, and the input 

is not already an `ndarray`, an error will be raised. 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left 

in the result as dimensions with size one. With this option, 

the result will broadcast correctly against the input array. 

 

.. versionadded:: 1.10.0 

 

Returns 

------- 

median : ndarray 

A new array holding the result is returned unless out is 

specified, in which case a reference to out is returned. 

Return data-type is `float64` for integers and floats smaller than 

`float64`, or the input data-type, otherwise. 

 

See Also 

-------- 

mean 

 

Notes 

----- 

Given a vector ``V`` with ``N`` non masked values, the median of ``V`` 

is the middle value of a sorted copy of ``V`` (``Vs``) - i.e. 

``Vs[(N-1)/2]``, when ``N`` is odd, or ``{Vs[N/2 - 1] + Vs[N/2]}/2`` 

when ``N`` is even. 

 

Examples 

-------- 

>>> x = np.ma.array(np.arange(8), mask=[0]*4 + [1]*4) 

>>> np.ma.median(x) 

1.5 

 

>>> x = np.ma.array(np.arange(10).reshape(2, 5), mask=[0]*6 + [1]*4) 

>>> np.ma.median(x) 

2.5 

>>> np.ma.median(x, axis=-1, overwrite_input=True) 

masked_array(data = [ 2. 5.], 

mask = False, 

fill_value = 1e+20) 

 

""" 

if not hasattr(a, 'mask'): 

m = np.median(getdata(a, subok=True), axis=axis, 

out=out, overwrite_input=overwrite_input, 

keepdims=keepdims) 

if isinstance(m, np.ndarray) and 1 <= m.ndim: 

return masked_array(m, copy=False) 

else: 

return m 

 

r, k = _ureduce(a, func=_median, axis=axis, out=out, 

overwrite_input=overwrite_input) 

if keepdims: 

return r.reshape(k) 

else: 

return r 

 

def _median(a, axis=None, out=None, overwrite_input=False): 

# when an unmasked NaN is present return it, so we need to sort the NaN 

# values behind the mask 

if np.issubdtype(a.dtype, np.inexact): 

fill_value = np.inf 

else: 

fill_value = None 

if overwrite_input: 

if axis is None: 

asorted = a.ravel() 

asorted.sort(fill_value=fill_value) 

else: 

a.sort(axis=axis, fill_value=fill_value) 

asorted = a 

else: 

asorted = sort(a, axis=axis, fill_value=fill_value) 

 

if axis is None: 

axis = 0 

else: 

axis = normalize_axis_index(axis, asorted.ndim) 

 

if asorted.shape[axis] == 0: 

# for empty axis integer indices fail so use slicing to get same result 

# as median (which is mean of empty slice = nan) 

indexer = [slice(None)] * asorted.ndim 

indexer[axis] = slice(0, 0) 

indexer = tuple(indexer) 

return np.ma.mean(asorted[indexer], axis=axis, out=out) 

 

if asorted.ndim == 1: 

counts = count(asorted) 

idx, odd = divmod(count(asorted), 2) 

mid = asorted[idx + odd - 1:idx + 1] 

if np.issubdtype(asorted.dtype, np.inexact) and asorted.size > 0: 

# avoid inf / x = masked 

s = mid.sum(out=out) 

if not odd: 

s = np.true_divide(s, 2., casting='safe', out=out) 

s = np.lib.utils._median_nancheck(asorted, s, axis, out) 

else: 

s = mid.mean(out=out) 

 

# if result is masked either the input contained enough 

# minimum_fill_value so that it would be the median or all values 

# masked 

if np.ma.is_masked(s) and not np.all(asorted.mask): 

return np.ma.minimum_fill_value(asorted) 

return s 

 

counts = count(asorted, axis=axis, keepdims=True) 

h = counts // 2 

 

# duplicate high if odd number of elements so mean does nothing 

odd = counts % 2 == 1 

l = np.where(odd, h, h-1) 

 

lh = np.concatenate([l,h], axis=axis) 

 

# get low and high median 

low_high = np.take_along_axis(asorted, lh, axis=axis) 

 

def replace_masked(s): 

# Replace masked entries with minimum_full_value unless it all values 

# are masked. This is required as the sort order of values equal or 

# larger than the fill value is undefined and a valid value placed 

# elsewhere, e.g. [4, --, inf]. 

if np.ma.is_masked(s): 

rep = (~np.all(asorted.mask, axis=axis, keepdims=True)) & s.mask 

s.data[rep] = np.ma.minimum_fill_value(asorted) 

s.mask[rep] = False 

 

replace_masked(low_high) 

 

if np.issubdtype(asorted.dtype, np.inexact): 

# avoid inf / x = masked 

s = np.ma.sum(low_high, axis=axis, out=out) 

np.true_divide(s.data, 2., casting='unsafe', out=s.data) 

 

s = np.lib.utils._median_nancheck(asorted, s, axis, out) 

else: 

s = np.ma.mean(low_high, axis=axis, out=out) 

 

return s 

 

 

def compress_nd(x, axis=None): 

"""Suppress slices from multiple dimensions which contain masked values. 

 

Parameters 

---------- 

x : array_like, MaskedArray 

The array to operate on. If not a MaskedArray instance (or if no array 

elements are masked, `x` is interpreted as a MaskedArray with `mask` 

set to `nomask`. 

axis : tuple of ints or int, optional 

Which dimensions to suppress slices from can be configured with this 

parameter. 

- If axis is a tuple of ints, those are the axes to suppress slices from. 

- If axis is an int, then that is the only axis to suppress slices from. 

- If axis is None, all axis are selected. 

 

Returns 

------- 

compress_array : ndarray 

The compressed array. 

""" 

x = asarray(x) 

m = getmask(x) 

# Set axis to tuple of ints 

if axis is None: 

axis = tuple(range(x.ndim)) 

else: 

axis = normalize_axis_tuple(axis, x.ndim) 

 

# Nothing is masked: return x 

if m is nomask or not m.any(): 

return x._data 

# All is masked: return empty 

if m.all(): 

return nxarray([]) 

# Filter elements through boolean indexing 

data = x._data 

for ax in axis: 

axes = tuple(list(range(ax)) + list(range(ax + 1, x.ndim))) 

data = data[(slice(None),)*ax + (~m.any(axis=axes),)] 

return data 

 

def compress_rowcols(x, axis=None): 

""" 

Suppress the rows and/or columns of a 2-D array that contain 

masked values. 

 

The suppression behavior is selected with the `axis` parameter. 

 

- If axis is None, both rows and columns are suppressed. 

- If axis is 0, only rows are suppressed. 

- If axis is 1 or -1, only columns are suppressed. 

 

Parameters 

---------- 

x : array_like, MaskedArray 

The array to operate on. If not a MaskedArray instance (or if no array 

elements are masked), `x` is interpreted as a MaskedArray with 

`mask` set to `nomask`. Must be a 2D array. 

axis : int, optional 

Axis along which to perform the operation. Default is None. 

 

Returns 

------- 

compressed_array : ndarray 

The compressed array. 

 

Examples 

-------- 

>>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], 

... [1, 0, 0], 

... [0, 0, 0]]) 

>>> x 

masked_array(data = 

[[-- 1 2] 

[-- 4 5] 

[6 7 8]], 

mask = 

[[ True False False] 

[ True False False] 

[False False False]], 

fill_value = 999999) 

 

>>> np.ma.compress_rowcols(x) 

array([[7, 8]]) 

>>> np.ma.compress_rowcols(x, 0) 

array([[6, 7, 8]]) 

>>> np.ma.compress_rowcols(x, 1) 

array([[1, 2], 

[4, 5], 

[7, 8]]) 

 

""" 

if asarray(x).ndim != 2: 

raise NotImplementedError("compress_rowcols works for 2D arrays only.") 

return compress_nd(x, axis=axis) 

 

 

def compress_rows(a): 

""" 

Suppress whole rows of a 2-D array that contain masked values. 

 

This is equivalent to ``np.ma.compress_rowcols(a, 0)``, see 

`extras.compress_rowcols` for details. 

 

See Also 

-------- 

extras.compress_rowcols 

 

""" 

a = asarray(a) 

if a.ndim != 2: 

raise NotImplementedError("compress_rows works for 2D arrays only.") 

return compress_rowcols(a, 0) 

 

def compress_cols(a): 

""" 

Suppress whole columns of a 2-D array that contain masked values. 

 

This is equivalent to ``np.ma.compress_rowcols(a, 1)``, see 

`extras.compress_rowcols` for details. 

 

See Also 

-------- 

extras.compress_rowcols 

 

""" 

a = asarray(a) 

if a.ndim != 2: 

raise NotImplementedError("compress_cols works for 2D arrays only.") 

return compress_rowcols(a, 1) 

 

def mask_rows(a, axis=None): 

""" 

Mask rows of a 2D array that contain masked values. 

 

This function is a shortcut to ``mask_rowcols`` with `axis` equal to 0. 

 

See Also 

-------- 

mask_rowcols : Mask rows and/or columns of a 2D array. 

masked_where : Mask where a condition is met. 

 

Examples 

-------- 

>>> import numpy.ma as ma 

>>> a = np.zeros((3, 3), dtype=int) 

>>> a[1, 1] = 1 

>>> a 

array([[0, 0, 0], 

[0, 1, 0], 

[0, 0, 0]]) 

>>> a = ma.masked_equal(a, 1) 

>>> a 

masked_array(data = 

[[0 0 0] 

[0 -- 0] 

[0 0 0]], 

mask = 

[[False False False] 

[False True False] 

[False False False]], 

fill_value=999999) 

>>> ma.mask_rows(a) 

masked_array(data = 

[[0 0 0] 

[-- -- --] 

[0 0 0]], 

mask = 

[[False False False] 

[ True True True] 

[False False False]], 

fill_value=999999) 

 

""" 

return mask_rowcols(a, 0) 

 

def mask_cols(a, axis=None): 

""" 

Mask columns of a 2D array that contain masked values. 

 

This function is a shortcut to ``mask_rowcols`` with `axis` equal to 1. 

 

See Also 

-------- 

mask_rowcols : Mask rows and/or columns of a 2D array. 

masked_where : Mask where a condition is met. 

 

Examples 

-------- 

>>> import numpy.ma as ma 

>>> a = np.zeros((3, 3), dtype=int) 

>>> a[1, 1] = 1 

>>> a 

array([[0, 0, 0], 

[0, 1, 0], 

[0, 0, 0]]) 

>>> a = ma.masked_equal(a, 1) 

>>> a 

masked_array(data = 

[[0 0 0] 

[0 -- 0] 

[0 0 0]], 

mask = 

[[False False False] 

[False True False] 

[False False False]], 

fill_value=999999) 

>>> ma.mask_cols(a) 

masked_array(data = 

[[0 -- 0] 

[0 -- 0] 

[0 -- 0]], 

mask = 

[[False True False] 

[False True False] 

[False True False]], 

fill_value=999999) 

 

""" 

return mask_rowcols(a, 1) 

 

 

#####-------------------------------------------------------------------------- 

#---- --- arraysetops --- 

#####-------------------------------------------------------------------------- 

 

def ediff1d(arr, to_end=None, to_begin=None): 

""" 

Compute the differences between consecutive elements of an array. 

 

This function is the equivalent of `numpy.ediff1d` that takes masked 

values into account, see `numpy.ediff1d` for details. 

 

See Also 

-------- 

numpy.ediff1d : Equivalent function for ndarrays. 

 

""" 

arr = ma.asanyarray(arr).flat 

ed = arr[1:] - arr[:-1] 

arrays = [ed] 

# 

if to_begin is not None: 

arrays.insert(0, to_begin) 

if to_end is not None: 

arrays.append(to_end) 

# 

if len(arrays) != 1: 

# We'll save ourselves a copy of a potentially large array in the common 

# case where neither to_begin or to_end was given. 

ed = hstack(arrays) 

# 

return ed 

 

 

def unique(ar1, return_index=False, return_inverse=False): 

""" 

Finds the unique elements of an array. 

 

Masked values are considered the same element (masked). The output array 

is always a masked array. See `numpy.unique` for more details. 

 

See Also 

-------- 

numpy.unique : Equivalent function for ndarrays. 

 

""" 

output = np.unique(ar1, 

return_index=return_index, 

return_inverse=return_inverse) 

if isinstance(output, tuple): 

output = list(output) 

output[0] = output[0].view(MaskedArray) 

output = tuple(output) 

else: 

output = output.view(MaskedArray) 

return output 

 

 

def intersect1d(ar1, ar2, assume_unique=False): 

""" 

Returns the unique elements common to both arrays. 

 

Masked values are considered equal one to the other. 

The output is always a masked array. 

 

See `numpy.intersect1d` for more details. 

 

See Also 

-------- 

numpy.intersect1d : Equivalent function for ndarrays. 

 

Examples 

-------- 

>>> x = array([1, 3, 3, 3], mask=[0, 0, 0, 1]) 

>>> y = array([3, 1, 1, 1], mask=[0, 0, 0, 1]) 

>>> intersect1d(x, y) 

masked_array(data = [1 3 --], 

mask = [False False True], 

fill_value = 999999) 

 

""" 

if assume_unique: 

aux = ma.concatenate((ar1, ar2)) 

else: 

# Might be faster than unique( intersect1d( ar1, ar2 ) )? 

aux = ma.concatenate((unique(ar1), unique(ar2))) 

aux.sort() 

return aux[:-1][aux[1:] == aux[:-1]] 

 

 

def setxor1d(ar1, ar2, assume_unique=False): 

""" 

Set exclusive-or of 1-D arrays with unique elements. 

 

The output is always a masked array. See `numpy.setxor1d` for more details. 

 

See Also 

-------- 

numpy.setxor1d : Equivalent function for ndarrays. 

 

""" 

if not assume_unique: 

ar1 = unique(ar1) 

ar2 = unique(ar2) 

 

aux = ma.concatenate((ar1, ar2)) 

if aux.size == 0: 

return aux 

aux.sort() 

auxf = aux.filled() 

# flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0 

flag = ma.concatenate(([True], (auxf[1:] != auxf[:-1]), [True])) 

# flag2 = ediff1d( flag ) == 0 

flag2 = (flag[1:] == flag[:-1]) 

return aux[flag2] 

 

 

def in1d(ar1, ar2, assume_unique=False, invert=False): 

""" 

Test whether each element of an array is also present in a second 

array. 

 

The output is always a masked array. See `numpy.in1d` for more details. 

 

We recommend using :func:`isin` instead of `in1d` for new code. 

 

See Also 

-------- 

isin : Version of this function that preserves the shape of ar1. 

numpy.in1d : Equivalent function for ndarrays. 

 

Notes 

----- 

.. versionadded:: 1.4.0 

 

""" 

if not assume_unique: 

ar1, rev_idx = unique(ar1, return_inverse=True) 

ar2 = unique(ar2) 

 

ar = ma.concatenate((ar1, ar2)) 

# We need this to be a stable sort, so always use 'mergesort' 

# here. The values from the first array should always come before 

# the values from the second array. 

order = ar.argsort(kind='mergesort') 

sar = ar[order] 

if invert: 

bool_ar = (sar[1:] != sar[:-1]) 

else: 

bool_ar = (sar[1:] == sar[:-1]) 

flag = ma.concatenate((bool_ar, [invert])) 

indx = order.argsort(kind='mergesort')[:len(ar1)] 

 

if assume_unique: 

return flag[indx] 

else: 

return flag[indx][rev_idx] 

 

 

def isin(element, test_elements, assume_unique=False, invert=False): 

""" 

Calculates `element in test_elements`, broadcasting over 

`element` only. 

 

The output is always a masked array of the same shape as `element`. 

See `numpy.isin` for more details. 

 

See Also 

-------- 

in1d : Flattened version of this function. 

numpy.isin : Equivalent function for ndarrays. 

 

Notes 

----- 

.. versionadded:: 1.13.0 

 

""" 

element = ma.asarray(element) 

return in1d(element, test_elements, assume_unique=assume_unique, 

invert=invert).reshape(element.shape) 

 

 

def union1d(ar1, ar2): 

""" 

Union of two arrays. 

 

The output is always a masked array. See `numpy.union1d` for more details. 

 

See also 

-------- 

numpy.union1d : Equivalent function for ndarrays. 

 

""" 

return unique(ma.concatenate((ar1, ar2), axis=None)) 

 

 

def setdiff1d(ar1, ar2, assume_unique=False): 

""" 

Set difference of 1D arrays with unique elements. 

 

The output is always a masked array. See `numpy.setdiff1d` for more 

details. 

 

See Also 

-------- 

numpy.setdiff1d : Equivalent function for ndarrays. 

 

Examples 

-------- 

>>> x = np.ma.array([1, 2, 3, 4], mask=[0, 1, 0, 1]) 

>>> np.ma.setdiff1d(x, [1, 2]) 

masked_array(data = [3 --], 

mask = [False True], 

fill_value = 999999) 

 

""" 

if assume_unique: 

ar1 = ma.asarray(ar1).ravel() 

else: 

ar1 = unique(ar1) 

ar2 = unique(ar2) 

return ar1[in1d(ar1, ar2, assume_unique=True, invert=True)] 

 

 

############################################################################### 

# Covariance # 

############################################################################### 

 

 

def _covhelper(x, y=None, rowvar=True, allow_masked=True): 

""" 

Private function for the computation of covariance and correlation 

coefficients. 

 

""" 

x = ma.array(x, ndmin=2, copy=True, dtype=float) 

xmask = ma.getmaskarray(x) 

# Quick exit if we can't process masked data 

if not allow_masked and xmask.any(): 

raise ValueError("Cannot process masked data.") 

# 

if x.shape[0] == 1: 

rowvar = True 

# Make sure that rowvar is either 0 or 1 

rowvar = int(bool(rowvar)) 

axis = 1 - rowvar 

if rowvar: 

tup = (slice(None), None) 

else: 

tup = (None, slice(None)) 

# 

if y is None: 

xnotmask = np.logical_not(xmask).astype(int) 

else: 

y = array(y, copy=False, ndmin=2, dtype=float) 

ymask = ma.getmaskarray(y) 

if not allow_masked and ymask.any(): 

raise ValueError("Cannot process masked data.") 

if xmask.any() or ymask.any(): 

if y.shape == x.shape: 

# Define some common mask 

common_mask = np.logical_or(xmask, ymask) 

if common_mask is not nomask: 

xmask = x._mask = y._mask = ymask = common_mask 

x._sharedmask = False 

y._sharedmask = False 

x = ma.concatenate((x, y), axis) 

xnotmask = np.logical_not(np.concatenate((xmask, ymask), axis)).astype(int) 

x -= x.mean(axis=rowvar)[tup] 

return (x, xnotmask, rowvar) 

 

 

def cov(x, y=None, rowvar=True, bias=False, allow_masked=True, ddof=None): 

""" 

Estimate the covariance matrix. 

 

Except for the handling of missing data this function does the same as 

`numpy.cov`. For more details and examples, see `numpy.cov`. 

 

By default, masked values are recognized as such. If `x` and `y` have the 

same shape, a common mask is allocated: if ``x[i,j]`` is masked, then 

``y[i,j]`` will also be masked. 

Setting `allow_masked` to False will raise an exception if values are 

missing in either of the input arrays. 

 

Parameters 

---------- 

x : array_like 

A 1-D or 2-D array containing multiple variables and observations. 

Each row of `x` represents a variable, and each column a single 

observation of all those variables. Also see `rowvar` below. 

y : array_like, optional 

An additional set of variables and observations. `y` has the same 

form as `x`. 

rowvar : bool, optional 

If `rowvar` is True (default), then each row represents a 

variable, with observations in the columns. Otherwise, the relationship 

is transposed: each column represents a variable, while the rows 

contain observations. 

bias : bool, optional 

Default normalization (False) is by ``(N-1)``, where ``N`` is the 

number of observations given (unbiased estimate). If `bias` is True, 

then normalization is by ``N``. This keyword can be overridden by 

the keyword ``ddof`` in numpy versions >= 1.5. 

allow_masked : bool, optional 

If True, masked values are propagated pair-wise: if a value is masked 

in `x`, the corresponding value is masked in `y`. 

If False, raises a `ValueError` exception when some values are missing. 

ddof : {None, int}, optional 

If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is 

the number of observations; this overrides the value implied by 

``bias``. The default value is ``None``. 

 

.. versionadded:: 1.5 

 

Raises 

------ 

ValueError 

Raised if some values are missing and `allow_masked` is False. 

 

See Also 

-------- 

numpy.cov 

 

""" 

# Check inputs 

if ddof is not None and ddof != int(ddof): 

raise ValueError("ddof must be an integer") 

# Set up ddof 

if ddof is None: 

if bias: 

ddof = 0 

else: 

ddof = 1 

 

(x, xnotmask, rowvar) = _covhelper(x, y, rowvar, allow_masked) 

if not rowvar: 

fact = np.dot(xnotmask.T, xnotmask) * 1. - ddof 

result = (dot(x.T, x.conj(), strict=False) / fact).squeeze() 

else: 

fact = np.dot(xnotmask, xnotmask.T) * 1. - ddof 

result = (dot(x, x.T.conj(), strict=False) / fact).squeeze() 

return result 

 

 

def corrcoef(x, y=None, rowvar=True, bias=np._NoValue, allow_masked=True, 

ddof=np._NoValue): 

""" 

Return Pearson product-moment correlation coefficients. 

 

Except for the handling of missing data this function does the same as 

`numpy.corrcoef`. For more details and examples, see `numpy.corrcoef`. 

 

Parameters 

---------- 

x : array_like 

A 1-D or 2-D array containing multiple variables and observations. 

Each row of `x` represents a variable, and each column a single 

observation of all those variables. Also see `rowvar` below. 

y : array_like, optional 

An additional set of variables and observations. `y` has the same 

shape as `x`. 

rowvar : bool, optional 

If `rowvar` is True (default), then each row represents a 

variable, with observations in the columns. Otherwise, the relationship 

is transposed: each column represents a variable, while the rows 

contain observations. 

bias : _NoValue, optional 

Has no effect, do not use. 

 

.. deprecated:: 1.10.0 

allow_masked : bool, optional 

If True, masked values are propagated pair-wise: if a value is masked 

in `x`, the corresponding value is masked in `y`. 

If False, raises an exception. Because `bias` is deprecated, this 

argument needs to be treated as keyword only to avoid a warning. 

ddof : _NoValue, optional 

Has no effect, do not use. 

 

.. deprecated:: 1.10.0 

 

See Also 

-------- 

numpy.corrcoef : Equivalent function in top-level NumPy module. 

cov : Estimate the covariance matrix. 

 

Notes 

----- 

This function accepts but discards arguments `bias` and `ddof`. This is 

for backwards compatibility with previous versions of this function. These 

arguments had no effect on the return values of the function and can be 

safely ignored in this and previous versions of numpy. 

""" 

msg = 'bias and ddof have no effect and are deprecated' 

if bias is not np._NoValue or ddof is not np._NoValue: 

# 2015-03-15, 1.10 

warnings.warn(msg, DeprecationWarning, stacklevel=2) 

# Get the data 

(x, xnotmask, rowvar) = _covhelper(x, y, rowvar, allow_masked) 

# Compute the covariance matrix 

if not rowvar: 

fact = np.dot(xnotmask.T, xnotmask) * 1. 

c = (dot(x.T, x.conj(), strict=False) / fact).squeeze() 

else: 

fact = np.dot(xnotmask, xnotmask.T) * 1. 

c = (dot(x, x.T.conj(), strict=False) / fact).squeeze() 

# Check whether we have a scalar 

try: 

diag = ma.diagonal(c) 

except ValueError: 

return 1 

# 

if xnotmask.all(): 

_denom = ma.sqrt(ma.multiply.outer(diag, diag)) 

else: 

_denom = diagflat(diag) 

_denom._sharedmask = False # We know return is always a copy 

n = x.shape[1 - rowvar] 

if rowvar: 

for i in range(n - 1): 

for j in range(i + 1, n): 

_x = mask_cols(vstack((x[i], x[j]))).var(axis=1) 

_denom[i, j] = _denom[j, i] = ma.sqrt(ma.multiply.reduce(_x)) 

else: 

for i in range(n - 1): 

for j in range(i + 1, n): 

_x = mask_cols( 

vstack((x[:, i], x[:, j]))).var(axis=1) 

_denom[i, j] = _denom[j, i] = ma.sqrt(ma.multiply.reduce(_x)) 

return c / _denom 

 

#####-------------------------------------------------------------------------- 

#---- --- Concatenation helpers --- 

#####-------------------------------------------------------------------------- 

 

class MAxisConcatenator(AxisConcatenator): 

""" 

Translate slice objects to concatenation along an axis. 

 

For documentation on usage, see `mr_class`. 

 

See Also 

-------- 

mr_class 

 

""" 

concatenate = staticmethod(concatenate) 

 

@classmethod 

def makemat(cls, arr): 

# There used to be a view as np.matrix here, but we may eventually 

# deprecate that class. In preparation, we use the unmasked version 

# to construct the matrix (with copy=False for backwards compatibility 

# with the .view) 

data = super(MAxisConcatenator, cls).makemat(arr.data, copy=False) 

return array(data, mask=arr.mask) 

 

def __getitem__(self, key): 

# matrix builder syntax, like 'a, b; c, d' 

if isinstance(key, str): 

raise MAError("Unavailable for masked array.") 

 

return super(MAxisConcatenator, self).__getitem__(key) 

 

 

class mr_class(MAxisConcatenator): 

""" 

Translate slice objects to concatenation along the first axis. 

 

This is the masked array version of `lib.index_tricks.RClass`. 

 

See Also 

-------- 

lib.index_tricks.RClass 

 

Examples 

-------- 

>>> np.ma.mr_[np.ma.array([1,2,3]), 0, 0, np.ma.array([4,5,6])] 

array([1, 2, 3, 0, 0, 4, 5, 6]) 

 

""" 

def __init__(self): 

MAxisConcatenator.__init__(self, 0) 

 

mr_ = mr_class() 

 

#####-------------------------------------------------------------------------- 

#---- Find unmasked data --- 

#####-------------------------------------------------------------------------- 

 

def flatnotmasked_edges(a): 

""" 

Find the indices of the first and last unmasked values. 

 

Expects a 1-D `MaskedArray`, returns None if all values are masked. 

 

Parameters 

---------- 

a : array_like 

Input 1-D `MaskedArray` 

 

Returns 

------- 

edges : ndarray or None 

The indices of first and last non-masked value in the array. 

Returns None if all values are masked. 

 

See Also 

-------- 

flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges, 

clump_masked, clump_unmasked 

 

Notes 

----- 

Only accepts 1-D arrays. 

 

Examples 

-------- 

>>> a = np.ma.arange(10) 

>>> flatnotmasked_edges(a) 

[0,-1] 

 

>>> mask = (a < 3) | (a > 8) | (a == 5) 

>>> a[mask] = np.ma.masked 

>>> np.array(a[~a.mask]) 

array([3, 4, 6, 7, 8]) 

 

>>> flatnotmasked_edges(a) 

array([3, 8]) 

 

>>> a[:] = np.ma.masked 

>>> print(flatnotmasked_edges(ma)) 

None 

 

""" 

m = getmask(a) 

if m is nomask or not np.any(m): 

return np.array([0, a.size - 1]) 

unmasked = np.flatnonzero(~m) 

if len(unmasked) > 0: 

return unmasked[[0, -1]] 

else: 

return None 

 

 

def notmasked_edges(a, axis=None): 

""" 

Find the indices of the first and last unmasked values along an axis. 

 

If all values are masked, return None. Otherwise, return a list 

of two tuples, corresponding to the indices of the first and last 

unmasked values respectively. 

 

Parameters 

---------- 

a : array_like 

The input array. 

axis : int, optional 

Axis along which to perform the operation. 

If None (default), applies to a flattened version of the array. 

 

Returns 

------- 

edges : ndarray or list 

An array of start and end indexes if there are any masked data in 

the array. If there are no masked data in the array, `edges` is a 

list of the first and last index. 

 

See Also 

-------- 

flatnotmasked_contiguous, flatnotmasked_edges, notmasked_contiguous, 

clump_masked, clump_unmasked 

 

Examples 

-------- 

>>> a = np.arange(9).reshape((3, 3)) 

>>> m = np.zeros_like(a) 

>>> m[1:, 1:] = 1 

 

>>> am = np.ma.array(a, mask=m) 

>>> np.array(am[~am.mask]) 

array([0, 1, 2, 3, 6]) 

 

>>> np.ma.notmasked_edges(ma) 

array([0, 6]) 

 

""" 

a = asarray(a) 

if axis is None or a.ndim == 1: 

return flatnotmasked_edges(a) 

m = getmaskarray(a) 

idx = array(np.indices(a.shape), mask=np.asarray([m] * a.ndim)) 

return [tuple([idx[i].min(axis).compressed() for i in range(a.ndim)]), 

tuple([idx[i].max(axis).compressed() for i in range(a.ndim)]), ] 

 

 

def flatnotmasked_contiguous(a): 

""" 

Find contiguous unmasked data in a masked array along the given axis. 

 

Parameters 

---------- 

a : narray 

The input array. 

 

Returns 

------- 

slice_list : list 

A sorted sequence of `slice` objects (start index, end index). 

 

..versionchanged:: 1.15.0 

Now returns an empty list instead of None for a fully masked array 

 

See Also 

-------- 

flatnotmasked_edges, notmasked_contiguous, notmasked_edges, 

clump_masked, clump_unmasked 

 

Notes 

----- 

Only accepts 2-D arrays at most. 

 

Examples 

-------- 

>>> a = np.ma.arange(10) 

>>> np.ma.flatnotmasked_contiguous(a) 

[slice(0, 10, None)] 

 

>>> mask = (a < 3) | (a > 8) | (a == 5) 

>>> a[mask] = np.ma.masked 

>>> np.array(a[~a.mask]) 

array([3, 4, 6, 7, 8]) 

 

>>> np.ma.flatnotmasked_contiguous(a) 

[slice(3, 5, None), slice(6, 9, None)] 

>>> a[:] = np.ma.masked 

>>> np.ma.flatnotmasked_contiguous(a) 

[] 

 

""" 

m = getmask(a) 

if m is nomask: 

return [slice(0, a.size)] 

i = 0 

result = [] 

for (k, g) in itertools.groupby(m.ravel()): 

n = len(list(g)) 

if not k: 

result.append(slice(i, i + n)) 

i += n 

return result 

 

def notmasked_contiguous(a, axis=None): 

""" 

Find contiguous unmasked data in a masked array along the given axis. 

 

Parameters 

---------- 

a : array_like 

The input array. 

axis : int, optional 

Axis along which to perform the operation. 

If None (default), applies to a flattened version of the array, and this 

is the same as `flatnotmasked_contiguous`. 

 

Returns 

------- 

endpoints : list 

A list of slices (start and end indexes) of unmasked indexes 

in the array. 

 

If the input is 2d and axis is specified, the result is a list of lists. 

 

See Also 

-------- 

flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges, 

clump_masked, clump_unmasked 

 

Notes 

----- 

Only accepts 2-D arrays at most. 

 

Examples 

-------- 

>>> a = np.arange(12).reshape((3, 4)) 

>>> mask = np.zeros_like(a) 

>>> mask[1:, :-1] = 1; mask[0, 1] = 1; mask[-1, 0] = 0 

>>> ma = np.ma.array(a, mask=mask) 

>>> ma 

masked_array( 

data=[[0, --, 2, 3], 

[--, --, --, 7], 

[8, --, --, 11]], 

mask=[[False, True, False, False], 

[ True, True, True, False], 

[False, True, True, False]], 

fill_value=999999) 

>>> np.array(ma[~ma.mask]) 

array([ 0, 2, 3, 7, 8, 11]) 

 

>>> np.ma.notmasked_contiguous(ma) 

[slice(0, 1, None), slice(2, 4, None), slice(7, 9, None), slice(11, 12, None)] 

 

>>> np.ma.notmasked_contiguous(ma, axis=0) 

[[slice(0, 1, None), slice(2, 3, None)], # column broken into two segments 

[], # fully masked column 

[slice(0, 1, None)], 

[slice(0, 3, None)]] 

 

>>> np.ma.notmasked_contiguous(ma, axis=1) 

[[slice(0, 1, None), slice(2, 4, None)], # row broken into two segments 

[slice(3, 4, None)], 

[slice(0, 1, None), slice(3, 4, None)]] 

""" 

a = asarray(a) 

nd = a.ndim 

if nd > 2: 

raise NotImplementedError("Currently limited to atmost 2D array.") 

if axis is None or nd == 1: 

return flatnotmasked_contiguous(a) 

# 

result = [] 

# 

other = (axis + 1) % 2 

idx = [0, 0] 

idx[axis] = slice(None, None) 

# 

for i in range(a.shape[other]): 

idx[other] = i 

result.append(flatnotmasked_contiguous(a[tuple(idx)])) 

return result 

 

 

def _ezclump(mask): 

""" 

Finds the clumps (groups of data with the same values) for a 1D bool array. 

 

Returns a series of slices. 

""" 

if mask.ndim > 1: 

mask = mask.ravel() 

idx = (mask[1:] ^ mask[:-1]).nonzero() 

idx = idx[0] + 1 

 

if mask[0]: 

if len(idx) == 0: 

return [slice(0, mask.size)] 

 

r = [slice(0, idx[0])] 

r.extend((slice(left, right) 

for left, right in zip(idx[1:-1:2], idx[2::2]))) 

else: 

if len(idx) == 0: 

return [] 

 

r = [slice(left, right) for left, right in zip(idx[:-1:2], idx[1::2])] 

 

if mask[-1]: 

r.append(slice(idx[-1], mask.size)) 

return r 

 

 

def clump_unmasked(a): 

""" 

Return list of slices corresponding to the unmasked clumps of a 1-D array. 

(A "clump" is defined as a contiguous region of the array). 

 

Parameters 

---------- 

a : ndarray 

A one-dimensional masked array. 

 

Returns 

------- 

slices : list of slice 

The list of slices, one for each continuous region of unmasked 

elements in `a`. 

 

Notes 

----- 

.. versionadded:: 1.4.0 

 

See Also 

-------- 

flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges, 

notmasked_contiguous, clump_masked 

 

Examples 

-------- 

>>> a = np.ma.masked_array(np.arange(10)) 

>>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked 

>>> np.ma.clump_unmasked(a) 

[slice(3, 6, None), slice(7, 8, None)] 

 

""" 

mask = getattr(a, '_mask', nomask) 

if mask is nomask: 

return [slice(0, a.size)] 

return _ezclump(~mask) 

 

 

def clump_masked(a): 

""" 

Returns a list of slices corresponding to the masked clumps of a 1-D array. 

(A "clump" is defined as a contiguous region of the array). 

 

Parameters 

---------- 

a : ndarray 

A one-dimensional masked array. 

 

Returns 

------- 

slices : list of slice 

The list of slices, one for each continuous region of masked elements 

in `a`. 

 

Notes 

----- 

.. versionadded:: 1.4.0 

 

See Also 

-------- 

flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges, 

notmasked_contiguous, clump_unmasked 

 

Examples 

-------- 

>>> a = np.ma.masked_array(np.arange(10)) 

>>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked 

>>> np.ma.clump_masked(a) 

[slice(0, 3, None), slice(6, 7, None), slice(8, 10, None)] 

 

""" 

mask = ma.getmask(a) 

if mask is nomask: 

return [] 

return _ezclump(mask) 

 

 

############################################################################### 

# Polynomial fit # 

############################################################################### 

 

 

def vander(x, n=None): 

""" 

Masked values in the input array result in rows of zeros. 

 

""" 

_vander = np.vander(x, n) 

m = getmask(x) 

if m is not nomask: 

_vander[m] = 0 

return _vander 

 

vander.__doc__ = ma.doc_note(np.vander.__doc__, vander.__doc__) 

 

 

def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False): 

""" 

Any masked values in x is propagated in y, and vice-versa. 

 

""" 

x = asarray(x) 

y = asarray(y) 

 

m = getmask(x) 

if y.ndim == 1: 

m = mask_or(m, getmask(y)) 

elif y.ndim == 2: 

my = getmask(mask_rows(y)) 

if my is not nomask: 

m = mask_or(m, my[:, 0]) 

else: 

raise TypeError("Expected a 1D or 2D array for y!") 

 

if w is not None: 

w = asarray(w) 

if w.ndim != 1: 

raise TypeError("expected a 1-d array for weights") 

if w.shape[0] != y.shape[0]: 

raise TypeError("expected w and y to have the same length") 

m = mask_or(m, getmask(w)) 

 

if m is not nomask: 

not_m = ~m 

if w is not None: 

w = w[not_m] 

return np.polyfit(x[not_m], y[not_m], deg, rcond, full, w, cov) 

else: 

return np.polyfit(x, y, deg, rcond, full, w, cov) 

 

polyfit.__doc__ = ma.doc_note(np.polyfit.__doc__, polyfit.__doc__)