1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

from __future__ import division, absolute_import, print_function 

 

import numpy as np 

from numpy.matrixlib.defmatrix import matrix, asmatrix 

# need * as we're copying the numpy namespace 

from numpy import * 

 

__version__ = np.__version__ 

 

__all__ = np.__all__[:] # copy numpy namespace 

__all__ += ['rand', 'randn', 'repmat'] 

 

def empty(shape, dtype=None, order='C'): 

"""Return a new matrix of given shape and type, without initializing entries. 

 

Parameters 

---------- 

shape : int or tuple of int 

Shape of the empty matrix. 

dtype : data-type, optional 

Desired output data-type. 

order : {'C', 'F'}, optional 

Whether to store multi-dimensional data in row-major 

(C-style) or column-major (Fortran-style) order in 

memory. 

 

See Also 

-------- 

empty_like, zeros 

 

Notes 

----- 

`empty`, unlike `zeros`, does not set the matrix values to zero, 

and may therefore be marginally faster. On the other hand, it requires 

the user to manually set all the values in the array, and should be 

used with caution. 

 

Examples 

-------- 

>>> import numpy.matlib 

>>> np.matlib.empty((2, 2)) # filled with random data 

matrix([[ 6.76425276e-320, 9.79033856e-307], 

[ 7.39337286e-309, 3.22135945e-309]]) #random 

>>> np.matlib.empty((2, 2), dtype=int) 

matrix([[ 6600475, 0], 

[ 6586976, 22740995]]) #random 

 

""" 

return ndarray.__new__(matrix, shape, dtype, order=order) 

 

def ones(shape, dtype=None, order='C'): 

""" 

Matrix of ones. 

 

Return a matrix of given shape and type, filled with ones. 

 

Parameters 

---------- 

shape : {sequence of ints, int} 

Shape of the matrix 

dtype : data-type, optional 

The desired data-type for the matrix, default is np.float64. 

order : {'C', 'F'}, optional 

Whether to store matrix in C- or Fortran-contiguous order, 

default is 'C'. 

 

Returns 

------- 

out : matrix 

Matrix of ones of given shape, dtype, and order. 

 

See Also 

-------- 

ones : Array of ones. 

matlib.zeros : Zero matrix. 

 

Notes 

----- 

If `shape` has length one i.e. ``(N,)``, or is a scalar ``N``, 

`out` becomes a single row matrix of shape ``(1,N)``. 

 

Examples 

-------- 

>>> np.matlib.ones((2,3)) 

matrix([[ 1., 1., 1.], 

[ 1., 1., 1.]]) 

 

>>> np.matlib.ones(2) 

matrix([[ 1., 1.]]) 

 

""" 

a = ndarray.__new__(matrix, shape, dtype, order=order) 

a.fill(1) 

return a 

 

def zeros(shape, dtype=None, order='C'): 

""" 

Return a matrix of given shape and type, filled with zeros. 

 

Parameters 

---------- 

shape : int or sequence of ints 

Shape of the matrix 

dtype : data-type, optional 

The desired data-type for the matrix, default is float. 

order : {'C', 'F'}, optional 

Whether to store the result in C- or Fortran-contiguous order, 

default is 'C'. 

 

Returns 

------- 

out : matrix 

Zero matrix of given shape, dtype, and order. 

 

See Also 

-------- 

numpy.zeros : Equivalent array function. 

matlib.ones : Return a matrix of ones. 

 

Notes 

----- 

If `shape` has length one i.e. ``(N,)``, or is a scalar ``N``, 

`out` becomes a single row matrix of shape ``(1,N)``. 

 

Examples 

-------- 

>>> import numpy.matlib 

>>> np.matlib.zeros((2, 3)) 

matrix([[ 0., 0., 0.], 

[ 0., 0., 0.]]) 

 

>>> np.matlib.zeros(2) 

matrix([[ 0., 0.]]) 

 

""" 

a = ndarray.__new__(matrix, shape, dtype, order=order) 

a.fill(0) 

return a 

 

def identity(n,dtype=None): 

""" 

Returns the square identity matrix of given size. 

 

Parameters 

---------- 

n : int 

Size of the returned identity matrix. 

dtype : data-type, optional 

Data-type of the output. Defaults to ``float``. 

 

Returns 

------- 

out : matrix 

`n` x `n` matrix with its main diagonal set to one, 

and all other elements zero. 

 

See Also 

-------- 

numpy.identity : Equivalent array function. 

matlib.eye : More general matrix identity function. 

 

Examples 

-------- 

>>> import numpy.matlib 

>>> np.matlib.identity(3, dtype=int) 

matrix([[1, 0, 0], 

[0, 1, 0], 

[0, 0, 1]]) 

 

""" 

a = array([1]+n*[0], dtype=dtype) 

b = empty((n, n), dtype=dtype) 

b.flat = a 

return b 

 

def eye(n,M=None, k=0, dtype=float, order='C'): 

""" 

Return a matrix with ones on the diagonal and zeros elsewhere. 

 

Parameters 

---------- 

n : int 

Number of rows in the output. 

M : int, optional 

Number of columns in the output, defaults to `n`. 

k : int, optional 

Index of the diagonal: 0 refers to the main diagonal, 

a positive value refers to an upper diagonal, 

and a negative value to a lower diagonal. 

dtype : dtype, optional 

Data-type of the returned matrix. 

order : {'C', 'F'}, optional 

Whether the output should be stored in row-major (C-style) or 

column-major (Fortran-style) order in memory. 

 

.. versionadded:: 1.14.0 

 

Returns 

------- 

I : matrix 

A `n` x `M` matrix where all elements are equal to zero, 

except for the `k`-th diagonal, whose values are equal to one. 

 

See Also 

-------- 

numpy.eye : Equivalent array function. 

identity : Square identity matrix. 

 

Examples 

-------- 

>>> import numpy.matlib 

>>> np.matlib.eye(3, k=1, dtype=float) 

matrix([[ 0., 1., 0.], 

[ 0., 0., 1.], 

[ 0., 0., 0.]]) 

 

""" 

return asmatrix(np.eye(n, M=M, k=k, dtype=dtype, order=order)) 

 

def rand(*args): 

""" 

Return a matrix of random values with given shape. 

 

Create a matrix of the given shape and propagate it with 

random samples from a uniform distribution over ``[0, 1)``. 

 

Parameters 

---------- 

\\*args : Arguments 

Shape of the output. 

If given as N integers, each integer specifies the size of one 

dimension. 

If given as a tuple, this tuple gives the complete shape. 

 

Returns 

------- 

out : ndarray 

The matrix of random values with shape given by `\\*args`. 

 

See Also 

-------- 

randn, numpy.random.rand 

 

Examples 

-------- 

>>> import numpy.matlib 

>>> np.matlib.rand(2, 3) 

matrix([[ 0.68340382, 0.67926887, 0.83271405], 

[ 0.00793551, 0.20468222, 0.95253525]]) #random 

>>> np.matlib.rand((2, 3)) 

matrix([[ 0.84682055, 0.73626594, 0.11308016], 

[ 0.85429008, 0.3294825 , 0.89139555]]) #random 

 

If the first argument is a tuple, other arguments are ignored: 

 

>>> np.matlib.rand((2, 3), 4) 

matrix([[ 0.46898646, 0.15163588, 0.95188261], 

[ 0.59208621, 0.09561818, 0.00583606]]) #random 

 

""" 

if isinstance(args[0], tuple): 

args = args[0] 

return asmatrix(np.random.rand(*args)) 

 

def randn(*args): 

""" 

Return a random matrix with data from the "standard normal" distribution. 

 

`randn` generates a matrix filled with random floats sampled from a 

univariate "normal" (Gaussian) distribution of mean 0 and variance 1. 

 

Parameters 

---------- 

\\*args : Arguments 

Shape of the output. 

If given as N integers, each integer specifies the size of one 

dimension. If given as a tuple, this tuple gives the complete shape. 

 

Returns 

------- 

Z : matrix of floats 

A matrix of floating-point samples drawn from the standard normal 

distribution. 

 

See Also 

-------- 

rand, random.randn 

 

Notes 

----- 

For random samples from :math:`N(\\mu, \\sigma^2)`, use: 

 

``sigma * np.matlib.randn(...) + mu`` 

 

Examples 

-------- 

>>> import numpy.matlib 

>>> np.matlib.randn(1) 

matrix([[-0.09542833]]) #random 

>>> np.matlib.randn(1, 2, 3) 

matrix([[ 0.16198284, 0.0194571 , 0.18312985], 

[-0.7509172 , 1.61055 , 0.45298599]]) #random 

 

Two-by-four matrix of samples from :math:`N(3, 6.25)`: 

 

>>> 2.5 * np.matlib.randn((2, 4)) + 3 

matrix([[ 4.74085004, 8.89381862, 4.09042411, 4.83721922], 

[ 7.52373709, 5.07933944, -2.64043543, 0.45610557]]) #random 

 

""" 

if isinstance(args[0], tuple): 

args = args[0] 

return asmatrix(np.random.randn(*args)) 

 

def repmat(a, m, n): 

""" 

Repeat a 0-D to 2-D array or matrix MxN times. 

 

Parameters 

---------- 

a : array_like 

The array or matrix to be repeated. 

m, n : int 

The number of times `a` is repeated along the first and second axes. 

 

Returns 

------- 

out : ndarray 

The result of repeating `a`. 

 

Examples 

-------- 

>>> import numpy.matlib 

>>> a0 = np.array(1) 

>>> np.matlib.repmat(a0, 2, 3) 

array([[1, 1, 1], 

[1, 1, 1]]) 

 

>>> a1 = np.arange(4) 

>>> np.matlib.repmat(a1, 2, 2) 

array([[0, 1, 2, 3, 0, 1, 2, 3], 

[0, 1, 2, 3, 0, 1, 2, 3]]) 

 

>>> a2 = np.asmatrix(np.arange(6).reshape(2, 3)) 

>>> np.matlib.repmat(a2, 2, 3) 

matrix([[0, 1, 2, 0, 1, 2, 0, 1, 2], 

[3, 4, 5, 3, 4, 5, 3, 4, 5], 

[0, 1, 2, 0, 1, 2, 0, 1, 2], 

[3, 4, 5, 3, 4, 5, 3, 4, 5]]) 

 

""" 

a = asanyarray(a) 

ndim = a.ndim 

if ndim == 0: 

origrows, origcols = (1, 1) 

elif ndim == 1: 

origrows, origcols = (1, a.shape[0]) 

else: 

origrows, origcols = a.shape 

rows = origrows * m 

cols = origcols * n 

c = a.reshape(1, a.size).repeat(m, 0).reshape(rows, origcols).repeat(n, 0) 

return c.reshape(rows, cols)