1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

from __future__ import division, absolute_import, print_function 

 

__all__ = ['matrix', 'bmat', 'mat', 'asmatrix'] 

 

import sys 

import warnings 

import ast 

import numpy.core.numeric as N 

from numpy.core.numeric import concatenate, isscalar 

from numpy.core.overrides import set_module 

# While not in __all__, matrix_power used to be defined here, so we import 

# it for backward compatibility. 

from numpy.linalg import matrix_power 

 

 

def _convert_from_string(data): 

for char in '[]': 

data = data.replace(char, '') 

 

rows = data.split(';') 

newdata = [] 

count = 0 

for row in rows: 

trow = row.split(',') 

newrow = [] 

for col in trow: 

temp = col.split() 

newrow.extend(map(ast.literal_eval, temp)) 

if count == 0: 

Ncols = len(newrow) 

elif len(newrow) != Ncols: 

raise ValueError("Rows not the same size.") 

count += 1 

newdata.append(newrow) 

return newdata 

 

 

@set_module('numpy') 

def asmatrix(data, dtype=None): 

""" 

Interpret the input as a matrix. 

 

Unlike `matrix`, `asmatrix` does not make a copy if the input is already 

a matrix or an ndarray. Equivalent to ``matrix(data, copy=False)``. 

 

Parameters 

---------- 

data : array_like 

Input data. 

dtype : data-type 

Data-type of the output matrix. 

 

Returns 

------- 

mat : matrix 

`data` interpreted as a matrix. 

 

Examples 

-------- 

>>> x = np.array([[1, 2], [3, 4]]) 

 

>>> m = np.asmatrix(x) 

 

>>> x[0,0] = 5 

 

>>> m 

matrix([[5, 2], 

[3, 4]]) 

 

""" 

return matrix(data, dtype=dtype, copy=False) 

 

 

@set_module('numpy') 

class matrix(N.ndarray): 

""" 

matrix(data, dtype=None, copy=True) 

 

.. note:: It is no longer recommended to use this class, even for linear 

algebra. Instead use regular arrays. The class may be removed 

in the future. 

 

Returns a matrix from an array-like object, or from a string of data. 

A matrix is a specialized 2-D array that retains its 2-D nature 

through operations. It has certain special operators, such as ``*`` 

(matrix multiplication) and ``**`` (matrix power). 

 

Parameters 

---------- 

data : array_like or string 

If `data` is a string, it is interpreted as a matrix with commas 

or spaces separating columns, and semicolons separating rows. 

dtype : data-type 

Data-type of the output matrix. 

copy : bool 

If `data` is already an `ndarray`, then this flag determines 

whether the data is copied (the default), or whether a view is 

constructed. 

 

See Also 

-------- 

array 

 

Examples 

-------- 

>>> a = np.matrix('1 2; 3 4') 

>>> print(a) 

[[1 2] 

[3 4]] 

 

>>> np.matrix([[1, 2], [3, 4]]) 

matrix([[1, 2], 

[3, 4]]) 

 

""" 

__array_priority__ = 10.0 

def __new__(subtype, data, dtype=None, copy=True): 

warnings.warn('the matrix subclass is not the recommended way to ' 

'represent matrices or deal with linear algebra (see ' 

'https://docs.scipy.org/doc/numpy/user/' 

'numpy-for-matlab-users.html). ' 

'Please adjust your code to use regular ndarray.', 

PendingDeprecationWarning, stacklevel=2) 

if isinstance(data, matrix): 

dtype2 = data.dtype 

if (dtype is None): 

dtype = dtype2 

if (dtype2 == dtype) and (not copy): 

return data 

return data.astype(dtype) 

 

if isinstance(data, N.ndarray): 

if dtype is None: 

intype = data.dtype 

else: 

intype = N.dtype(dtype) 

new = data.view(subtype) 

if intype != data.dtype: 

return new.astype(intype) 

if copy: return new.copy() 

else: return new 

 

if isinstance(data, str): 

data = _convert_from_string(data) 

 

# now convert data to an array 

arr = N.array(data, dtype=dtype, copy=copy) 

ndim = arr.ndim 

shape = arr.shape 

if (ndim > 2): 

raise ValueError("matrix must be 2-dimensional") 

elif ndim == 0: 

shape = (1, 1) 

elif ndim == 1: 

shape = (1, shape[0]) 

 

order = 'C' 

if (ndim == 2) and arr.flags.fortran: 

order = 'F' 

 

if not (order or arr.flags.contiguous): 

arr = arr.copy() 

 

ret = N.ndarray.__new__(subtype, shape, arr.dtype, 

buffer=arr, 

order=order) 

return ret 

 

def __array_finalize__(self, obj): 

self._getitem = False 

if (isinstance(obj, matrix) and obj._getitem): return 

ndim = self.ndim 

if (ndim == 2): 

return 

if (ndim > 2): 

newshape = tuple([x for x in self.shape if x > 1]) 

ndim = len(newshape) 

if ndim == 2: 

self.shape = newshape 

return 

elif (ndim > 2): 

raise ValueError("shape too large to be a matrix.") 

else: 

newshape = self.shape 

if ndim == 0: 

self.shape = (1, 1) 

elif ndim == 1: 

self.shape = (1, newshape[0]) 

return 

 

def __getitem__(self, index): 

self._getitem = True 

 

try: 

out = N.ndarray.__getitem__(self, index) 

finally: 

self._getitem = False 

 

if not isinstance(out, N.ndarray): 

return out 

 

if out.ndim == 0: 

return out[()] 

if out.ndim == 1: 

sh = out.shape[0] 

# Determine when we should have a column array 

try: 

n = len(index) 

except Exception: 

n = 0 

if n > 1 and isscalar(index[1]): 

out.shape = (sh, 1) 

else: 

out.shape = (1, sh) 

return out 

 

def __mul__(self, other): 

if isinstance(other, (N.ndarray, list, tuple)) : 

# This promotes 1-D vectors to row vectors 

return N.dot(self, asmatrix(other)) 

if isscalar(other) or not hasattr(other, '__rmul__') : 

return N.dot(self, other) 

return NotImplemented 

 

def __rmul__(self, other): 

return N.dot(other, self) 

 

def __imul__(self, other): 

self[:] = self * other 

return self 

 

def __pow__(self, other): 

return matrix_power(self, other) 

 

def __ipow__(self, other): 

self[:] = self ** other 

return self 

 

def __rpow__(self, other): 

return NotImplemented 

 

def _align(self, axis): 

"""A convenience function for operations that need to preserve axis 

orientation. 

""" 

if axis is None: 

return self[0, 0] 

elif axis==0: 

return self 

elif axis==1: 

return self.transpose() 

else: 

raise ValueError("unsupported axis") 

 

def _collapse(self, axis): 

"""A convenience function for operations that want to collapse 

to a scalar like _align, but are using keepdims=True 

""" 

if axis is None: 

return self[0, 0] 

else: 

return self 

 

# Necessary because base-class tolist expects dimension 

# reduction by x[0] 

def tolist(self): 

""" 

Return the matrix as a (possibly nested) list. 

 

See `ndarray.tolist` for full documentation. 

 

See Also 

-------- 

ndarray.tolist 

 

Examples 

-------- 

>>> x = np.matrix(np.arange(12).reshape((3,4))); x 

matrix([[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 

[ 8, 9, 10, 11]]) 

>>> x.tolist() 

[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] 

 

""" 

return self.__array__().tolist() 

 

# To preserve orientation of result... 

def sum(self, axis=None, dtype=None, out=None): 

""" 

Returns the sum of the matrix elements, along the given axis. 

 

Refer to `numpy.sum` for full documentation. 

 

See Also 

-------- 

numpy.sum 

 

Notes 

----- 

This is the same as `ndarray.sum`, except that where an `ndarray` would 

be returned, a `matrix` object is returned instead. 

 

Examples 

-------- 

>>> x = np.matrix([[1, 2], [4, 3]]) 

>>> x.sum() 

10 

>>> x.sum(axis=1) 

matrix([[3], 

[7]]) 

>>> x.sum(axis=1, dtype='float') 

matrix([[ 3.], 

[ 7.]]) 

>>> out = np.zeros((1, 2), dtype='float') 

>>> x.sum(axis=1, dtype='float', out=out) 

matrix([[ 3.], 

[ 7.]]) 

 

""" 

return N.ndarray.sum(self, axis, dtype, out, keepdims=True)._collapse(axis) 

 

 

# To update docstring from array to matrix... 

def squeeze(self, axis=None): 

""" 

Return a possibly reshaped matrix. 

 

Refer to `numpy.squeeze` for more documentation. 

 

Parameters 

---------- 

axis : None or int or tuple of ints, optional 

Selects a subset of the single-dimensional entries in the shape. 

If an axis is selected with shape entry greater than one, 

an error is raised. 

 

Returns 

------- 

squeezed : matrix 

The matrix, but as a (1, N) matrix if it had shape (N, 1). 

 

See Also 

-------- 

numpy.squeeze : related function 

 

Notes 

----- 

If `m` has a single column then that column is returned 

as the single row of a matrix. Otherwise `m` is returned. 

The returned matrix is always either `m` itself or a view into `m`. 

Supplying an axis keyword argument will not affect the returned matrix 

but it may cause an error to be raised. 

 

Examples 

-------- 

>>> c = np.matrix([[1], [2]]) 

>>> c 

matrix([[1], 

[2]]) 

>>> c.squeeze() 

matrix([[1, 2]]) 

>>> r = c.T 

>>> r 

matrix([[1, 2]]) 

>>> r.squeeze() 

matrix([[1, 2]]) 

>>> m = np.matrix([[1, 2], [3, 4]]) 

>>> m.squeeze() 

matrix([[1, 2], 

[3, 4]]) 

 

""" 

return N.ndarray.squeeze(self, axis=axis) 

 

 

# To update docstring from array to matrix... 

def flatten(self, order='C'): 

""" 

Return a flattened copy of the matrix. 

 

All `N` elements of the matrix are placed into a single row. 

 

Parameters 

---------- 

order : {'C', 'F', 'A', 'K'}, optional 

'C' means to flatten in row-major (C-style) order. 'F' means to 

flatten in column-major (Fortran-style) order. 'A' means to 

flatten in column-major order if `m` is Fortran *contiguous* in 

memory, row-major order otherwise. 'K' means to flatten `m` in 

the order the elements occur in memory. The default is 'C'. 

 

Returns 

------- 

y : matrix 

A copy of the matrix, flattened to a `(1, N)` matrix where `N` 

is the number of elements in the original matrix. 

 

See Also 

-------- 

ravel : Return a flattened array. 

flat : A 1-D flat iterator over the matrix. 

 

Examples 

-------- 

>>> m = np.matrix([[1,2], [3,4]]) 

>>> m.flatten() 

matrix([[1, 2, 3, 4]]) 

>>> m.flatten('F') 

matrix([[1, 3, 2, 4]]) 

 

""" 

return N.ndarray.flatten(self, order=order) 

 

def mean(self, axis=None, dtype=None, out=None): 

""" 

Returns the average of the matrix elements along the given axis. 

 

Refer to `numpy.mean` for full documentation. 

 

See Also 

-------- 

numpy.mean 

 

Notes 

----- 

Same as `ndarray.mean` except that, where that returns an `ndarray`, 

this returns a `matrix` object. 

 

Examples 

-------- 

>>> x = np.matrix(np.arange(12).reshape((3, 4))) 

>>> x 

matrix([[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 

[ 8, 9, 10, 11]]) 

>>> x.mean() 

5.5 

>>> x.mean(0) 

matrix([[ 4., 5., 6., 7.]]) 

>>> x.mean(1) 

matrix([[ 1.5], 

[ 5.5], 

[ 9.5]]) 

 

""" 

return N.ndarray.mean(self, axis, dtype, out, keepdims=True)._collapse(axis) 

 

def std(self, axis=None, dtype=None, out=None, ddof=0): 

""" 

Return the standard deviation of the array elements along the given axis. 

 

Refer to `numpy.std` for full documentation. 

 

See Also 

-------- 

numpy.std 

 

Notes 

----- 

This is the same as `ndarray.std`, except that where an `ndarray` would 

be returned, a `matrix` object is returned instead. 

 

Examples 

-------- 

>>> x = np.matrix(np.arange(12).reshape((3, 4))) 

>>> x 

matrix([[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 

[ 8, 9, 10, 11]]) 

>>> x.std() 

3.4520525295346629 

>>> x.std(0) 

matrix([[ 3.26598632, 3.26598632, 3.26598632, 3.26598632]]) 

>>> x.std(1) 

matrix([[ 1.11803399], 

[ 1.11803399], 

[ 1.11803399]]) 

 

""" 

return N.ndarray.std(self, axis, dtype, out, ddof, keepdims=True)._collapse(axis) 

 

def var(self, axis=None, dtype=None, out=None, ddof=0): 

""" 

Returns the variance of the matrix elements, along the given axis. 

 

Refer to `numpy.var` for full documentation. 

 

See Also 

-------- 

numpy.var 

 

Notes 

----- 

This is the same as `ndarray.var`, except that where an `ndarray` would 

be returned, a `matrix` object is returned instead. 

 

Examples 

-------- 

>>> x = np.matrix(np.arange(12).reshape((3, 4))) 

>>> x 

matrix([[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 

[ 8, 9, 10, 11]]) 

>>> x.var() 

11.916666666666666 

>>> x.var(0) 

matrix([[ 10.66666667, 10.66666667, 10.66666667, 10.66666667]]) 

>>> x.var(1) 

matrix([[ 1.25], 

[ 1.25], 

[ 1.25]]) 

 

""" 

return N.ndarray.var(self, axis, dtype, out, ddof, keepdims=True)._collapse(axis) 

 

def prod(self, axis=None, dtype=None, out=None): 

""" 

Return the product of the array elements over the given axis. 

 

Refer to `prod` for full documentation. 

 

See Also 

-------- 

prod, ndarray.prod 

 

Notes 

----- 

Same as `ndarray.prod`, except, where that returns an `ndarray`, this 

returns a `matrix` object instead. 

 

Examples 

-------- 

>>> x = np.matrix(np.arange(12).reshape((3,4))); x 

matrix([[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 

[ 8, 9, 10, 11]]) 

>>> x.prod() 

0 

>>> x.prod(0) 

matrix([[ 0, 45, 120, 231]]) 

>>> x.prod(1) 

matrix([[ 0], 

[ 840], 

[7920]]) 

 

""" 

return N.ndarray.prod(self, axis, dtype, out, keepdims=True)._collapse(axis) 

 

def any(self, axis=None, out=None): 

""" 

Test whether any array element along a given axis evaluates to True. 

 

Refer to `numpy.any` for full documentation. 

 

Parameters 

---------- 

axis : int, optional 

Axis along which logical OR is performed 

out : ndarray, optional 

Output to existing array instead of creating new one, must have 

same shape as expected output 

 

Returns 

------- 

any : bool, ndarray 

Returns a single bool if `axis` is ``None``; otherwise, 

returns `ndarray` 

 

""" 

return N.ndarray.any(self, axis, out, keepdims=True)._collapse(axis) 

 

def all(self, axis=None, out=None): 

""" 

Test whether all matrix elements along a given axis evaluate to True. 

 

Parameters 

---------- 

See `numpy.all` for complete descriptions 

 

See Also 

-------- 

numpy.all 

 

Notes 

----- 

This is the same as `ndarray.all`, but it returns a `matrix` object. 

 

Examples 

-------- 

>>> x = np.matrix(np.arange(12).reshape((3,4))); x 

matrix([[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 

[ 8, 9, 10, 11]]) 

>>> y = x[0]; y 

matrix([[0, 1, 2, 3]]) 

>>> (x == y) 

matrix([[ True, True, True, True], 

[False, False, False, False], 

[False, False, False, False]]) 

>>> (x == y).all() 

False 

>>> (x == y).all(0) 

matrix([[False, False, False, False]]) 

>>> (x == y).all(1) 

matrix([[ True], 

[False], 

[False]]) 

 

""" 

return N.ndarray.all(self, axis, out, keepdims=True)._collapse(axis) 

 

def max(self, axis=None, out=None): 

""" 

Return the maximum value along an axis. 

 

Parameters 

---------- 

See `amax` for complete descriptions 

 

See Also 

-------- 

amax, ndarray.max 

 

Notes 

----- 

This is the same as `ndarray.max`, but returns a `matrix` object 

where `ndarray.max` would return an ndarray. 

 

Examples 

-------- 

>>> x = np.matrix(np.arange(12).reshape((3,4))); x 

matrix([[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 

[ 8, 9, 10, 11]]) 

>>> x.max() 

11 

>>> x.max(0) 

matrix([[ 8, 9, 10, 11]]) 

>>> x.max(1) 

matrix([[ 3], 

[ 7], 

[11]]) 

 

""" 

return N.ndarray.max(self, axis, out, keepdims=True)._collapse(axis) 

 

def argmax(self, axis=None, out=None): 

""" 

Indexes of the maximum values along an axis. 

 

Return the indexes of the first occurrences of the maximum values 

along the specified axis. If axis is None, the index is for the 

flattened matrix. 

 

Parameters 

---------- 

See `numpy.argmax` for complete descriptions 

 

See Also 

-------- 

numpy.argmax 

 

Notes 

----- 

This is the same as `ndarray.argmax`, but returns a `matrix` object 

where `ndarray.argmax` would return an `ndarray`. 

 

Examples 

-------- 

>>> x = np.matrix(np.arange(12).reshape((3,4))); x 

matrix([[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 

[ 8, 9, 10, 11]]) 

>>> x.argmax() 

11 

>>> x.argmax(0) 

matrix([[2, 2, 2, 2]]) 

>>> x.argmax(1) 

matrix([[3], 

[3], 

[3]]) 

 

""" 

return N.ndarray.argmax(self, axis, out)._align(axis) 

 

def min(self, axis=None, out=None): 

""" 

Return the minimum value along an axis. 

 

Parameters 

---------- 

See `amin` for complete descriptions. 

 

See Also 

-------- 

amin, ndarray.min 

 

Notes 

----- 

This is the same as `ndarray.min`, but returns a `matrix` object 

where `ndarray.min` would return an ndarray. 

 

Examples 

-------- 

>>> x = -np.matrix(np.arange(12).reshape((3,4))); x 

matrix([[ 0, -1, -2, -3], 

[ -4, -5, -6, -7], 

[ -8, -9, -10, -11]]) 

>>> x.min() 

-11 

>>> x.min(0) 

matrix([[ -8, -9, -10, -11]]) 

>>> x.min(1) 

matrix([[ -3], 

[ -7], 

[-11]]) 

 

""" 

return N.ndarray.min(self, axis, out, keepdims=True)._collapse(axis) 

 

def argmin(self, axis=None, out=None): 

""" 

Indexes of the minimum values along an axis. 

 

Return the indexes of the first occurrences of the minimum values 

along the specified axis. If axis is None, the index is for the 

flattened matrix. 

 

Parameters 

---------- 

See `numpy.argmin` for complete descriptions. 

 

See Also 

-------- 

numpy.argmin 

 

Notes 

----- 

This is the same as `ndarray.argmin`, but returns a `matrix` object 

where `ndarray.argmin` would return an `ndarray`. 

 

Examples 

-------- 

>>> x = -np.matrix(np.arange(12).reshape((3,4))); x 

matrix([[ 0, -1, -2, -3], 

[ -4, -5, -6, -7], 

[ -8, -9, -10, -11]]) 

>>> x.argmin() 

11 

>>> x.argmin(0) 

matrix([[2, 2, 2, 2]]) 

>>> x.argmin(1) 

matrix([[3], 

[3], 

[3]]) 

 

""" 

return N.ndarray.argmin(self, axis, out)._align(axis) 

 

def ptp(self, axis=None, out=None): 

""" 

Peak-to-peak (maximum - minimum) value along the given axis. 

 

Refer to `numpy.ptp` for full documentation. 

 

See Also 

-------- 

numpy.ptp 

 

Notes 

----- 

Same as `ndarray.ptp`, except, where that would return an `ndarray` object, 

this returns a `matrix` object. 

 

Examples 

-------- 

>>> x = np.matrix(np.arange(12).reshape((3,4))); x 

matrix([[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 

[ 8, 9, 10, 11]]) 

>>> x.ptp() 

11 

>>> x.ptp(0) 

matrix([[8, 8, 8, 8]]) 

>>> x.ptp(1) 

matrix([[3], 

[3], 

[3]]) 

 

""" 

return N.ndarray.ptp(self, axis, out)._align(axis) 

 

def getI(self): 

""" 

Returns the (multiplicative) inverse of invertible `self`. 

 

Parameters 

---------- 

None 

 

Returns 

------- 

ret : matrix object 

If `self` is non-singular, `ret` is such that ``ret * self`` == 

``self * ret`` == ``np.matrix(np.eye(self[0,:].size)`` all return 

``True``. 

 

Raises 

------ 

numpy.linalg.LinAlgError: Singular matrix 

If `self` is singular. 

 

See Also 

-------- 

linalg.inv 

 

Examples 

-------- 

>>> m = np.matrix('[1, 2; 3, 4]'); m 

matrix([[1, 2], 

[3, 4]]) 

>>> m.getI() 

matrix([[-2. , 1. ], 

[ 1.5, -0.5]]) 

>>> m.getI() * m 

matrix([[ 1., 0.], 

[ 0., 1.]]) 

 

""" 

M, N = self.shape 

if M == N: 

from numpy.dual import inv as func 

else: 

from numpy.dual import pinv as func 

return asmatrix(func(self)) 

 

def getA(self): 

""" 

Return `self` as an `ndarray` object. 

 

Equivalent to ``np.asarray(self)``. 

 

Parameters 

---------- 

None 

 

Returns 

------- 

ret : ndarray 

`self` as an `ndarray` 

 

Examples 

-------- 

>>> x = np.matrix(np.arange(12).reshape((3,4))); x 

matrix([[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 

[ 8, 9, 10, 11]]) 

>>> x.getA() 

array([[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 

[ 8, 9, 10, 11]]) 

 

""" 

return self.__array__() 

 

def getA1(self): 

""" 

Return `self` as a flattened `ndarray`. 

 

Equivalent to ``np.asarray(x).ravel()`` 

 

Parameters 

---------- 

None 

 

Returns 

------- 

ret : ndarray 

`self`, 1-D, as an `ndarray` 

 

Examples 

-------- 

>>> x = np.matrix(np.arange(12).reshape((3,4))); x 

matrix([[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 

[ 8, 9, 10, 11]]) 

>>> x.getA1() 

array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) 

 

""" 

return self.__array__().ravel() 

 

 

def ravel(self, order='C'): 

""" 

Return a flattened matrix. 

 

Refer to `numpy.ravel` for more documentation. 

 

Parameters 

---------- 

order : {'C', 'F', 'A', 'K'}, optional 

The elements of `m` are read using this index order. 'C' means to 

index the elements in C-like order, with the last axis index 

changing fastest, back to the first axis index changing slowest. 

'F' means to index the elements in Fortran-like index order, with 

the first index changing fastest, and the last index changing 

slowest. Note that the 'C' and 'F' options take no account of the 

memory layout of the underlying array, and only refer to the order 

of axis indexing. 'A' means to read the elements in Fortran-like 

index order if `m` is Fortran *contiguous* in memory, C-like order 

otherwise. 'K' means to read the elements in the order they occur 

in memory, except for reversing the data when strides are negative. 

By default, 'C' index order is used. 

 

Returns 

------- 

ret : matrix 

Return the matrix flattened to shape `(1, N)` where `N` 

is the number of elements in the original matrix. 

A copy is made only if necessary. 

 

See Also 

-------- 

matrix.flatten : returns a similar output matrix but always a copy 

matrix.flat : a flat iterator on the array. 

numpy.ravel : related function which returns an ndarray 

 

""" 

return N.ndarray.ravel(self, order=order) 

 

 

def getT(self): 

""" 

Returns the transpose of the matrix. 

 

Does *not* conjugate! For the complex conjugate transpose, use ``.H``. 

 

Parameters 

---------- 

None 

 

Returns 

------- 

ret : matrix object 

The (non-conjugated) transpose of the matrix. 

 

See Also 

-------- 

transpose, getH 

 

Examples 

-------- 

>>> m = np.matrix('[1, 2; 3, 4]') 

>>> m 

matrix([[1, 2], 

[3, 4]]) 

>>> m.getT() 

matrix([[1, 3], 

[2, 4]]) 

 

""" 

return self.transpose() 

 

def getH(self): 

""" 

Returns the (complex) conjugate transpose of `self`. 

 

Equivalent to ``np.transpose(self)`` if `self` is real-valued. 

 

Parameters 

---------- 

None 

 

Returns 

------- 

ret : matrix object 

complex conjugate transpose of `self` 

 

Examples 

-------- 

>>> x = np.matrix(np.arange(12).reshape((3,4))) 

>>> z = x - 1j*x; z 

matrix([[ 0. +0.j, 1. -1.j, 2. -2.j, 3. -3.j], 

[ 4. -4.j, 5. -5.j, 6. -6.j, 7. -7.j], 

[ 8. -8.j, 9. -9.j, 10.-10.j, 11.-11.j]]) 

>>> z.getH() 

matrix([[ 0. +0.j, 4. +4.j, 8. +8.j], 

[ 1. +1.j, 5. +5.j, 9. +9.j], 

[ 2. +2.j, 6. +6.j, 10.+10.j], 

[ 3. +3.j, 7. +7.j, 11.+11.j]]) 

 

""" 

if issubclass(self.dtype.type, N.complexfloating): 

return self.transpose().conjugate() 

else: 

return self.transpose() 

 

T = property(getT, None) 

A = property(getA, None) 

A1 = property(getA1, None) 

H = property(getH, None) 

I = property(getI, None) 

 

def _from_string(str, gdict, ldict): 

rows = str.split(';') 

rowtup = [] 

for row in rows: 

trow = row.split(',') 

newrow = [] 

for x in trow: 

newrow.extend(x.split()) 

trow = newrow 

coltup = [] 

for col in trow: 

col = col.strip() 

try: 

thismat = ldict[col] 

except KeyError: 

try: 

thismat = gdict[col] 

except KeyError: 

raise KeyError("%s not found" % (col,)) 

 

coltup.append(thismat) 

rowtup.append(concatenate(coltup, axis=-1)) 

return concatenate(rowtup, axis=0) 

 

 

@set_module('numpy') 

def bmat(obj, ldict=None, gdict=None): 

""" 

Build a matrix object from a string, nested sequence, or array. 

 

Parameters 

---------- 

obj : str or array_like 

Input data. If a string, variables in the current scope may be 

referenced by name. 

ldict : dict, optional 

A dictionary that replaces local operands in current frame. 

Ignored if `obj` is not a string or `gdict` is `None`. 

gdict : dict, optional 

A dictionary that replaces global operands in current frame. 

Ignored if `obj` is not a string. 

 

Returns 

------- 

out : matrix 

Returns a matrix object, which is a specialized 2-D array. 

 

See Also 

-------- 

block : 

A generalization of this function for N-d arrays, that returns normal 

ndarrays. 

 

Examples 

-------- 

>>> A = np.mat('1 1; 1 1') 

>>> B = np.mat('2 2; 2 2') 

>>> C = np.mat('3 4; 5 6') 

>>> D = np.mat('7 8; 9 0') 

 

All the following expressions construct the same block matrix: 

 

>>> np.bmat([[A, B], [C, D]]) 

matrix([[1, 1, 2, 2], 

[1, 1, 2, 2], 

[3, 4, 7, 8], 

[5, 6, 9, 0]]) 

>>> np.bmat(np.r_[np.c_[A, B], np.c_[C, D]]) 

matrix([[1, 1, 2, 2], 

[1, 1, 2, 2], 

[3, 4, 7, 8], 

[5, 6, 9, 0]]) 

>>> np.bmat('A,B; C,D') 

matrix([[1, 1, 2, 2], 

[1, 1, 2, 2], 

[3, 4, 7, 8], 

[5, 6, 9, 0]]) 

 

""" 

if isinstance(obj, str): 

if gdict is None: 

# get previous frame 

frame = sys._getframe().f_back 

glob_dict = frame.f_globals 

loc_dict = frame.f_locals 

else: 

glob_dict = gdict 

loc_dict = ldict 

 

return matrix(_from_string(obj, glob_dict, loc_dict)) 

 

if isinstance(obj, (tuple, list)): 

# [[A,B],[C,D]] 

arr_rows = [] 

for row in obj: 

if isinstance(row, N.ndarray): # not 2-d 

return matrix(concatenate(obj, axis=-1)) 

else: 

arr_rows.append(concatenate(row, axis=-1)) 

return matrix(concatenate(arr_rows, axis=0)) 

if isinstance(obj, N.ndarray): 

return matrix(obj) 

 

mat = asmatrix