1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

""" 

Abstract base class for the various polynomial Classes. 

 

The ABCPolyBase class provides the methods needed to implement the common API 

for the various polynomial classes. It operates as a mixin, but uses the 

abc module from the stdlib, hence it is only available for Python >= 2.6. 

 

""" 

from __future__ import division, absolute_import, print_function 

 

from abc import ABCMeta, abstractmethod, abstractproperty 

import numbers 

 

import numpy as np 

from . import polyutils as pu 

 

__all__ = ['ABCPolyBase'] 

 

class ABCPolyBase(object): 

"""An abstract base class for immutable series classes. 

 

ABCPolyBase provides the standard Python numerical methods 

'+', '-', '*', '//', '%', 'divmod', '**', and '()' along with the 

methods listed below. 

 

.. versionadded:: 1.9.0 

 

Parameters 

---------- 

coef : array_like 

Series coefficients in order of increasing degree, i.e., 

``(1, 2, 3)`` gives ``1*P_0(x) + 2*P_1(x) + 3*P_2(x)``, where 

``P_i`` is the basis polynomials of degree ``i``. 

domain : (2,) array_like, optional 

Domain to use. The interval ``[domain[0], domain[1]]`` is mapped 

to the interval ``[window[0], window[1]]`` by shifting and scaling. 

The default value is the derived class domain. 

window : (2,) array_like, optional 

Window, see domain for its use. The default value is the 

derived class window. 

 

Attributes 

---------- 

coef : (N,) ndarray 

Series coefficients in order of increasing degree. 

domain : (2,) ndarray 

Domain that is mapped to window. 

window : (2,) ndarray 

Window that domain is mapped to. 

 

Class Attributes 

---------------- 

maxpower : int 

Maximum power allowed, i.e., the largest number ``n`` such that 

``p(x)**n`` is allowed. This is to limit runaway polynomial size. 

domain : (2,) ndarray 

Default domain of the class. 

window : (2,) ndarray 

Default window of the class. 

 

""" 

__metaclass__ = ABCMeta 

 

# Not hashable 

__hash__ = None 

 

# Opt out of numpy ufuncs and Python ops with ndarray subclasses. 

__array_ufunc__ = None 

 

# Limit runaway size. T_n^m has degree n*m 

maxpower = 100 

 

@abstractproperty 

def domain(self): 

pass 

 

@abstractproperty 

def window(self): 

pass 

 

@abstractproperty 

def nickname(self): 

pass 

 

@abstractproperty 

def basis_name(self): 

pass 

 

@abstractmethod 

def _add(self): 

pass 

 

@abstractmethod 

def _sub(self): 

pass 

 

@abstractmethod 

def _mul(self): 

pass 

 

@abstractmethod 

def _div(self): 

pass 

 

@abstractmethod 

def _pow(self): 

pass 

 

@abstractmethod 

def _val(self): 

pass 

 

@abstractmethod 

def _int(self): 

pass 

 

@abstractmethod 

def _der(self): 

pass 

 

@abstractmethod 

def _fit(self): 

pass 

 

@abstractmethod 

def _line(self): 

pass 

 

@abstractmethod 

def _roots(self): 

pass 

 

@abstractmethod 

def _fromroots(self): 

pass 

 

def has_samecoef(self, other): 

"""Check if coefficients match. 

 

.. versionadded:: 1.6.0 

 

Parameters 

---------- 

other : class instance 

The other class must have the ``coef`` attribute. 

 

Returns 

------- 

bool : boolean 

True if the coefficients are the same, False otherwise. 

 

""" 

if len(self.coef) != len(other.coef): 

return False 

elif not np.all(self.coef == other.coef): 

return False 

else: 

return True 

 

def has_samedomain(self, other): 

"""Check if domains match. 

 

.. versionadded:: 1.6.0 

 

Parameters 

---------- 

other : class instance 

The other class must have the ``domain`` attribute. 

 

Returns 

------- 

bool : boolean 

True if the domains are the same, False otherwise. 

 

""" 

return np.all(self.domain == other.domain) 

 

def has_samewindow(self, other): 

"""Check if windows match. 

 

.. versionadded:: 1.6.0 

 

Parameters 

---------- 

other : class instance 

The other class must have the ``window`` attribute. 

 

Returns 

------- 

bool : boolean 

True if the windows are the same, False otherwise. 

 

""" 

return np.all(self.window == other.window) 

 

def has_sametype(self, other): 

"""Check if types match. 

 

.. versionadded:: 1.7.0 

 

Parameters 

---------- 

other : object 

Class instance. 

 

Returns 

------- 

bool : boolean 

True if other is same class as self 

 

""" 

return isinstance(other, self.__class__) 

 

def _get_coefficients(self, other): 

"""Interpret other as polynomial coefficients. 

 

The `other` argument is checked to see if it is of the same 

class as self with identical domain and window. If so, 

return its coefficients, otherwise return `other`. 

 

.. versionadded:: 1.9.0 

 

Parameters 

---------- 

other : anything 

Object to be checked. 

 

Returns 

------- 

coef 

The coefficients of`other` if it is a compatible instance, 

of ABCPolyBase, otherwise `other`. 

 

Raises 

------ 

TypeError 

When `other` is an incompatible instance of ABCPolyBase. 

 

""" 

if isinstance(other, ABCPolyBase): 

if not isinstance(other, self.__class__): 

raise TypeError("Polynomial types differ") 

elif not np.all(self.domain == other.domain): 

raise TypeError("Domains differ") 

elif not np.all(self.window == other.window): 

raise TypeError("Windows differ") 

return other.coef 

return other 

 

def __init__(self, coef, domain=None, window=None): 

[coef] = pu.as_series([coef], trim=False) 

self.coef = coef 

 

if domain is not None: 

[domain] = pu.as_series([domain], trim=False) 

if len(domain) != 2: 

raise ValueError("Domain has wrong number of elements.") 

self.domain = domain 

 

if window is not None: 

[window] = pu.as_series([window], trim=False) 

if len(window) != 2: 

raise ValueError("Window has wrong number of elements.") 

self.window = window 

 

def __repr__(self): 

format = "%s(%s, domain=%s, window=%s)" 

coef = repr(self.coef)[6:-1] 

domain = repr(self.domain)[6:-1] 

window = repr(self.window)[6:-1] 

name = self.__class__.__name__ 

return format % (name, coef, domain, window) 

 

def __str__(self): 

format = "%s(%s)" 

coef = str(self.coef) 

name = self.nickname 

return format % (name, coef) 

 

@classmethod 

def _repr_latex_term(cls, i, arg_str, needs_parens): 

if cls.basis_name is None: 

raise NotImplementedError( 

"Subclasses must define either a basis name, or override " 

"_repr_latex_term(i, arg_str, needs_parens)") 

# since we always add parens, we don't care if the expression needs them 

return "{{{basis}}}_{{{i}}}({arg_str})".format( 

basis=cls.basis_name, i=i, arg_str=arg_str 

) 

 

@staticmethod 

def _repr_latex_scalar(x): 

# TODO: we're stuck with disabling math formatting until we handle 

# exponents in this function 

return r'\text{{{}}}'.format(x) 

 

def _repr_latex_(self): 

# get the scaled argument string to the basis functions 

off, scale = self.mapparms() 

if off == 0 and scale == 1: 

term = 'x' 

needs_parens = False 

elif scale == 1: 

term = '{} + x'.format( 

self._repr_latex_scalar(off) 

) 

needs_parens = True 

elif off == 0: 

term = '{}x'.format( 

self._repr_latex_scalar(scale) 

) 

needs_parens = True 

else: 

term = '{} + {}x'.format( 

self._repr_latex_scalar(off), 

self._repr_latex_scalar(scale) 

) 

needs_parens = True 

 

mute = r"\color{{LightGray}}{{{}}}".format 

 

parts = [] 

for i, c in enumerate(self.coef): 

# prevent duplication of + and - signs 

if i == 0: 

coef_str = '{}'.format(self._repr_latex_scalar(c)) 

elif not isinstance(c, numbers.Real): 

coef_str = ' + ({})'.format(self._repr_latex_scalar(c)) 

elif not np.signbit(c): 

coef_str = ' + {}'.format(self._repr_latex_scalar(c)) 

else: 

coef_str = ' - {}'.format(self._repr_latex_scalar(-c)) 

 

# produce the string for the term 

term_str = self._repr_latex_term(i, term, needs_parens) 

if term_str == '1': 

part = coef_str 

else: 

part = r'{}\,{}'.format(coef_str, term_str) 

 

if c == 0: 

part = mute(part) 

 

parts.append(part) 

 

if parts: 

body = ''.join(parts) 

else: 

# in case somehow there are no coefficients at all 

body = '0' 

 

return r'$x \mapsto {}$'.format(body) 

 

 

 

# Pickle and copy 

 

def __getstate__(self): 

ret = self.__dict__.copy() 

ret['coef'] = self.coef.copy() 

ret['domain'] = self.domain.copy() 

ret['window'] = self.window.copy() 

return ret 

 

def __setstate__(self, dict): 

self.__dict__ = dict 

 

# Call 

 

def __call__(self, arg): 

off, scl = pu.mapparms(self.domain, self.window) 

arg = off + scl*arg 

return self._val(arg, self.coef) 

 

def __iter__(self): 

return iter(self.coef) 

 

def __len__(self): 

return len(self.coef) 

 

# Numeric properties. 

 

def __neg__(self): 

return self.__class__(-self.coef, self.domain, self.window) 

 

def __pos__(self): 

return self 

 

def __add__(self, other): 

othercoef = self._get_coefficients(other) 

try: 

coef = self._add(self.coef, othercoef) 

except Exception: 

return NotImplemented 

return self.__class__(coef, self.domain, self.window) 

 

def __sub__(self, other): 

othercoef = self._get_coefficients(other) 

try: 

coef = self._sub(self.coef, othercoef) 

except Exception: 

return NotImplemented 

return self.__class__(coef, self.domain, self.window) 

 

def __mul__(self, other): 

othercoef = self._get_coefficients(other) 

try: 

coef = self._mul(self.coef, othercoef) 

except Exception: 

return NotImplemented 

return self.__class__(coef, self.domain, self.window) 

 

def __div__(self, other): 

# this can be removed when python 2 support is dropped. 

return self.__floordiv__(other) 

 

def __truediv__(self, other): 

# there is no true divide if the rhs is not a Number, although it 

# could return the first n elements of an infinite series. 

# It is hard to see where n would come from, though. 

if not isinstance(other, numbers.Number) or isinstance(other, bool): 

form = "unsupported types for true division: '%s', '%s'" 

raise TypeError(form % (type(self), type(other))) 

return self.__floordiv__(other) 

 

def __floordiv__(self, other): 

res = self.__divmod__(other) 

if res is NotImplemented: 

return res 

return res[0] 

 

def __mod__(self, other): 

res = self.__divmod__(other) 

if res is NotImplemented: 

return res 

return res[1] 

 

def __divmod__(self, other): 

othercoef = self._get_coefficients(other) 

try: 

quo, rem = self._div(self.coef, othercoef) 

except ZeroDivisionError as e: 

raise e 

except Exception: 

return NotImplemented 

quo = self.__class__(quo, self.domain, self.window) 

rem = self.__class__(rem, self.domain, self.window) 

return quo, rem 

 

def __pow__(self, other): 

coef = self._pow(self.coef, other, maxpower=self.maxpower) 

res = self.__class__(coef, self.domain, self.window) 

return res 

 

def __radd__(self, other): 

try: 

coef = self._add(other, self.coef) 

except Exception: 

return NotImplemented 

return self.__class__(coef, self.domain, self.window) 

 

def __rsub__(self, other): 

try: 

coef = self._sub(other, self.coef) 

except Exception: 

return NotImplemented 

return self.__class__(coef, self.domain, self.window) 

 

def __rmul__(self, other): 

try: 

coef = self._mul(other, self.coef) 

except Exception: 

return NotImplemented 

return self.__class__(coef, self.domain, self.window) 

 

def __rdiv__(self, other): 

# set to __floordiv__ /. 

return self.__rfloordiv__(other) 

 

def __rtruediv__(self, other): 

# An instance of ABCPolyBase is not considered a 

# Number. 

return NotImplemented 

 

def __rfloordiv__(self, other): 

res = self.__rdivmod__(other) 

if res is NotImplemented: 

return res 

return res[0] 

 

def __rmod__(self, other): 

res = self.__rdivmod__(other) 

if res is NotImplemented: 

return res 

return res[1] 

 

def __rdivmod__(self, other): 

try: 

quo, rem = self._div(other, self.coef) 

except ZeroDivisionError as e: 

raise e 

except Exception: 

return NotImplemented 

quo = self.__class__(quo, self.domain, self.window) 

rem = self.__class__(rem, self.domain, self.window) 

return quo, rem 

 

def __eq__(self, other): 

res = (isinstance(other, self.__class__) and 

np.all(self.domain == other.domain) and 

np.all(self.window == other.window) and 

(self.coef.shape == other.coef.shape) and 

np.all(self.coef == other.coef)) 

return res 

 

def __ne__(self, other): 

return not self.__eq__(other) 

 

# 

# Extra methods. 

# 

 

def copy(self): 

"""Return a copy. 

 

Returns 

------- 

new_series : series 

Copy of self. 

 

""" 

return self.__class__(self.coef, self.domain, self.window) 

 

def degree(self): 

"""The degree of the series. 

 

.. versionadded:: 1.5.0 

 

Returns 

------- 

degree : int 

Degree of the series, one less than the number of coefficients. 

 

""" 

return len(self) - 1 

 

def cutdeg(self, deg): 

"""Truncate series to the given degree. 

 

Reduce the degree of the series to `deg` by discarding the 

high order terms. If `deg` is greater than the current degree a 

copy of the current series is returned. This can be useful in least 

squares where the coefficients of the high degree terms may be very 

small. 

 

.. versionadded:: 1.5.0 

 

Parameters 

---------- 

deg : non-negative int 

The series is reduced to degree `deg` by discarding the high 

order terms. The value of `deg` must be a non-negative integer. 

 

Returns 

------- 

new_series : series 

New instance of series with reduced degree. 

 

""" 

return self.truncate(deg + 1) 

 

def trim(self, tol=0): 

"""Remove trailing coefficients 

 

Remove trailing coefficients until a coefficient is reached whose 

absolute value greater than `tol` or the beginning of the series is 

reached. If all the coefficients would be removed the series is set 

to ``[0]``. A new series instance is returned with the new 

coefficients. The current instance remains unchanged. 

 

Parameters 

---------- 

tol : non-negative number. 

All trailing coefficients less than `tol` will be removed. 

 

Returns 

------- 

new_series : series 

Contains the new set of coefficients. 

 

""" 

coef = pu.trimcoef(self.coef, tol) 

return self.__class__(coef, self.domain, self.window) 

 

def truncate(self, size): 

"""Truncate series to length `size`. 

 

Reduce the series to length `size` by discarding the high 

degree terms. The value of `size` must be a positive integer. This 

can be useful in least squares where the coefficients of the 

high degree terms may be very small. 

 

Parameters 

---------- 

size : positive int 

The series is reduced to length `size` by discarding the high 

degree terms. The value of `size` must be a positive integer. 

 

Returns 

------- 

new_series : series 

New instance of series with truncated coefficients. 

 

""" 

isize = int(size) 

if isize != size or isize < 1: 

raise ValueError("size must be a positive integer") 

if isize >= len(self.coef): 

coef = self.coef 

else: 

coef = self.coef[:isize] 

return self.__class__(coef, self.domain, self.window) 

 

def convert(self, domain=None, kind=None, window=None): 

"""Convert series to a different kind and/or domain and/or window. 

 

Parameters 

---------- 

domain : array_like, optional 

The domain of the converted series. If the value is None, 

the default domain of `kind` is used. 

kind : class, optional 

The polynomial series type class to which the current instance 

should be converted. If kind is None, then the class of the 

current instance is used. 

window : array_like, optional 

The window of the converted series. If the value is None, 

the default window of `kind` is used. 

 

Returns 

------- 

new_series : series 

The returned class can be of different type than the current 

instance and/or have a different domain and/or different 

window. 

 

Notes 

----- 

Conversion between domains and class types can result in 

numerically ill defined series. 

 

Examples 

-------- 

 

""" 

if kind is None: 

kind = self.__class__ 

if domain is None: 

domain = kind.domain 

if window is None: 

window = kind.window 

return self(kind.identity(domain, window=window)) 

 

def mapparms(self): 

"""Return the mapping parameters. 

 

The returned values define a linear map ``off + scl*x`` that is 

applied to the input arguments before the series is evaluated. The 

map depends on the ``domain`` and ``window``; if the current 

``domain`` is equal to the ``window`` the resulting map is the 

identity. If the coefficients of the series instance are to be 

used by themselves outside this class, then the linear function 

must be substituted for the ``x`` in the standard representation of 

the base polynomials. 

 

Returns 

------- 

off, scl : float or complex 

The mapping function is defined by ``off + scl*x``. 

 

Notes 

----- 

If the current domain is the interval ``[l1, r1]`` and the window 

is ``[l2, r2]``, then the linear mapping function ``L`` is 

defined by the equations:: 

 

L(l1) = l2 

L(r1) = r2 

 

""" 

return pu.mapparms(self.domain, self.window) 

 

def integ(self, m=1, k=[], lbnd=None): 

"""Integrate. 

 

Return a series instance that is the definite integral of the 

current series. 

 

Parameters 

---------- 

m : non-negative int 

The number of integrations to perform. 

k : array_like 

Integration constants. The first constant is applied to the 

first integration, the second to the second, and so on. The 

list of values must less than or equal to `m` in length and any 

missing values are set to zero. 

lbnd : Scalar 

The lower bound of the definite integral. 

 

Returns 

------- 

new_series : series 

A new series representing the integral. The domain is the same 

as the domain of the integrated series. 

 

""" 

off, scl = self.mapparms() 

if lbnd is None: 

lbnd = 0 

else: 

lbnd = off + scl*lbnd 

coef = self._int(self.coef, m, k, lbnd, 1./scl) 

return self.__class__(coef, self.domain, self.window) 

 

def deriv(self, m=1): 

"""Differentiate. 

 

Return a series instance of that is the derivative of the current 

series. 

 

Parameters 

---------- 

m : non-negative int 

Find the derivative of order `m`. 

 

Returns 

------- 

new_series : series 

A new series representing the derivative. The domain is the same 

as the domain of the differentiated series. 

 

""" 

off, scl = self.mapparms() 

coef = self._der(self.coef, m, scl) 

return self.__class__(coef, self.domain, self.window) 

 

def roots(self): 

"""Return the roots of the series polynomial. 

 

Compute the roots for the series. Note that the accuracy of the 

roots decrease the further outside the domain they lie. 

 

Returns 

------- 

roots : ndarray 

Array containing the roots of the series. 

 

""" 

roots = self._roots(self.coef) 

return pu.mapdomain(roots, self.window, self.domain) 

 

def linspace(self, n=100, domain=None): 

"""Return x, y values at equally spaced points in domain. 

 

Returns the x, y values at `n` linearly spaced points across the 

domain. Here y is the value of the polynomial at the points x. By 

default the domain is the same as that of the series instance. 

This method is intended mostly as a plotting aid. 

 

.. versionadded:: 1.5.0 

 

Parameters 

---------- 

n : int, optional 

Number of point pairs to return. The default value is 100. 

domain : {None, array_like}, optional 

If not None, the specified domain is used instead of that of 

the calling instance. It should be of the form ``[beg,end]``. 

The default is None which case the class domain is used. 

 

Returns 

------- 

x, y : ndarray 

x is equal to linspace(self.domain[0], self.domain[1], n) and 

y is the series evaluated at element of x. 

 

""" 

if domain is None: 

domain = self.domain 

x = np.linspace(domain[0], domain[1], n) 

y = self(x) 

return x, y 

 

@classmethod 

def fit(cls, x, y, deg, domain=None, rcond=None, full=False, w=None, 

window=None): 

"""Least squares fit to data. 

 

Return a series instance that is the least squares fit to the data 

`y` sampled at `x`. The domain of the returned instance can be 

specified and this will often result in a superior fit with less 

chance of ill conditioning. 

 

Parameters 

---------- 

x : array_like, shape (M,) 

x-coordinates of the M sample points ``(x[i], y[i])``. 

y : array_like, shape (M,) or (M, K) 

y-coordinates of the sample points. Several data sets of sample 

points sharing the same x-coordinates can be fitted at once by 

passing in a 2D-array that contains one dataset per column. 

deg : int or 1-D array_like 

Degree(s) of the fitting polynomials. If `deg` is a single integer 

all terms up to and including the `deg`'th term are included in the 

fit. For NumPy versions >= 1.11.0 a list of integers specifying the 

degrees of the terms to include may be used instead. 

domain : {None, [beg, end], []}, optional 

Domain to use for the returned series. If ``None``, 

then a minimal domain that covers the points `x` is chosen. If 

``[]`` the class domain is used. The default value was the 

class domain in NumPy 1.4 and ``None`` in later versions. 

The ``[]`` option was added in numpy 1.5.0. 

rcond : float, optional 

Relative condition number of the fit. Singular values smaller 

than this relative to the largest singular value will be 

ignored. The default value is len(x)*eps, where eps is the 

relative precision of the float type, about 2e-16 in most 

cases. 

full : bool, optional 

Switch determining nature of return value. When it is False 

(the default) just the coefficients are returned, when True 

diagnostic information from the singular value decomposition is 

also returned. 

w : array_like, shape (M,), optional 

Weights. If not None the contribution of each point 

``(x[i],y[i])`` to the fit is weighted by `w[i]`. Ideally the 

weights are chosen so that the errors of the products 

``w[i]*y[i]`` all have the same variance. The default value is 

None. 

 

.. versionadded:: 1.5.0 

window : {[beg, end]}, optional 

Window to use for the returned series. The default 

value is the default class domain 

 

.. versionadded:: 1.6.0 

 

Returns 

------- 

new_series : series 

A series that represents the least squares fit to the data and 

has the domain and window specified in the call. If the 

coefficients for the unscaled and unshifted basis polynomials are 

of interest, do ``new_series.convert().coef``. 

 

[resid, rank, sv, rcond] : list 

These values are only returned if `full` = True 

 

resid -- sum of squared residuals of the least squares fit 

rank -- the numerical rank of the scaled Vandermonde matrix 

sv -- singular values of the scaled Vandermonde matrix 

rcond -- value of `rcond`. 

 

For more details, see `linalg.lstsq`. 

 

""" 

if domain is None: 

domain = pu.getdomain(x) 

elif type(domain) is list and len(domain) == 0: 

domain = cls.domain 

 

if window is None: 

window = cls.window 

 

xnew = pu.mapdomain(x, domain, window) 

res = cls._fit(xnew, y, deg, w=w, rcond=rcond, full=full) 

if full: 

[coef, status] = res 

return cls(coef, domain=domain, window=window), status 

else: 

coef = res 

return cls(coef, domain=domain, window=window) 

 

@classmethod 

def fromroots(cls, roots, domain=[], window=None): 

"""Return series instance that has the specified roots. 

 

Returns a series representing the product 

``(x - r[0])*(x - r[1])*...*(x - r[n-1])``, where ``r`` is a 

list of roots. 

 

Parameters 

---------- 

roots : array_like 

List of roots. 

domain : {[], None, array_like}, optional 

Domain for the resulting series. If None the domain is the 

interval from the smallest root to the largest. If [] the 

domain is the class domain. The default is []. 

window : {None, array_like}, optional 

Window for the returned series. If None the class window is 

used. The default is None. 

 

Returns 

------- 

new_series : series 

Series with the specified roots. 

 

""" 

[roots] = pu.as_series([roots], trim=False) 

if domain is None: 

domain = pu.getdomain(roots) 

elif type(domain) is list and len(domain) == 0: 

domain = cls.domain 

 

if window is None: 

window = cls.window 

 

deg = len(roots) 

off, scl = pu.mapparms(domain, window) 

rnew = off + scl*roots 

coef = cls._fromroots(rnew) / scl**deg 

return cls(coef, domain=domain, window=window) 

 

@classmethod 

def identity(cls, domain=None, window=None): 

"""Identity function. 

 

If ``p`` is the returned series, then ``p(x) == x`` for all 

values of x. 

 

Parameters 

---------- 

domain : {None, array_like}, optional 

If given, the array must be of the form ``[beg, end]``, where 

``beg`` and ``end`` are the endpoints of the domain. If None is 

given then the class domain is used. The default is None. 

window : {None, array_like}, optional 

If given, the resulting array must be if the form 

``[beg, end]``, where ``beg`` and ``end`` are the endpoints of 

the window. If None is given then the class window is used. The 

default is None. 

 

Returns 

------- 

new_series : series 

Series of representing the identity. 

 

""" 

if domain is None: 

domain = cls.domain 

if window is None: 

window = cls.window 

off, scl = pu.mapparms(window, domain) 

coef = cls._line(off, scl) 

return cls(coef, domain, window) 

 

@classmethod 

def basis(cls, deg, domain=None, window=None): 

"""Series basis polynomial of degree `deg`. 

 

Returns the series representing the basis polynomial of degree `deg`. 

 

.. versionadded:: 1.7.0 

 

Parameters 

---------- 

deg : int 

Degree of the basis polynomial for the series. Must be >= 0. 

domain : {None, array_like}, optional 

If given, the array must be of the form ``[beg, end]``, where 

``beg`` and ``end`` are the endpoints of the domain. If None is 

given then the class domain is used. The default is None. 

window : {None, array_like}, optional 

If given, the resulting array must be if the form 

``[beg, end]``, where ``beg`` and ``end`` are the endpoints of 

the window. If None is given then the class window is used. The 

default is None. 

 

Returns 

------- 

new_series : series 

A series with the coefficient of the `deg` term set to one and 

all others zero. 

 

""" 

if domain is None: 

domain = cls.domain 

if window is None: 

window = cls.window 

ideg = int(deg) 

 

if ideg != deg or ideg < 0: 

raise ValueError("deg must be non-negative integer") 

return cls([0]*ideg + [1], domain, window) 

 

@classmethod 

def cast(cls, series, domain=None, window=None): 

"""Convert series to series of this class. 

 

The `series` is expected to be an instance of some polynomial 

series of one of the types supported by by the numpy.polynomial 

module, but could be some other class that supports the convert 

method. 

 

.. versionadded:: 1.7.0 

 

Parameters 

---------- 

series : series 

The series instance to be converted. 

domain : {None, array_like}, optional 

If given, the array must be of the form ``[beg, end]``, where 

``beg`` and ``end`` are the endpoints of the domain. If None is 

given then the class domain is used. The default is None. 

window : {None, array_like}, optional 

If given, the resulting array must be if the form 

``[beg, end]``, where ``beg`` and ``end`` are the endpoints of 

the window. If None is given then the class window is used. The 

default is None. 

 

Returns 

------- 

new_series : series 

A series of the same kind as the calling class and equal to 

`series` when evaluated. 

 

See Also 

-------- 

convert : similar instance method 

 

""" 

if domain is None: 

domain = cls.domain 

if window is None: 

window = cls.window 

return series.convert(domain, cls, window)