1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

""" 

Objects for dealing with polynomials. 

 

This module provides a number of objects (mostly functions) useful for 

dealing with polynomials, including a `Polynomial` class that 

encapsulates the usual arithmetic operations. (General information 

on how this module represents and works with polynomial objects is in 

the docstring for its "parent" sub-package, `numpy.polynomial`). 

 

Constants 

--------- 

- `polydomain` -- Polynomial default domain, [-1,1]. 

- `polyzero` -- (Coefficients of the) "zero polynomial." 

- `polyone` -- (Coefficients of the) constant polynomial 1. 

- `polyx` -- (Coefficients of the) identity map polynomial, ``f(x) = x``. 

 

Arithmetic 

---------- 

- `polyadd` -- add two polynomials. 

- `polysub` -- subtract one polynomial from another. 

- `polymulx` -- multiply a polynomial in ``P_i(x)`` by ``x``. 

- `polymul` -- multiply two polynomials. 

- `polydiv` -- divide one polynomial by another. 

- `polypow` -- raise a polynomial to a positive integer power. 

- `polyval` -- evaluate a polynomial at given points. 

- `polyval2d` -- evaluate a 2D polynomial at given points. 

- `polyval3d` -- evaluate a 3D polynomial at given points. 

- `polygrid2d` -- evaluate a 2D polynomial on a Cartesian product. 

- `polygrid3d` -- evaluate a 3D polynomial on a Cartesian product. 

 

Calculus 

-------- 

- `polyder` -- differentiate a polynomial. 

- `polyint` -- integrate a polynomial. 

 

Misc Functions 

-------------- 

- `polyfromroots` -- create a polynomial with specified roots. 

- `polyroots` -- find the roots of a polynomial. 

- `polyvalfromroots` -- evaluate a polynomial at given points from roots. 

- `polyvander` -- Vandermonde-like matrix for powers. 

- `polyvander2d` -- Vandermonde-like matrix for 2D power series. 

- `polyvander3d` -- Vandermonde-like matrix for 3D power series. 

- `polycompanion` -- companion matrix in power series form. 

- `polyfit` -- least-squares fit returning a polynomial. 

- `polytrim` -- trim leading coefficients from a polynomial. 

- `polyline` -- polynomial representing given straight line. 

 

Classes 

------- 

- `Polynomial` -- polynomial class. 

 

See Also 

-------- 

`numpy.polynomial` 

 

""" 

from __future__ import division, absolute_import, print_function 

 

__all__ = [ 

'polyzero', 'polyone', 'polyx', 'polydomain', 'polyline', 'polyadd', 

'polysub', 'polymulx', 'polymul', 'polydiv', 'polypow', 'polyval', 

'polyvalfromroots', 'polyder', 'polyint', 'polyfromroots', 'polyvander', 

'polyfit', 'polytrim', 'polyroots', 'Polynomial', 'polyval2d', 'polyval3d', 

'polygrid2d', 'polygrid3d', 'polyvander2d', 'polyvander3d'] 

 

import warnings 

import numpy as np 

import numpy.linalg as la 

from numpy.core.multiarray import normalize_axis_index 

 

from . import polyutils as pu 

from ._polybase import ABCPolyBase 

 

polytrim = pu.trimcoef 

 

# 

# These are constant arrays are of integer type so as to be compatible 

# with the widest range of other types, such as Decimal. 

# 

 

# Polynomial default domain. 

polydomain = np.array([-1, 1]) 

 

# Polynomial coefficients representing zero. 

polyzero = np.array([0]) 

 

# Polynomial coefficients representing one. 

polyone = np.array([1]) 

 

# Polynomial coefficients representing the identity x. 

polyx = np.array([0, 1]) 

 

# 

# Polynomial series functions 

# 

 

 

def polyline(off, scl): 

""" 

Returns an array representing a linear polynomial. 

 

Parameters 

---------- 

off, scl : scalars 

The "y-intercept" and "slope" of the line, respectively. 

 

Returns 

------- 

y : ndarray 

This module's representation of the linear polynomial ``off + 

scl*x``. 

 

See Also 

-------- 

chebline 

 

Examples 

-------- 

>>> from numpy.polynomial import polynomial as P 

>>> P.polyline(1,-1) 

array([ 1, -1]) 

>>> P.polyval(1, P.polyline(1,-1)) # should be 0 

0.0 

 

""" 

if scl != 0: 

return np.array([off, scl]) 

else: 

return np.array([off]) 

 

 

def polyfromroots(roots): 

""" 

Generate a monic polynomial with given roots. 

 

Return the coefficients of the polynomial 

 

.. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n), 

 

where the `r_n` are the roots specified in `roots`. If a zero has 

multiplicity n, then it must appear in `roots` n times. For instance, 

if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, 

then `roots` looks something like [2, 2, 2, 3, 3]. The roots can appear 

in any order. 

 

If the returned coefficients are `c`, then 

 

.. math:: p(x) = c_0 + c_1 * x + ... + x^n 

 

The coefficient of the last term is 1 for monic polynomials in this 

form. 

 

Parameters 

---------- 

roots : array_like 

Sequence containing the roots. 

 

Returns 

------- 

out : ndarray 

1-D array of the polynomial's coefficients If all the roots are 

real, then `out` is also real, otherwise it is complex. (see 

Examples below). 

 

See Also 

-------- 

chebfromroots, legfromroots, lagfromroots, hermfromroots 

hermefromroots 

 

Notes 

----- 

The coefficients are determined by multiplying together linear factors 

of the form `(x - r_i)`, i.e. 

 

.. math:: p(x) = (x - r_0) (x - r_1) ... (x - r_n) 

 

where ``n == len(roots) - 1``; note that this implies that `1` is always 

returned for :math:`a_n`. 

 

Examples 

-------- 

>>> from numpy.polynomial import polynomial as P 

>>> P.polyfromroots((-1,0,1)) # x(x - 1)(x + 1) = x^3 - x 

array([ 0., -1., 0., 1.]) 

>>> j = complex(0,1) 

>>> P.polyfromroots((-j,j)) # complex returned, though values are real 

array([ 1.+0.j, 0.+0.j, 1.+0.j]) 

 

""" 

if len(roots) == 0: 

return np.ones(1) 

else: 

[roots] = pu.as_series([roots], trim=False) 

roots.sort() 

p = [polyline(-r, 1) for r in roots] 

n = len(p) 

while n > 1: 

m, r = divmod(n, 2) 

tmp = [polymul(p[i], p[i+m]) for i in range(m)] 

if r: 

tmp[0] = polymul(tmp[0], p[-1]) 

p = tmp 

n = m 

return p[0] 

 

 

def polyadd(c1, c2): 

""" 

Add one polynomial to another. 

 

Returns the sum of two polynomials `c1` + `c2`. The arguments are 

sequences of coefficients from lowest order term to highest, i.e., 

[1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``. 

 

Parameters 

---------- 

c1, c2 : array_like 

1-D arrays of polynomial coefficients ordered from low to high. 

 

Returns 

------- 

out : ndarray 

The coefficient array representing their sum. 

 

See Also 

-------- 

polysub, polymulx, polymul, polydiv, polypow 

 

Examples 

-------- 

>>> from numpy.polynomial import polynomial as P 

>>> c1 = (1,2,3) 

>>> c2 = (3,2,1) 

>>> sum = P.polyadd(c1,c2); sum 

array([ 4., 4., 4.]) 

>>> P.polyval(2, sum) # 4 + 4(2) + 4(2**2) 

28.0 

 

""" 

# c1, c2 are trimmed copies 

[c1, c2] = pu.as_series([c1, c2]) 

if len(c1) > len(c2): 

c1[:c2.size] += c2 

ret = c1 

else: 

c2[:c1.size] += c1 

ret = c2 

return pu.trimseq(ret) 

 

 

def polysub(c1, c2): 

""" 

Subtract one polynomial from another. 

 

Returns the difference of two polynomials `c1` - `c2`. The arguments 

are sequences of coefficients from lowest order term to highest, i.e., 

[1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``. 

 

Parameters 

---------- 

c1, c2 : array_like 

1-D arrays of polynomial coefficients ordered from low to 

high. 

 

Returns 

------- 

out : ndarray 

Of coefficients representing their difference. 

 

See Also 

-------- 

polyadd, polymulx, polymul, polydiv, polypow 

 

Examples 

-------- 

>>> from numpy.polynomial import polynomial as P 

>>> c1 = (1,2,3) 

>>> c2 = (3,2,1) 

>>> P.polysub(c1,c2) 

array([-2., 0., 2.]) 

>>> P.polysub(c2,c1) # -P.polysub(c1,c2) 

array([ 2., 0., -2.]) 

 

""" 

# c1, c2 are trimmed copies 

[c1, c2] = pu.as_series([c1, c2]) 

if len(c1) > len(c2): 

c1[:c2.size] -= c2 

ret = c1 

else: 

c2 = -c2 

c2[:c1.size] += c1 

ret = c2 

return pu.trimseq(ret) 

 

 

def polymulx(c): 

"""Multiply a polynomial by x. 

 

Multiply the polynomial `c` by x, where x is the independent 

variable. 

 

 

Parameters 

---------- 

c : array_like 

1-D array of polynomial coefficients ordered from low to 

high. 

 

Returns 

------- 

out : ndarray 

Array representing the result of the multiplication. 

 

See Also 

-------- 

polyadd, polysub, polymul, polydiv, polypow 

 

Notes 

----- 

 

.. versionadded:: 1.5.0 

 

""" 

# c is a trimmed copy 

[c] = pu.as_series([c]) 

# The zero series needs special treatment 

if len(c) == 1 and c[0] == 0: 

return c 

 

prd = np.empty(len(c) + 1, dtype=c.dtype) 

prd[0] = c[0]*0 

prd[1:] = c 

return prd 

 

 

def polymul(c1, c2): 

""" 

Multiply one polynomial by another. 

 

Returns the product of two polynomials `c1` * `c2`. The arguments are 

sequences of coefficients, from lowest order term to highest, e.g., 

[1,2,3] represents the polynomial ``1 + 2*x + 3*x**2.`` 

 

Parameters 

---------- 

c1, c2 : array_like 

1-D arrays of coefficients representing a polynomial, relative to the 

"standard" basis, and ordered from lowest order term to highest. 

 

Returns 

------- 

out : ndarray 

Of the coefficients of their product. 

 

See Also 

-------- 

polyadd, polysub, polymulx, polydiv, polypow 

 

Examples 

-------- 

>>> from numpy.polynomial import polynomial as P 

>>> c1 = (1,2,3) 

>>> c2 = (3,2,1) 

>>> P.polymul(c1,c2) 

array([ 3., 8., 14., 8., 3.]) 

 

""" 

# c1, c2 are trimmed copies 

[c1, c2] = pu.as_series([c1, c2]) 

ret = np.convolve(c1, c2) 

return pu.trimseq(ret) 

 

 

def polydiv(c1, c2): 

""" 

Divide one polynomial by another. 

 

Returns the quotient-with-remainder of two polynomials `c1` / `c2`. 

The arguments are sequences of coefficients, from lowest order term 

to highest, e.g., [1,2,3] represents ``1 + 2*x + 3*x**2``. 

 

Parameters 

---------- 

c1, c2 : array_like 

1-D arrays of polynomial coefficients ordered from low to high. 

 

Returns 

------- 

[quo, rem] : ndarrays 

Of coefficient series representing the quotient and remainder. 

 

See Also 

-------- 

polyadd, polysub, polymulx, polymul, polypow 

 

Examples 

-------- 

>>> from numpy.polynomial import polynomial as P 

>>> c1 = (1,2,3) 

>>> c2 = (3,2,1) 

>>> P.polydiv(c1,c2) 

(array([ 3.]), array([-8., -4.])) 

>>> P.polydiv(c2,c1) 

(array([ 0.33333333]), array([ 2.66666667, 1.33333333])) 

 

""" 

# c1, c2 are trimmed copies 

[c1, c2] = pu.as_series([c1, c2]) 

if c2[-1] == 0: 

raise ZeroDivisionError() 

 

len1 = len(c1) 

len2 = len(c2) 

if len2 == 1: 

return c1/c2[-1], c1[:1]*0 

elif len1 < len2: 

return c1[:1]*0, c1 

else: 

dlen = len1 - len2 

scl = c2[-1] 

c2 = c2[:-1]/scl 

i = dlen 

j = len1 - 1 

while i >= 0: 

c1[i:j] -= c2*c1[j] 

i -= 1 

j -= 1 

return c1[j+1:]/scl, pu.trimseq(c1[:j+1]) 

 

 

def polypow(c, pow, maxpower=None): 

"""Raise a polynomial to a power. 

 

Returns the polynomial `c` raised to the power `pow`. The argument 

`c` is a sequence of coefficients ordered from low to high. i.e., 

[1,2,3] is the series ``1 + 2*x + 3*x**2.`` 

 

Parameters 

---------- 

c : array_like 

1-D array of array of series coefficients ordered from low to 

high degree. 

pow : integer 

Power to which the series will be raised 

maxpower : integer, optional 

Maximum power allowed. This is mainly to limit growth of the series 

to unmanageable size. Default is 16 

 

Returns 

------- 

coef : ndarray 

Power series of power. 

 

See Also 

-------- 

polyadd, polysub, polymulx, polymul, polydiv 

 

Examples 

-------- 

>>> from numpy.polynomial import polynomial as P 

>>> P.polypow([1,2,3], 2) 

array([ 1., 4., 10., 12., 9.]) 

 

""" 

# c is a trimmed copy 

[c] = pu.as_series([c]) 

power = int(pow) 

if power != pow or power < 0: 

raise ValueError("Power must be a non-negative integer.") 

elif maxpower is not None and power > maxpower: 

raise ValueError("Power is too large") 

elif power == 0: 

return np.array([1], dtype=c.dtype) 

elif power == 1: 

return c 

else: 

# This can be made more efficient by using powers of two 

# in the usual way. 

prd = c 

for i in range(2, power + 1): 

prd = np.convolve(prd, c) 

return prd 

 

 

def polyder(c, m=1, scl=1, axis=0): 

""" 

Differentiate a polynomial. 

 

Returns the polynomial coefficients `c` differentiated `m` times along 

`axis`. At each iteration the result is multiplied by `scl` (the 

scaling factor is for use in a linear change of variable). The 

argument `c` is an array of coefficients from low to high degree along 

each axis, e.g., [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2`` 

while [[1,2],[1,2]] represents ``1 + 1*x + 2*y + 2*x*y`` if axis=0 is 

``x`` and axis=1 is ``y``. 

 

Parameters 

---------- 

c : array_like 

Array of polynomial coefficients. If c is multidimensional the 

different axis correspond to different variables with the degree 

in each axis given by the corresponding index. 

m : int, optional 

Number of derivatives taken, must be non-negative. (Default: 1) 

scl : scalar, optional 

Each differentiation is multiplied by `scl`. The end result is 

multiplication by ``scl**m``. This is for use in a linear change 

of variable. (Default: 1) 

axis : int, optional 

Axis over which the derivative is taken. (Default: 0). 

 

.. versionadded:: 1.7.0 

 

Returns 

------- 

der : ndarray 

Polynomial coefficients of the derivative. 

 

See Also 

-------- 

polyint 

 

Examples 

-------- 

>>> from numpy.polynomial import polynomial as P 

>>> c = (1,2,3,4) # 1 + 2x + 3x**2 + 4x**3 

>>> P.polyder(c) # (d/dx)(c) = 2 + 6x + 12x**2 

array([ 2., 6., 12.]) 

>>> P.polyder(c,3) # (d**3/dx**3)(c) = 24 

array([ 24.]) 

>>> P.polyder(c,scl=-1) # (d/d(-x))(c) = -2 - 6x - 12x**2 

array([ -2., -6., -12.]) 

>>> P.polyder(c,2,-1) # (d**2/d(-x)**2)(c) = 6 + 24x 

array([ 6., 24.]) 

 

""" 

c = np.array(c, ndmin=1, copy=1) 

if c.dtype.char in '?bBhHiIlLqQpP': 

# astype fails with NA 

c = c + 0.0 

cdt = c.dtype 

cnt, iaxis = [int(t) for t in [m, axis]] 

 

if cnt != m: 

raise ValueError("The order of derivation must be integer") 

if cnt < 0: 

raise ValueError("The order of derivation must be non-negative") 

if iaxis != axis: 

raise ValueError("The axis must be integer") 

iaxis = normalize_axis_index(iaxis, c.ndim) 

 

if cnt == 0: 

return c 

 

c = np.moveaxis(c, iaxis, 0) 

n = len(c) 

if cnt >= n: 

c = c[:1]*0 

else: 

for i in range(cnt): 

n = n - 1 

c *= scl 

der = np.empty((n,) + c.shape[1:], dtype=cdt) 

for j in range(n, 0, -1): 

der[j - 1] = j*c[j] 

c = der 

c = np.moveaxis(c, 0, iaxis) 

return c 

 

 

def polyint(c, m=1, k=[], lbnd=0, scl=1, axis=0): 

""" 

Integrate a polynomial. 

 

Returns the polynomial coefficients `c` integrated `m` times from 

`lbnd` along `axis`. At each iteration the resulting series is 

**multiplied** by `scl` and an integration constant, `k`, is added. 

The scaling factor is for use in a linear change of variable. ("Buyer 

beware": note that, depending on what one is doing, one may want `scl` 

to be the reciprocal of what one might expect; for more information, 

see the Notes section below.) The argument `c` is an array of 

coefficients, from low to high degree along each axis, e.g., [1,2,3] 

represents the polynomial ``1 + 2*x + 3*x**2`` while [[1,2],[1,2]] 

represents ``1 + 1*x + 2*y + 2*x*y`` if axis=0 is ``x`` and axis=1 is 

``y``. 

 

Parameters 

---------- 

c : array_like 

1-D array of polynomial coefficients, ordered from low to high. 

m : int, optional 

Order of integration, must be positive. (Default: 1) 

k : {[], list, scalar}, optional 

Integration constant(s). The value of the first integral at zero 

is the first value in the list, the value of the second integral 

at zero is the second value, etc. If ``k == []`` (the default), 

all constants are set to zero. If ``m == 1``, a single scalar can 

be given instead of a list. 

lbnd : scalar, optional 

The lower bound of the integral. (Default: 0) 

scl : scalar, optional 

Following each integration the result is *multiplied* by `scl` 

before the integration constant is added. (Default: 1) 

axis : int, optional 

Axis over which the integral is taken. (Default: 0). 

 

.. versionadded:: 1.7.0 

 

Returns 

------- 

S : ndarray 

Coefficient array of the integral. 

 

Raises 

------ 

ValueError 

If ``m < 1``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or 

``np.ndim(scl) != 0``. 

 

See Also 

-------- 

polyder 

 

Notes 

----- 

Note that the result of each integration is *multiplied* by `scl`. Why 

is this important to note? Say one is making a linear change of 

variable :math:`u = ax + b` in an integral relative to `x`. Then 

:math:`dx = du/a`, so one will need to set `scl` equal to 

:math:`1/a` - perhaps not what one would have first thought. 

 

Examples 

-------- 

>>> from numpy.polynomial import polynomial as P 

>>> c = (1,2,3) 

>>> P.polyint(c) # should return array([0, 1, 1, 1]) 

array([ 0., 1., 1., 1.]) 

>>> P.polyint(c,3) # should return array([0, 0, 0, 1/6, 1/12, 1/20]) 

array([ 0. , 0. , 0. , 0.16666667, 0.08333333, 

0.05 ]) 

>>> P.polyint(c,k=3) # should return array([3, 1, 1, 1]) 

array([ 3., 1., 1., 1.]) 

>>> P.polyint(c,lbnd=-2) # should return array([6, 1, 1, 1]) 

array([ 6., 1., 1., 1.]) 

>>> P.polyint(c,scl=-2) # should return array([0, -2, -2, -2]) 

array([ 0., -2., -2., -2.]) 

 

""" 

c = np.array(c, ndmin=1, copy=1) 

if c.dtype.char in '?bBhHiIlLqQpP': 

# astype doesn't preserve mask attribute. 

c = c + 0.0 

cdt = c.dtype 

if not np.iterable(k): 

k = [k] 

cnt, iaxis = [int(t) for t in [m, axis]] 

 

if cnt != m: 

raise ValueError("The order of integration must be integer") 

if cnt < 0: 

raise ValueError("The order of integration must be non-negative") 

if len(k) > cnt: 

raise ValueError("Too many integration constants") 

if np.ndim(lbnd) != 0: 

raise ValueError("lbnd must be a scalar.") 

if np.ndim(scl) != 0: 

raise ValueError("scl must be a scalar.") 

if iaxis != axis: 

raise ValueError("The axis must be integer") 

iaxis = normalize_axis_index(iaxis, c.ndim) 

 

if cnt == 0: 

return c 

 

k = list(k) + [0]*(cnt - len(k)) 

c = np.moveaxis(c, iaxis, 0) 

for i in range(cnt): 

n = len(c) 

c *= scl 

if n == 1 and np.all(c[0] == 0): 

c[0] += k[i] 

else: 

tmp = np.empty((n + 1,) + c.shape[1:], dtype=cdt) 

tmp[0] = c[0]*0 

tmp[1] = c[0] 

for j in range(1, n): 

tmp[j + 1] = c[j]/(j + 1) 

tmp[0] += k[i] - polyval(lbnd, tmp) 

c = tmp 

c = np.moveaxis(c, 0, iaxis) 

return c 

 

 

def polyval(x, c, tensor=True): 

""" 

Evaluate a polynomial at points x. 

 

If `c` is of length `n + 1`, this function returns the value 

 

.. math:: p(x) = c_0 + c_1 * x + ... + c_n * x^n 

 

The parameter `x` is converted to an array only if it is a tuple or a 

list, otherwise it is treated as a scalar. In either case, either `x` 

or its elements must support multiplication and addition both with 

themselves and with the elements of `c`. 

 

If `c` is a 1-D array, then `p(x)` will have the same shape as `x`. If 

`c` is multidimensional, then the shape of the result depends on the 

value of `tensor`. If `tensor` is true the shape will be c.shape[1:] + 

x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that 

scalars have shape (,). 

 

Trailing zeros in the coefficients will be used in the evaluation, so 

they should be avoided if efficiency is a concern. 

 

Parameters 

---------- 

x : array_like, compatible object 

If `x` is a list or tuple, it is converted to an ndarray, otherwise 

it is left unchanged and treated as a scalar. In either case, `x` 

or its elements must support addition and multiplication with 

with themselves and with the elements of `c`. 

c : array_like 

Array of coefficients ordered so that the coefficients for terms of 

degree n are contained in c[n]. If `c` is multidimensional the 

remaining indices enumerate multiple polynomials. In the two 

dimensional case the coefficients may be thought of as stored in 

the columns of `c`. 

tensor : boolean, optional 

If True, the shape of the coefficient array is extended with ones 

on the right, one for each dimension of `x`. Scalars have dimension 0 

for this action. The result is that every column of coefficients in 

`c` is evaluated for every element of `x`. If False, `x` is broadcast 

over the columns of `c` for the evaluation. This keyword is useful 

when `c` is multidimensional. The default value is True. 

 

.. versionadded:: 1.7.0 

 

Returns 

------- 

values : ndarray, compatible object 

The shape of the returned array is described above. 

 

See Also 

-------- 

polyval2d, polygrid2d, polyval3d, polygrid3d 

 

Notes 

----- 

The evaluation uses Horner's method. 

 

Examples 

-------- 

>>> from numpy.polynomial.polynomial import polyval 

>>> polyval(1, [1,2,3]) 

6.0 

>>> a = np.arange(4).reshape(2,2) 

>>> a 

array([[0, 1], 

[2, 3]]) 

>>> polyval(a, [1,2,3]) 

array([[ 1., 6.], 

[ 17., 34.]]) 

>>> coef = np.arange(4).reshape(2,2) # multidimensional coefficients 

>>> coef 

array([[0, 1], 

[2, 3]]) 

>>> polyval([1,2], coef, tensor=True) 

array([[ 2., 4.], 

[ 4., 7.]]) 

>>> polyval([1,2], coef, tensor=False) 

array([ 2., 7.]) 

 

""" 

c = np.array(c, ndmin=1, copy=0) 

if c.dtype.char in '?bBhHiIlLqQpP': 

# astype fails with NA 

c = c + 0.0 

if isinstance(x, (tuple, list)): 

x = np.asarray(x) 

if isinstance(x, np.ndarray) and tensor: 

c = c.reshape(c.shape + (1,)*x.ndim) 

 

c0 = c[-1] + x*0 

for i in range(2, len(c) + 1): 

c0 = c[-i] + c0*x 

return c0 

 

 

def polyvalfromroots(x, r, tensor=True): 

""" 

Evaluate a polynomial specified by its roots at points x. 

 

If `r` is of length `N`, this function returns the value 

 

.. math:: p(x) = \\prod_{n=1}^{N} (x - r_n) 

 

The parameter `x` is converted to an array only if it is a tuple or a 

list, otherwise it is treated as a scalar. In either case, either `x` 

or its elements must support multiplication and addition both with 

themselves and with the elements of `r`. 

 

If `r` is a 1-D array, then `p(x)` will have the same shape as `x`. If `r` 

is multidimensional, then the shape of the result depends on the value of 

`tensor`. If `tensor is ``True`` the shape will be r.shape[1:] + x.shape; 

that is, each polynomial is evaluated at every value of `x`. If `tensor` is 

``False``, the shape will be r.shape[1:]; that is, each polynomial is 

evaluated only for the corresponding broadcast value of `x`. Note that 

scalars have shape (,). 

 

.. versionadded:: 1.12 

 

Parameters 

---------- 

x : array_like, compatible object 

If `x` is a list or tuple, it is converted to an ndarray, otherwise 

it is left unchanged and treated as a scalar. In either case, `x` 

or its elements must support addition and multiplication with 

with themselves and with the elements of `r`. 

r : array_like 

Array of roots. If `r` is multidimensional the first index is the 

root index, while the remaining indices enumerate multiple 

polynomials. For instance, in the two dimensional case the roots 

of each polynomial may be thought of as stored in the columns of `r`. 

tensor : boolean, optional 

If True, the shape of the roots array is extended with ones on the 

right, one for each dimension of `x`. Scalars have dimension 0 for this 

action. The result is that every column of coefficients in `r` is 

evaluated for every element of `x`. If False, `x` is broadcast over the 

columns of `r` for the evaluation. This keyword is useful when `r` is 

multidimensional. The default value is True. 

 

Returns 

------- 

values : ndarray, compatible object 

The shape of the returned array is described above. 

 

See Also 

-------- 

polyroots, polyfromroots, polyval 

 

Examples 

-------- 

>>> from numpy.polynomial.polynomial import polyvalfromroots 

>>> polyvalfromroots(1, [1,2,3]) 

0.0 

>>> a = np.arange(4).reshape(2,2) 

>>> a 

array([[0, 1], 

[2, 3]]) 

>>> polyvalfromroots(a, [-1, 0, 1]) 

array([[ -0., 0.], 

[ 6., 24.]]) 

>>> r = np.arange(-2, 2).reshape(2,2) # multidimensional coefficients 

>>> r # each column of r defines one polynomial 

array([[-2, -1], 

[ 0, 1]]) 

>>> b = [-2, 1] 

>>> polyvalfromroots(b, r, tensor=True) 

array([[-0., 3.], 

[ 3., 0.]]) 

>>> polyvalfromroots(b, r, tensor=False) 

array([-0., 0.]) 

""" 

r = np.array(r, ndmin=1, copy=0) 

if r.dtype.char in '?bBhHiIlLqQpP': 

r = r.astype(np.double) 

if isinstance(x, (tuple, list)): 

x = np.asarray(x) 

if isinstance(x, np.ndarray): 

if tensor: 

r = r.reshape(r.shape + (1,)*x.ndim) 

elif x.ndim >= r.ndim: 

raise ValueError("x.ndim must be < r.ndim when tensor == False") 

return np.prod(x - r, axis=0) 

 

 

def polyval2d(x, y, c): 

""" 

Evaluate a 2-D polynomial at points (x, y). 

 

This function returns the value 

 

.. math:: p(x,y) = \\sum_{i,j} c_{i,j} * x^i * y^j 

 

The parameters `x` and `y` are converted to arrays only if they are 

tuples or a lists, otherwise they are treated as a scalars and they 

must have the same shape after conversion. In either case, either `x` 

and `y` or their elements must support multiplication and addition both 

with themselves and with the elements of `c`. 

 

If `c` has fewer than two dimensions, ones are implicitly appended to 

its shape to make it 2-D. The shape of the result will be c.shape[2:] + 

x.shape. 

 

Parameters 

---------- 

x, y : array_like, compatible objects 

The two dimensional series is evaluated at the points `(x, y)`, 

where `x` and `y` must have the same shape. If `x` or `y` is a list 

or tuple, it is first converted to an ndarray, otherwise it is left 

unchanged and, if it isn't an ndarray, it is treated as a scalar. 

c : array_like 

Array of coefficients ordered so that the coefficient of the term 

of multi-degree i,j is contained in `c[i,j]`. If `c` has 

dimension greater than two the remaining indices enumerate multiple 

sets of coefficients. 

 

Returns 

------- 

values : ndarray, compatible object 

The values of the two dimensional polynomial at points formed with 

pairs of corresponding values from `x` and `y`. 

 

See Also 

-------- 

polyval, polygrid2d, polyval3d, polygrid3d 

 

Notes 

----- 

 

.. versionadded:: 1.7.0 

 

""" 

try: 

x, y = np.array((x, y), copy=0) 

except Exception: 

raise ValueError('x, y are incompatible') 

 

c = polyval(x, c) 

c = polyval(y, c, tensor=False) 

return c 

 

 

def polygrid2d(x, y, c): 

""" 

Evaluate a 2-D polynomial on the Cartesian product of x and y. 

 

This function returns the values: 

 

.. math:: p(a,b) = \\sum_{i,j} c_{i,j} * a^i * b^j 

 

where the points `(a, b)` consist of all pairs formed by taking 

`a` from `x` and `b` from `y`. The resulting points form a grid with 

`x` in the first dimension and `y` in the second. 

 

The parameters `x` and `y` are converted to arrays only if they are 

tuples or a lists, otherwise they are treated as a scalars. In either 

case, either `x` and `y` or their elements must support multiplication 

and addition both with themselves and with the elements of `c`. 

 

If `c` has fewer than two dimensions, ones are implicitly appended to 

its shape to make it 2-D. The shape of the result will be c.shape[2:] + 

x.shape + y.shape. 

 

Parameters 

---------- 

x, y : array_like, compatible objects 

The two dimensional series is evaluated at the points in the 

Cartesian product of `x` and `y`. If `x` or `y` is a list or 

tuple, it is first converted to an ndarray, otherwise it is left 

unchanged and, if it isn't an ndarray, it is treated as a scalar. 

c : array_like 

Array of coefficients ordered so that the coefficients for terms of 

degree i,j are contained in ``c[i,j]``. If `c` has dimension 

greater than two the remaining indices enumerate multiple sets of 

coefficients. 

 

Returns 

------- 

values : ndarray, compatible object 

The values of the two dimensional polynomial at points in the Cartesian 

product of `x` and `y`. 

 

See Also 

-------- 

polyval, polyval2d, polyval3d, polygrid3d 

 

Notes 

----- 

 

.. versionadded:: 1.7.0 

 

""" 

c = polyval(x, c) 

c = polyval(y, c) 

return c 

 

 

def polyval3d(x, y, z, c): 

""" 

Evaluate a 3-D polynomial at points (x, y, z). 

 

This function returns the values: 

 

.. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * x^i * y^j * z^k 

 

The parameters `x`, `y`, and `z` are converted to arrays only if 

they are tuples or a lists, otherwise they are treated as a scalars and 

they must have the same shape after conversion. In either case, either 

`x`, `y`, and `z` or their elements must support multiplication and 

addition both with themselves and with the elements of `c`. 

 

If `c` has fewer than 3 dimensions, ones are implicitly appended to its 

shape to make it 3-D. The shape of the result will be c.shape[3:] + 

x.shape. 

 

Parameters 

---------- 

x, y, z : array_like, compatible object 

The three dimensional series is evaluated at the points 

`(x, y, z)`, where `x`, `y`, and `z` must have the same shape. If 

any of `x`, `y`, or `z` is a list or tuple, it is first converted 

to an ndarray, otherwise it is left unchanged and if it isn't an 

ndarray it is treated as a scalar. 

c : array_like 

Array of coefficients ordered so that the coefficient of the term of 

multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension 

greater than 3 the remaining indices enumerate multiple sets of 

coefficients. 

 

Returns 

------- 

values : ndarray, compatible object 

The values of the multidimensional polynomial on points formed with 

triples of corresponding values from `x`, `y`, and `z`. 

 

See Also 

-------- 

polyval, polyval2d, polygrid2d, polygrid3d 

 

Notes 

----- 

 

.. versionadded:: 1.7.0 

 

""" 

try: 

x, y, z = np.array((x, y, z), copy=0) 

except Exception: 

raise ValueError('x, y, z are incompatible') 

 

c = polyval(x, c) 

c = polyval(y, c, tensor=False) 

c = polyval(z, c, tensor=False) 

return c 

 

 

def polygrid3d(x, y, z, c): 

""" 

Evaluate a 3-D polynomial on the Cartesian product of x, y and z. 

 

This function returns the values: 

 

.. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * a^i * b^j * c^k 

 

where the points `(a, b, c)` consist of all triples formed by taking 

`a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form 

a grid with `x` in the first dimension, `y` in the second, and `z` in 

the third. 

 

The parameters `x`, `y`, and `z` are converted to arrays only if they 

are tuples or a lists, otherwise they are treated as a scalars. In 

either case, either `x`, `y`, and `z` or their elements must support 

multiplication and addition both with themselves and with the elements 

of `c`. 

 

If `c` has fewer than three dimensions, ones are implicitly appended to 

its shape to make it 3-D. The shape of the result will be c.shape[3:] + 

x.shape + y.shape + z.shape. 

 

Parameters 

---------- 

x, y, z : array_like, compatible objects 

The three dimensional series is evaluated at the points in the 

Cartesian product of `x`, `y`, and `z`. If `x`,`y`, or `z` is a 

list or tuple, it is first converted to an ndarray, otherwise it is 

left unchanged and, if it isn't an ndarray, it is treated as a 

scalar. 

c : array_like 

Array of coefficients ordered so that the coefficients for terms of 

degree i,j are contained in ``c[i,j]``. If `c` has dimension 

greater than two the remaining indices enumerate multiple sets of 

coefficients. 

 

Returns 

------- 

values : ndarray, compatible object 

The values of the two dimensional polynomial at points in the Cartesian 

product of `x` and `y`. 

 

See Also 

-------- 

polyval, polyval2d, polygrid2d, polyval3d 

 

Notes 

----- 

 

.. versionadded:: 1.7.0 

 

""" 

c = polyval(x, c) 

c = polyval(y, c) 

c = polyval(z, c) 

return c 

 

 

def polyvander(x, deg): 

"""Vandermonde matrix of given degree. 

 

Returns the Vandermonde matrix of degree `deg` and sample points 

`x`. The Vandermonde matrix is defined by 

 

.. math:: V[..., i] = x^i, 

 

where `0 <= i <= deg`. The leading indices of `V` index the elements of 

`x` and the last index is the power of `x`. 

 

If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the 

matrix ``V = polyvander(x, n)``, then ``np.dot(V, c)`` and 

``polyval(x, c)`` are the same up to roundoff. This equivalence is 

useful both for least squares fitting and for the evaluation of a large 

number of polynomials of the same degree and sample points. 

 

Parameters 

---------- 

x : array_like 

Array of points. The dtype is converted to float64 or complex128 

depending on whether any of the elements are complex. If `x` is 

scalar it is converted to a 1-D array. 

deg : int 

Degree of the resulting matrix. 

 

Returns 

------- 

vander : ndarray. 

The Vandermonde matrix. The shape of the returned matrix is 

``x.shape + (deg + 1,)``, where the last index is the power of `x`. 

The dtype will be the same as the converted `x`. 

 

See Also 

-------- 

polyvander2d, polyvander3d 

 

""" 

ideg = int(deg) 

if ideg != deg: 

raise ValueError("deg must be integer") 

if ideg < 0: 

raise ValueError("deg must be non-negative") 

 

x = np.array(x, copy=0, ndmin=1) + 0.0 

dims = (ideg + 1,) + x.shape 

dtyp = x.dtype 

v = np.empty(dims, dtype=dtyp) 

v[0] = x*0 + 1 

if ideg > 0: 

v[1] = x 

for i in range(2, ideg + 1): 

v[i] = v[i-1]*x 

return np.moveaxis(v, 0, -1) 

 

 

def polyvander2d(x, y, deg): 

"""Pseudo-Vandermonde matrix of given degrees. 

 

Returns the pseudo-Vandermonde matrix of degrees `deg` and sample 

points `(x, y)`. The pseudo-Vandermonde matrix is defined by 

 

.. math:: V[..., (deg[1] + 1)*i + j] = x^i * y^j, 

 

where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of 

`V` index the points `(x, y)` and the last index encodes the powers of 

`x` and `y`. 

 

If ``V = polyvander2d(x, y, [xdeg, ydeg])``, then the columns of `V` 

correspond to the elements of a 2-D coefficient array `c` of shape 

(xdeg + 1, ydeg + 1) in the order 

 

.. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ... 

 

and ``np.dot(V, c.flat)`` and ``polyval2d(x, y, c)`` will be the same 

up to roundoff. This equivalence is useful both for least squares 

fitting and for the evaluation of a large number of 2-D polynomials 

of the same degrees and sample points. 

 

Parameters 

---------- 

x, y : array_like 

Arrays of point coordinates, all of the same shape. The dtypes 

will be converted to either float64 or complex128 depending on 

whether any of the elements are complex. Scalars are converted to 

1-D arrays. 

deg : list of ints 

List of maximum degrees of the form [x_deg, y_deg]. 

 

Returns 

------- 

vander2d : ndarray 

The shape of the returned matrix is ``x.shape + (order,)``, where 

:math:`order = (deg[0]+1)*(deg([1]+1)`. The dtype will be the same 

as the converted `x` and `y`. 

 

See Also 

-------- 

polyvander, polyvander3d. polyval2d, polyval3d 

 

""" 

ideg = [int(d) for d in deg] 

is_valid = [id == d and id >= 0 for id, d in zip(ideg, deg)] 

if is_valid != [1, 1]: 

raise ValueError("degrees must be non-negative integers") 

degx, degy = ideg 

x, y = np.array((x, y), copy=0) + 0.0 

 

vx = polyvander(x, degx) 

vy = polyvander(y, degy) 

v = vx[..., None]*vy[..., None,:] 

# einsum bug 

#v = np.einsum("...i,...j->...ij", vx, vy) 

return v.reshape(v.shape[:-2] + (-1,)) 

 

 

def polyvander3d(x, y, z, deg): 

"""Pseudo-Vandermonde matrix of given degrees. 

 

Returns the pseudo-Vandermonde matrix of degrees `deg` and sample 

points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`, 

then The pseudo-Vandermonde matrix is defined by 

 

.. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = x^i * y^j * z^k, 

 

where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`. The leading 

indices of `V` index the points `(x, y, z)` and the last index encodes 

the powers of `x`, `y`, and `z`. 

 

If ``V = polyvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns 

of `V` correspond to the elements of a 3-D coefficient array `c` of 

shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order 

 

.. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},... 

 

and ``np.dot(V, c.flat)`` and ``polyval3d(x, y, z, c)`` will be the 

same up to roundoff. This equivalence is useful both for least squares 

fitting and for the evaluation of a large number of 3-D polynomials 

of the same degrees and sample points. 

 

Parameters 

---------- 

x, y, z : array_like 

Arrays of point coordinates, all of the same shape. The dtypes will 

be converted to either float64 or complex128 depending on whether 

any of the elements are complex. Scalars are converted to 1-D 

arrays. 

deg : list of ints 

List of maximum degrees of the form [x_deg, y_deg, z_deg]. 

 

Returns 

------- 

vander3d : ndarray 

The shape of the returned matrix is ``x.shape + (order,)``, where 

:math:`order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)`. The dtype will 

be the same as the converted `x`, `y`, and `z`. 

 

See Also 

-------- 

polyvander, polyvander3d. polyval2d, polyval3d 

 

Notes 

----- 

 

.. versionadded:: 1.7.0 

 

""" 

ideg = [int(d) for d in deg] 

is_valid = [id == d and id >= 0 for id, d in zip(ideg, deg)] 

if is_valid != [1, 1, 1]: 

raise ValueError("degrees must be non-negative integers") 

degx, degy, degz = ideg 

x, y, z = np.array((x, y, z), copy=0) + 0.0 

 

vx = polyvander(x, degx) 

vy = polyvander(y, degy) 

vz = polyvander(z, degz) 

v = vx[..., None, None]*vy[..., None,:, None]*vz[..., None, None,:] 

# einsum bug 

#v = np.einsum("...i, ...j, ...k->...ijk", vx, vy, vz) 

return v.reshape(v.shape[:-3] + (-1,)) 

 

 

def polyfit(x, y, deg, rcond=None, full=False, w=None): 

""" 

Least-squares fit of a polynomial to data. 

 

Return the coefficients of a polynomial of degree `deg` that is the 

least squares fit to the data values `y` given at points `x`. If `y` is 

1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple 

fits are done, one for each column of `y`, and the resulting 

coefficients are stored in the corresponding columns of a 2-D return. 

The fitted polynomial(s) are in the form 

 

.. math:: p(x) = c_0 + c_1 * x + ... + c_n * x^n, 

 

where `n` is `deg`. 

 

Parameters 

---------- 

x : array_like, shape (`M`,) 

x-coordinates of the `M` sample (data) points ``(x[i], y[i])``. 

y : array_like, shape (`M`,) or (`M`, `K`) 

y-coordinates of the sample points. Several sets of sample points 

sharing the same x-coordinates can be (independently) fit with one 

call to `polyfit` by passing in for `y` a 2-D array that contains 

one data set per column. 

deg : int or 1-D array_like 

Degree(s) of the fitting polynomials. If `deg` is a single integer 

all terms up to and including the `deg`'th term are included in the 

fit. For NumPy versions >= 1.11.0 a list of integers specifying the 

degrees of the terms to include may be used instead. 

rcond : float, optional 

Relative condition number of the fit. Singular values smaller 

than `rcond`, relative to the largest singular value, will be 

ignored. The default value is ``len(x)*eps``, where `eps` is the 

relative precision of the platform's float type, about 2e-16 in 

most cases. 

full : bool, optional 

Switch determining the nature of the return value. When ``False`` 

(the default) just the coefficients are returned; when ``True``, 

diagnostic information from the singular value decomposition (used 

to solve the fit's matrix equation) is also returned. 

w : array_like, shape (`M`,), optional 

Weights. If not None, the contribution of each point 

``(x[i],y[i])`` to the fit is weighted by `w[i]`. Ideally the 

weights are chosen so that the errors of the products ``w[i]*y[i]`` 

all have the same variance. The default value is None. 

 

.. versionadded:: 1.5.0 

 

Returns 

------- 

coef : ndarray, shape (`deg` + 1,) or (`deg` + 1, `K`) 

Polynomial coefficients ordered from low to high. If `y` was 2-D, 

the coefficients in column `k` of `coef` represent the polynomial 

fit to the data in `y`'s `k`-th column. 

 

[residuals, rank, singular_values, rcond] : list 

These values are only returned if `full` = True 

 

resid -- sum of squared residuals of the least squares fit 

rank -- the numerical rank of the scaled Vandermonde matrix 

sv -- singular values of the scaled Vandermonde matrix 

rcond -- value of `rcond`. 

 

For more details, see `linalg.lstsq`. 

 

Raises 

------ 

RankWarning 

Raised if the matrix in the least-squares fit is rank deficient. 

The warning is only raised if `full` == False. The warnings can 

be turned off by: 

 

>>> import warnings 

>>> warnings.simplefilter('ignore', RankWarning) 

 

See Also 

-------- 

chebfit, legfit, lagfit, hermfit, hermefit 

polyval : Evaluates a polynomial. 

polyvander : Vandermonde matrix for powers. 

linalg.lstsq : Computes a least-squares fit from the matrix. 

scipy.interpolate.UnivariateSpline : Computes spline fits. 

 

Notes 

----- 

The solution is the coefficients of the polynomial `p` that minimizes 

the sum of the weighted squared errors 

 

.. math :: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2, 

 

where the :math:`w_j` are the weights. This problem is solved by 

setting up the (typically) over-determined matrix equation: 

 

.. math :: V(x) * c = w * y, 

 

where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the 

coefficients to be solved for, `w` are the weights, and `y` are the 

observed values. This equation is then solved using the singular value 

decomposition of `V`. 

 

If some of the singular values of `V` are so small that they are 

neglected (and `full` == ``False``), a `RankWarning` will be raised. 

This means that the coefficient values may be poorly determined. 

Fitting to a lower order polynomial will usually get rid of the warning 

(but may not be what you want, of course; if you have independent 

reason(s) for choosing the degree which isn't working, you may have to: 

a) reconsider those reasons, and/or b) reconsider the quality of your 

data). The `rcond` parameter can also be set to a value smaller than 

its default, but the resulting fit may be spurious and have large 

contributions from roundoff error. 

 

Polynomial fits using double precision tend to "fail" at about 

(polynomial) degree 20. Fits using Chebyshev or Legendre series are 

generally better conditioned, but much can still depend on the 

distribution of the sample points and the smoothness of the data. If 

the quality of the fit is inadequate, splines may be a good 

alternative. 

 

Examples 

-------- 

>>> from numpy.polynomial import polynomial as P 

>>> x = np.linspace(-1,1,51) # x "data": [-1, -0.96, ..., 0.96, 1] 

>>> y = x**3 - x + np.random.randn(len(x)) # x^3 - x + N(0,1) "noise" 

>>> c, stats = P.polyfit(x,y,3,full=True) 

>>> c # c[0], c[2] should be approx. 0, c[1] approx. -1, c[3] approx. 1 

array([ 0.01909725, -1.30598256, -0.00577963, 1.02644286]) 

>>> stats # note the large SSR, explaining the rather poor results 

[array([ 38.06116253]), 4, array([ 1.38446749, 1.32119158, 0.50443316, 

0.28853036]), 1.1324274851176597e-014] 

 

Same thing without the added noise 

 

>>> y = x**3 - x 

>>> c, stats = P.polyfit(x,y,3,full=True) 

>>> c # c[0], c[2] should be "very close to 0", c[1] ~= -1, c[3] ~= 1 

array([ -1.73362882e-17, -1.00000000e+00, -2.67471909e-16, 

1.00000000e+00]) 

>>> stats # note the minuscule SSR 

[array([ 7.46346754e-31]), 4, array([ 1.38446749, 1.32119158, 

0.50443316, 0.28853036]), 1.1324274851176597e-014] 

 

""" 

x = np.asarray(x) + 0.0 

y = np.asarray(y) + 0.0 

deg = np.asarray(deg) 

 

# check arguments. 

if deg.ndim > 1 or deg.dtype.kind not in 'iu' or deg.size == 0: 

raise TypeError("deg must be an int or non-empty 1-D array of int") 

if deg.min() < 0: 

raise ValueError("expected deg >= 0") 

if x.ndim != 1: 

raise TypeError("expected 1D vector for x") 

if x.size == 0: 

raise TypeError("expected non-empty vector for x") 

if y.ndim < 1 or y.ndim > 2: 

raise TypeError("expected 1D or 2D array for y") 

if len(x) != len(y): 

raise TypeError("expected x and y to have same length") 

 

if deg.ndim == 0: 

lmax = deg 

order = lmax + 1 

van = polyvander(x, lmax) 

else: 

deg = np.sort(deg) 

lmax = deg[-1] 

order = len(deg) 

van = polyvander(x, lmax)[:, deg] 

 

# set up the least squares matrices in transposed form 

lhs = van.T 

rhs = y.T 

if w is not None: 

w = np.asarray(w) + 0.0 

if w.ndim != 1: 

raise TypeError("expected 1D vector for w") 

if len(x) != len(w): 

raise TypeError("expected x and w to have same length") 

# apply weights. Don't use inplace operations as they 

# can cause problems with NA. 

lhs = lhs * w 

rhs = rhs * w 

 

# set rcond 

if rcond is None: 

rcond = len(x)*np.finfo(x.dtype).eps 

 

# Determine the norms of the design matrix columns. 

if issubclass(lhs.dtype.type, np.complexfloating): 

scl = np.sqrt((np.square(lhs.real) + np.square(lhs.imag)).sum(1)) 

else: 

scl = np.sqrt(np.square(lhs).sum(1)) 

scl[scl == 0] = 1 

 

# Solve the least squares problem. 

c, resids, rank, s = la.lstsq(lhs.T/scl, rhs.T, rcond) 

c = (c.T/scl).T 

 

# Expand c to include non-fitted coefficients which are set to zero 

if deg.ndim == 1: 

if c.ndim == 2: 

cc = np.zeros((lmax + 1, c.shape[1]), dtype=c.dtype) 

else: 

cc = np.zeros(lmax + 1, dtype=c.dtype) 

cc[deg] = c 

c = cc 

 

# warn on rank reduction 

if rank != order and not full: 

msg = "The fit may be poorly conditioned" 

warnings.warn(msg, pu.RankWarning, stacklevel=2) 

 

if full: 

return c, [resids, rank, s, rcond] 

else: 

return c 

 

 

def polycompanion(c): 

""" 

Return the companion matrix of c. 

 

The companion matrix for power series cannot be made symmetric by 

scaling the basis, so this function differs from those for the 

orthogonal polynomials. 

 

Parameters 

---------- 

c : array_like 

1-D array of polynomial coefficients ordered from low to high 

degree. 

 

Returns 

------- 

mat : ndarray 

Companion matrix of dimensions (deg, deg). 

 

Notes 

----- 

 

.. versionadded:: 1.7.0 

 

""" 

# c is a trimmed copy 

[c] = pu.as_series([c]) 

if len(c) < 2: 

raise ValueError('Series must have maximum degree of at least 1.') 

if len(c) == 2: 

return np.array([[-c[0]/c[1]]]) 

 

n = len(c) - 1 

mat = np.zeros((n, n), dtype=c.dtype) 

bot = mat.reshape(-1)[n::n+1] 

bot[...] = 1 

mat[:, -1] -= c[:-1]/c[-1] 

return mat 

 

 

def polyroots(c): 

""" 

Compute the roots of a polynomial. 

 

Return the roots (a.k.a. "zeros") of the polynomial 

 

.. math:: p(x) = \\sum_i c[i] * x^i. 

 

Parameters 

---------- 

c : 1-D array_like 

1-D array of polynomial coefficients. 

 

Returns 

------- 

out : ndarray 

Array of the roots of the polynomial. If all the roots are real, 

then `out` is also real, otherwise it is complex. 

 

See Also 

-------- 

chebroots 

 

Notes 

----- 

The root estimates are obtained as the eigenvalues of the companion 

matrix, Roots far from the origin of the complex plane may have large 

errors due to the numerical instability of the power series for such 

values. Roots with multiplicity greater than 1 will also show larger 

errors as the value of the series near such points is relatively 

insensitive to errors in the roots. Isolated roots near the origin can 

be improved by a few iterations of Newton's method. 

 

Examples 

-------- 

>>> import numpy.polynomial.polynomial as poly 

>>> poly.polyroots(poly.polyfromroots((-1,0,1))) 

array([-1., 0., 1.]) 

>>> poly.polyroots(poly.polyfromroots((-1,0,1))).dtype 

dtype('float64') 

>>> j = complex(0,1) 

>>> poly.polyroots(poly.polyfromroots((-j,0,j))) 

array([ 0.00000000e+00+0.j, 0.00000000e+00+1.j, 2.77555756e-17-1.j]) 

 

""" 

# c is a trimmed copy 

[c] = pu.as_series([c]) 

if len(c) < 2: 

return np.array([], dtype=c.dtype) 

if len(c) == 2: 

return np.array([-c[0]/c[1]]) 

 

m = polycompanion(c) 

r = la.eigvals(m) 

r.sort() 

return r 

 

 

# 

# polynomial class 

# 

 

class Polynomial(ABCPolyBase): 

"""A power series class. 

 

The Polynomial class provides the standard Python numerical methods 

'+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the 

attributes and methods listed in the `ABCPolyBase` documentation. 

 

Parameters 

---------- 

coef : array_like 

Polynomial coefficients in order of increasing degree, i.e., 

``(1, 2, 3)`` give ``1 + 2*x + 3*x**2``. 

domain : (2,) array_like, optional 

Domain to use. The interval ``[domain[0], domain[1]]`` is mapped 

to the interval ``[window[0], window[1]]`` by shifting and scaling. 

The default value is [-1, 1]. 

window : (2,) array_like, optional 

Window, see `domain` for its use. The default value is [-1, 1]. 

 

.. versionadded:: 1.6.0 

 

""" 

# Virtual Functions 

_add = staticmethod(polyadd) 

_sub = staticmethod(polysub) 

_mul = staticmethod(polymul) 

_div = staticmethod(polydiv) 

_pow = staticmethod(polypow) 

_val = staticmethod(polyval) 

_int = staticmethod(polyint) 

_der = staticmethod(polyder) 

_fit = staticmethod(polyfit) 

_line = staticmethod(polyline) 

_roots = staticmethod(polyroots) 

_fromroots = staticmethod(polyfromroots) 

 

# Virtual properties 

nickname = 'poly' 

domain = np.array(polydomain) 

window = np.array(polydomain) 

basis_name = None 

 

@staticmethod 

def _repr_latex_term(i, arg_str, needs_parens): 

if needs_parens: 

arg_str = r'\left({}\right)'.format(arg_str) 

if i == 0: 

return '1' 

elif i == 1: 

return arg_str 

else: 

return '{}^{{{}}}'.format(arg_str, i)