1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

""" 

Utility classes and functions for the polynomial modules. 

 

This module provides: error and warning objects; a polynomial base class; 

and some routines used in both the `polynomial` and `chebyshev` modules. 

 

Error objects 

------------- 

 

.. autosummary:: 

:toctree: generated/ 

 

PolyError base class for this sub-package's errors. 

PolyDomainError raised when domains are mismatched. 

 

Warning objects 

--------------- 

 

.. autosummary:: 

:toctree: generated/ 

 

RankWarning raised in least-squares fit for rank-deficient matrix. 

 

Base class 

---------- 

 

.. autosummary:: 

:toctree: generated/ 

 

PolyBase Obsolete base class for the polynomial classes. Do not use. 

 

Functions 

--------- 

 

.. autosummary:: 

:toctree: generated/ 

 

as_series convert list of array_likes into 1-D arrays of common type. 

trimseq remove trailing zeros. 

trimcoef remove small trailing coefficients. 

getdomain return the domain appropriate for a given set of abscissae. 

mapdomain maps points between domains. 

mapparms parameters of the linear map between domains. 

 

""" 

from __future__ import division, absolute_import, print_function 

 

import numpy as np 

 

__all__ = [ 

'RankWarning', 'PolyError', 'PolyDomainError', 'as_series', 'trimseq', 

'trimcoef', 'getdomain', 'mapdomain', 'mapparms', 'PolyBase'] 

 

# 

# Warnings and Exceptions 

# 

 

class RankWarning(UserWarning): 

"""Issued by chebfit when the design matrix is rank deficient.""" 

pass 

 

class PolyError(Exception): 

"""Base class for errors in this module.""" 

pass 

 

class PolyDomainError(PolyError): 

"""Issued by the generic Poly class when two domains don't match. 

 

This is raised when an binary operation is passed Poly objects with 

different domains. 

 

""" 

pass 

 

# 

# Base class for all polynomial types 

# 

 

class PolyBase(object): 

""" 

Base class for all polynomial types. 

 

Deprecated in numpy 1.9.0, use the abstract 

ABCPolyBase class instead. Note that the latter 

requires a number of virtual functions to be 

implemented. 

 

""" 

pass 

 

# 

# Helper functions to convert inputs to 1-D arrays 

# 

def trimseq(seq): 

"""Remove small Poly series coefficients. 

 

Parameters 

---------- 

seq : sequence 

Sequence of Poly series coefficients. This routine fails for 

empty sequences. 

 

Returns 

------- 

series : sequence 

Subsequence with trailing zeros removed. If the resulting sequence 

would be empty, return the first element. The returned sequence may 

or may not be a view. 

 

Notes 

----- 

Do not lose the type info if the sequence contains unknown objects. 

 

""" 

if len(seq) == 0: 

return seq 

else: 

for i in range(len(seq) - 1, -1, -1): 

if seq[i] != 0: 

break 

return seq[:i+1] 

 

 

def as_series(alist, trim=True): 

""" 

Return argument as a list of 1-d arrays. 

 

The returned list contains array(s) of dtype double, complex double, or 

object. A 1-d argument of shape ``(N,)`` is parsed into ``N`` arrays of 

size one; a 2-d argument of shape ``(M,N)`` is parsed into ``M`` arrays 

of size ``N`` (i.e., is "parsed by row"); and a higher dimensional array 

raises a Value Error if it is not first reshaped into either a 1-d or 2-d 

array. 

 

Parameters 

---------- 

alist : array_like 

A 1- or 2-d array_like 

trim : boolean, optional 

When True, trailing zeros are removed from the inputs. 

When False, the inputs are passed through intact. 

 

Returns 

------- 

[a1, a2,...] : list of 1-D arrays 

A copy of the input data as a list of 1-d arrays. 

 

Raises 

------ 

ValueError 

Raised when `as_series` cannot convert its input to 1-d arrays, or at 

least one of the resulting arrays is empty. 

 

Examples 

-------- 

>>> from numpy.polynomial import polyutils as pu 

>>> a = np.arange(4) 

>>> pu.as_series(a) 

[array([ 0.]), array([ 1.]), array([ 2.]), array([ 3.])] 

>>> b = np.arange(6).reshape((2,3)) 

>>> pu.as_series(b) 

[array([ 0., 1., 2.]), array([ 3., 4., 5.])] 

 

>>> pu.as_series((1, np.arange(3), np.arange(2, dtype=np.float16))) 

[array([ 1.]), array([ 0., 1., 2.]), array([ 0., 1.])] 

 

>>> pu.as_series([2, [1.1, 0.]]) 

[array([ 2.]), array([ 1.1])] 

 

>>> pu.as_series([2, [1.1, 0.]], trim=False) 

[array([ 2.]), array([ 1.1, 0. ])] 

 

""" 

arrays = [np.array(a, ndmin=1, copy=0) for a in alist] 

if min([a.size for a in arrays]) == 0: 

raise ValueError("Coefficient array is empty") 

if any([a.ndim != 1 for a in arrays]): 

raise ValueError("Coefficient array is not 1-d") 

if trim: 

arrays = [trimseq(a) for a in arrays] 

 

if any([a.dtype == np.dtype(object) for a in arrays]): 

ret = [] 

for a in arrays: 

if a.dtype != np.dtype(object): 

tmp = np.empty(len(a), dtype=np.dtype(object)) 

tmp[:] = a[:] 

ret.append(tmp) 

else: 

ret.append(a.copy()) 

else: 

try: 

dtype = np.common_type(*arrays) 

except Exception: 

raise ValueError("Coefficient arrays have no common type") 

ret = [np.array(a, copy=1, dtype=dtype) for a in arrays] 

return ret 

 

 

def trimcoef(c, tol=0): 

""" 

Remove "small" "trailing" coefficients from a polynomial. 

 

"Small" means "small in absolute value" and is controlled by the 

parameter `tol`; "trailing" means highest order coefficient(s), e.g., in 

``[0, 1, 1, 0, 0]`` (which represents ``0 + x + x**2 + 0*x**3 + 0*x**4``) 

both the 3-rd and 4-th order coefficients would be "trimmed." 

 

Parameters 

---------- 

c : array_like 

1-d array of coefficients, ordered from lowest order to highest. 

tol : number, optional 

Trailing (i.e., highest order) elements with absolute value less 

than or equal to `tol` (default value is zero) are removed. 

 

Returns 

------- 

trimmed : ndarray 

1-d array with trailing zeros removed. If the resulting series 

would be empty, a series containing a single zero is returned. 

 

Raises 

------ 

ValueError 

If `tol` < 0 

 

See Also 

-------- 

trimseq 

 

Examples 

-------- 

>>> from numpy.polynomial import polyutils as pu 

>>> pu.trimcoef((0,0,3,0,5,0,0)) 

array([ 0., 0., 3., 0., 5.]) 

>>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed 

array([ 0.]) 

>>> i = complex(0,1) # works for complex 

>>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3) 

array([ 0.0003+0.j , 0.0010-0.001j]) 

 

""" 

if tol < 0: 

raise ValueError("tol must be non-negative") 

 

[c] = as_series([c]) 

[ind] = np.nonzero(np.abs(c) > tol) 

if len(ind) == 0: 

return c[:1]*0 

else: 

return c[:ind[-1] + 1].copy() 

 

def getdomain(x): 

""" 

Return a domain suitable for given abscissae. 

 

Find a domain suitable for a polynomial or Chebyshev series 

defined at the values supplied. 

 

Parameters 

---------- 

x : array_like 

1-d array of abscissae whose domain will be determined. 

 

Returns 

------- 

domain : ndarray 

1-d array containing two values. If the inputs are complex, then 

the two returned points are the lower left and upper right corners 

of the smallest rectangle (aligned with the axes) in the complex 

plane containing the points `x`. If the inputs are real, then the 

two points are the ends of the smallest interval containing the 

points `x`. 

 

See Also 

-------- 

mapparms, mapdomain 

 

Examples 

-------- 

>>> from numpy.polynomial import polyutils as pu 

>>> points = np.arange(4)**2 - 5; points 

array([-5, -4, -1, 4]) 

>>> pu.getdomain(points) 

array([-5., 4.]) 

>>> c = np.exp(complex(0,1)*np.pi*np.arange(12)/6) # unit circle 

>>> pu.getdomain(c) 

array([-1.-1.j, 1.+1.j]) 

 

""" 

[x] = as_series([x], trim=False) 

if x.dtype.char in np.typecodes['Complex']: 

rmin, rmax = x.real.min(), x.real.max() 

imin, imax = x.imag.min(), x.imag.max() 

return np.array((complex(rmin, imin), complex(rmax, imax))) 

else: 

return np.array((x.min(), x.max())) 

 

def mapparms(old, new): 

""" 

Linear map parameters between domains. 

 

Return the parameters of the linear map ``offset + scale*x`` that maps 

`old` to `new` such that ``old[i] -> new[i]``, ``i = 0, 1``. 

 

Parameters 

---------- 

old, new : array_like 

Domains. Each domain must (successfully) convert to a 1-d array 

containing precisely two values. 

 

Returns 

------- 

offset, scale : scalars 

The map ``L(x) = offset + scale*x`` maps the first domain to the 

second. 

 

See Also 

-------- 

getdomain, mapdomain 

 

Notes 

----- 

Also works for complex numbers, and thus can be used to calculate the 

parameters required to map any line in the complex plane to any other 

line therein. 

 

Examples 

-------- 

>>> from numpy.polynomial import polyutils as pu 

>>> pu.mapparms((-1,1),(-1,1)) 

(0.0, 1.0) 

>>> pu.mapparms((1,-1),(-1,1)) 

(0.0, -1.0) 

>>> i = complex(0,1) 

>>> pu.mapparms((-i,-1),(1,i)) 

((1+1j), (1+0j)) 

 

""" 

oldlen = old[1] - old[0] 

newlen = new[1] - new[0] 

off = (old[1]*new[0] - old[0]*new[1])/oldlen 

scl = newlen/oldlen 

return off, scl 

 

def mapdomain(x, old, new): 

""" 

Apply linear map to input points. 

 

The linear map ``offset + scale*x`` that maps the domain `old` to 

the domain `new` is applied to the points `x`. 

 

Parameters 

---------- 

x : array_like 

Points to be mapped. If `x` is a subtype of ndarray the subtype 

will be preserved. 

old, new : array_like 

The two domains that determine the map. Each must (successfully) 

convert to 1-d arrays containing precisely two values. 

 

Returns 

------- 

x_out : ndarray 

Array of points of the same shape as `x`, after application of the 

linear map between the two domains. 

 

See Also 

-------- 

getdomain, mapparms 

 

Notes 

----- 

Effectively, this implements: 

 

.. math :: 

x\\_out = new[0] + m(x - old[0]) 

 

where 

 

.. math :: 

m = \\frac{new[1]-new[0]}{old[1]-old[0]} 

 

Examples 

-------- 

>>> from numpy.polynomial import polyutils as pu 

>>> old_domain = (-1,1) 

>>> new_domain = (0,2*np.pi) 

>>> x = np.linspace(-1,1,6); x 

array([-1. , -0.6, -0.2, 0.2, 0.6, 1. ]) 

>>> x_out = pu.mapdomain(x, old_domain, new_domain); x_out 

array([ 0. , 1.25663706, 2.51327412, 3.76991118, 5.02654825, 

6.28318531]) 

>>> x - pu.mapdomain(x_out, new_domain, old_domain) 

array([ 0., 0., 0., 0., 0., 0.]) 

 

Also works for complex numbers (and thus can be used to map any line in 

the complex plane to any other line therein). 

 

>>> i = complex(0,1) 

>>> old = (-1 - i, 1 + i) 

>>> new = (-1 + i, 1 - i) 

>>> z = np.linspace(old[0], old[1], 6); z 

array([-1.0-1.j , -0.6-0.6j, -0.2-0.2j, 0.2+0.2j, 0.6+0.6j, 1.0+1.j ]) 

>>> new_z = P.mapdomain(z, old, new); new_z 

array([-1.0+1.j , -0.6+0.6j, -0.2+0.2j, 0.2-0.2j, 0.6-0.6j, 1.0-1.j ]) 

 

""" 

x = np.asanyarray(x) 

off, scl = mapparms(old, new) 

return off + scl*x