1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

""" 

Utility function to facilitate testing. 

 

""" 

from __future__ import division, absolute_import, print_function 

 

import os 

import sys 

import re 

import gc 

import operator 

import warnings 

from functools import partial, wraps 

import shutil 

import contextlib 

from tempfile import mkdtemp, mkstemp 

from unittest.case import SkipTest 

from warnings import WarningMessage 

import pprint 

 

from numpy.core import( 

float32, empty, arange, array_repr, ndarray, isnat, array) 

from numpy.lib.utils import deprecate 

 

if sys.version_info[0] >= 3: 

from io import StringIO 

else: 

from StringIO import StringIO 

 

__all__ = [ 

'assert_equal', 'assert_almost_equal', 'assert_approx_equal', 

'assert_array_equal', 'assert_array_less', 'assert_string_equal', 

'assert_array_almost_equal', 'assert_raises', 'build_err_msg', 

'decorate_methods', 'jiffies', 'memusage', 'print_assert_equal', 

'raises', 'rand', 'rundocs', 'runstring', 'verbose', 'measure', 

'assert_', 'assert_array_almost_equal_nulp', 'assert_raises_regex', 

'assert_array_max_ulp', 'assert_warns', 'assert_no_warnings', 

'assert_allclose', 'IgnoreException', 'clear_and_catch_warnings', 

'SkipTest', 'KnownFailureException', 'temppath', 'tempdir', 'IS_PYPY', 

'HAS_REFCOUNT', 'suppress_warnings', 'assert_array_compare', 

'_assert_valid_refcount', '_gen_alignment_data', 'assert_no_gc_cycles', 

] 

 

 

class KnownFailureException(Exception): 

'''Raise this exception to mark a test as a known failing test.''' 

pass 

 

 

KnownFailureTest = KnownFailureException # backwards compat 

verbose = 0 

 

IS_PYPY = '__pypy__' in sys.modules 

HAS_REFCOUNT = getattr(sys, 'getrefcount', None) is not None 

 

 

def import_nose(): 

""" Import nose only when needed. 

""" 

nose_is_good = True 

minimum_nose_version = (1, 0, 0) 

try: 

import nose 

except ImportError: 

nose_is_good = False 

else: 

if nose.__versioninfo__ < minimum_nose_version: 

nose_is_good = False 

 

if not nose_is_good: 

msg = ('Need nose >= %d.%d.%d for tests - see ' 

'https://nose.readthedocs.io' % 

minimum_nose_version) 

raise ImportError(msg) 

 

return nose 

 

 

def assert_(val, msg=''): 

""" 

Assert that works in release mode. 

Accepts callable msg to allow deferring evaluation until failure. 

 

The Python built-in ``assert`` does not work when executing code in 

optimized mode (the ``-O`` flag) - no byte-code is generated for it. 

 

For documentation on usage, refer to the Python documentation. 

 

""" 

__tracebackhide__ = True # Hide traceback for py.test 

if not val: 

try: 

smsg = msg() 

except TypeError: 

smsg = msg 

raise AssertionError(smsg) 

 

 

def gisnan(x): 

"""like isnan, but always raise an error if type not supported instead of 

returning a TypeError object. 

 

Notes 

----- 

isnan and other ufunc sometimes return a NotImplementedType object instead 

of raising any exception. This function is a wrapper to make sure an 

exception is always raised. 

 

This should be removed once this problem is solved at the Ufunc level.""" 

from numpy.core import isnan 

st = isnan(x) 

if isinstance(st, type(NotImplemented)): 

raise TypeError("isnan not supported for this type") 

return st 

 

 

def gisfinite(x): 

"""like isfinite, but always raise an error if type not supported instead of 

returning a TypeError object. 

 

Notes 

----- 

isfinite and other ufunc sometimes return a NotImplementedType object instead 

of raising any exception. This function is a wrapper to make sure an 

exception is always raised. 

 

This should be removed once this problem is solved at the Ufunc level.""" 

from numpy.core import isfinite, errstate 

with errstate(invalid='ignore'): 

st = isfinite(x) 

if isinstance(st, type(NotImplemented)): 

raise TypeError("isfinite not supported for this type") 

return st 

 

 

def gisinf(x): 

"""like isinf, but always raise an error if type not supported instead of 

returning a TypeError object. 

 

Notes 

----- 

isinf and other ufunc sometimes return a NotImplementedType object instead 

of raising any exception. This function is a wrapper to make sure an 

exception is always raised. 

 

This should be removed once this problem is solved at the Ufunc level.""" 

from numpy.core import isinf, errstate 

with errstate(invalid='ignore'): 

st = isinf(x) 

if isinstance(st, type(NotImplemented)): 

raise TypeError("isinf not supported for this type") 

return st 

 

 

@deprecate(message="numpy.testing.rand is deprecated in numpy 1.11. " 

"Use numpy.random.rand instead.") 

def rand(*args): 

"""Returns an array of random numbers with the given shape. 

 

This only uses the standard library, so it is useful for testing purposes. 

""" 

import random 

from numpy.core import zeros, float64 

results = zeros(args, float64) 

f = results.flat 

for i in range(len(f)): 

f[i] = random.random() 

return results 

 

 

if os.name == 'nt': 

# Code "stolen" from enthought/debug/memusage.py 

def GetPerformanceAttributes(object, counter, instance=None, 

inum=-1, format=None, machine=None): 

# NOTE: Many counters require 2 samples to give accurate results, 

# including "% Processor Time" (as by definition, at any instant, a 

# thread's CPU usage is either 0 or 100). To read counters like this, 

# you should copy this function, but keep the counter open, and call 

# CollectQueryData() each time you need to know. 

# See http://msdn.microsoft.com/library/en-us/dnperfmo/html/perfmonpt2.asp (dead link) 

# My older explanation for this was that the "AddCounter" process forced 

# the CPU to 100%, but the above makes more sense :) 

import win32pdh 

if format is None: 

format = win32pdh.PDH_FMT_LONG 

path = win32pdh.MakeCounterPath( (machine, object, instance, None, inum, counter)) 

hq = win32pdh.OpenQuery() 

try: 

hc = win32pdh.AddCounter(hq, path) 

try: 

win32pdh.CollectQueryData(hq) 

type, val = win32pdh.GetFormattedCounterValue(hc, format) 

return val 

finally: 

win32pdh.RemoveCounter(hc) 

finally: 

win32pdh.CloseQuery(hq) 

 

def memusage(processName="python", instance=0): 

# from win32pdhutil, part of the win32all package 

import win32pdh 

return GetPerformanceAttributes("Process", "Virtual Bytes", 

processName, instance, 

win32pdh.PDH_FMT_LONG, None) 

elif sys.platform[:5] == 'linux': 

 

def memusage(_proc_pid_stat='/proc/%s/stat' % (os.getpid())): 

""" 

Return virtual memory size in bytes of the running python. 

 

""" 

try: 

f = open(_proc_pid_stat, 'r') 

l = f.readline().split(' ') 

f.close() 

return int(l[22]) 

except Exception: 

return 

else: 

def memusage(): 

""" 

Return memory usage of running python. [Not implemented] 

 

""" 

raise NotImplementedError 

 

 

if sys.platform[:5] == 'linux': 

def jiffies(_proc_pid_stat='/proc/%s/stat' % (os.getpid()), 

_load_time=[]): 

""" 

Return number of jiffies elapsed. 

 

Return number of jiffies (1/100ths of a second) that this 

process has been scheduled in user mode. See man 5 proc. 

 

""" 

import time 

if not _load_time: 

_load_time.append(time.time()) 

try: 

f = open(_proc_pid_stat, 'r') 

l = f.readline().split(' ') 

f.close() 

return int(l[13]) 

except Exception: 

return int(100*(time.time()-_load_time[0])) 

else: 

# os.getpid is not in all platforms available. 

# Using time is safe but inaccurate, especially when process 

# was suspended or sleeping. 

def jiffies(_load_time=[]): 

""" 

Return number of jiffies elapsed. 

 

Return number of jiffies (1/100ths of a second) that this 

process has been scheduled in user mode. See man 5 proc. 

 

""" 

import time 

if not _load_time: 

_load_time.append(time.time()) 

return int(100*(time.time()-_load_time[0])) 

 

 

def build_err_msg(arrays, err_msg, header='Items are not equal:', 

verbose=True, names=('ACTUAL', 'DESIRED'), precision=8): 

msg = ['\n' + header] 

if err_msg: 

if err_msg.find('\n') == -1 and len(err_msg) < 79-len(header): 

msg = [msg[0] + ' ' + err_msg] 

else: 

msg.append(err_msg) 

if verbose: 

for i, a in enumerate(arrays): 

 

if isinstance(a, ndarray): 

# precision argument is only needed if the objects are ndarrays 

r_func = partial(array_repr, precision=precision) 

else: 

r_func = repr 

 

try: 

r = r_func(a) 

except Exception as exc: 

r = '[repr failed for <{}>: {}]'.format(type(a).__name__, exc) 

if r.count('\n') > 3: 

r = '\n'.join(r.splitlines()[:3]) 

r += '...' 

msg.append(' %s: %s' % (names[i], r)) 

return '\n'.join(msg) 

 

 

def assert_equal(actual, desired, err_msg='', verbose=True): 

""" 

Raises an AssertionError if two objects are not equal. 

 

Given two objects (scalars, lists, tuples, dictionaries or numpy arrays), 

check that all elements of these objects are equal. An exception is raised 

at the first conflicting values. 

 

Parameters 

---------- 

actual : array_like 

The object to check. 

desired : array_like 

The expected object. 

err_msg : str, optional 

The error message to be printed in case of failure. 

verbose : bool, optional 

If True, the conflicting values are appended to the error message. 

 

Raises 

------ 

AssertionError 

If actual and desired are not equal. 

 

Examples 

-------- 

>>> np.testing.assert_equal([4,5], [4,6]) 

Traceback (most recent call last): 

... 

AssertionError: 

Items are not equal: 

item=1 

ACTUAL: 5 

DESIRED: 6 

 

""" 

__tracebackhide__ = True # Hide traceback for py.test 

if isinstance(desired, dict): 

if not isinstance(actual, dict): 

raise AssertionError(repr(type(actual))) 

assert_equal(len(actual), len(desired), err_msg, verbose) 

for k, i in desired.items(): 

if k not in actual: 

raise AssertionError(repr(k)) 

assert_equal(actual[k], desired[k], 'key=%r\n%s' % (k, err_msg), verbose) 

return 

if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)): 

assert_equal(len(actual), len(desired), err_msg, verbose) 

for k in range(len(desired)): 

assert_equal(actual[k], desired[k], 'item=%r\n%s' % (k, err_msg), verbose) 

return 

from numpy.core import ndarray, isscalar, signbit 

from numpy.lib import iscomplexobj, real, imag 

if isinstance(actual, ndarray) or isinstance(desired, ndarray): 

return assert_array_equal(actual, desired, err_msg, verbose) 

msg = build_err_msg([actual, desired], err_msg, verbose=verbose) 

 

# Handle complex numbers: separate into real/imag to handle 

# nan/inf/negative zero correctly 

# XXX: catch ValueError for subclasses of ndarray where iscomplex fail 

try: 

usecomplex = iscomplexobj(actual) or iscomplexobj(desired) 

except (ValueError, TypeError): 

usecomplex = False 

 

if usecomplex: 

if iscomplexobj(actual): 

actualr = real(actual) 

actuali = imag(actual) 

else: 

actualr = actual 

actuali = 0 

if iscomplexobj(desired): 

desiredr = real(desired) 

desiredi = imag(desired) 

else: 

desiredr = desired 

desiredi = 0 

try: 

assert_equal(actualr, desiredr) 

assert_equal(actuali, desiredi) 

except AssertionError: 

raise AssertionError(msg) 

 

# isscalar test to check cases such as [np.nan] != np.nan 

if isscalar(desired) != isscalar(actual): 

raise AssertionError(msg) 

 

# Inf/nan/negative zero handling 

try: 

isdesnan = gisnan(desired) 

isactnan = gisnan(actual) 

if isdesnan and isactnan: 

return # both nan, so equal 

 

# handle signed zero specially for floats 

if desired == 0 and actual == 0: 

if not signbit(desired) == signbit(actual): 

raise AssertionError(msg) 

 

except (TypeError, ValueError, NotImplementedError): 

pass 

 

try: 

isdesnat = isnat(desired) 

isactnat = isnat(actual) 

dtypes_match = array(desired).dtype.type == array(actual).dtype.type 

if isdesnat and isactnat: 

# If both are NaT (and have the same dtype -- datetime or 

# timedelta) they are considered equal. 

if dtypes_match: 

return 

else: 

raise AssertionError(msg) 

 

except (TypeError, ValueError, NotImplementedError): 

pass 

 

try: 

# Explicitly use __eq__ for comparison, gh-2552 

if not (desired == actual): 

raise AssertionError(msg) 

 

except (DeprecationWarning, FutureWarning) as e: 

# this handles the case when the two types are not even comparable 

if 'elementwise == comparison' in e.args[0]: 

raise AssertionError(msg) 

else: 

raise 

 

 

def print_assert_equal(test_string, actual, desired): 

""" 

Test if two objects are equal, and print an error message if test fails. 

 

The test is performed with ``actual == desired``. 

 

Parameters 

---------- 

test_string : str 

The message supplied to AssertionError. 

actual : object 

The object to test for equality against `desired`. 

desired : object 

The expected result. 

 

Examples 

-------- 

>>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 1]) 

>>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 2]) 

Traceback (most recent call last): 

... 

AssertionError: Test XYZ of func xyz failed 

ACTUAL: 

[0, 1] 

DESIRED: 

[0, 2] 

 

""" 

__tracebackhide__ = True # Hide traceback for py.test 

import pprint 

 

if not (actual == desired): 

msg = StringIO() 

msg.write(test_string) 

msg.write(' failed\nACTUAL: \n') 

pprint.pprint(actual, msg) 

msg.write('DESIRED: \n') 

pprint.pprint(desired, msg) 

raise AssertionError(msg.getvalue()) 

 

 

def assert_almost_equal(actual,desired,decimal=7,err_msg='',verbose=True): 

""" 

Raises an AssertionError if two items are not equal up to desired 

precision. 

 

.. note:: It is recommended to use one of `assert_allclose`, 

`assert_array_almost_equal_nulp` or `assert_array_max_ulp` 

instead of this function for more consistent floating point 

comparisons. 

 

The test verifies that the elements of ``actual`` and ``desired`` satisfy. 

 

``abs(desired-actual) < 1.5 * 10**(-decimal)`` 

 

That is a looser test than originally documented, but agrees with what the 

actual implementation in `assert_array_almost_equal` did up to rounding 

vagaries. An exception is raised at conflicting values. For ndarrays this 

delegates to assert_array_almost_equal 

 

Parameters 

---------- 

actual : array_like 

The object to check. 

desired : array_like 

The expected object. 

decimal : int, optional 

Desired precision, default is 7. 

err_msg : str, optional 

The error message to be printed in case of failure. 

verbose : bool, optional 

If True, the conflicting values are appended to the error message. 

 

Raises 

------ 

AssertionError 

If actual and desired are not equal up to specified precision. 

 

See Also 

-------- 

assert_allclose: Compare two array_like objects for equality with desired 

relative and/or absolute precision. 

assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal 

 

Examples 

-------- 

>>> import numpy.testing as npt 

>>> npt.assert_almost_equal(2.3333333333333, 2.33333334) 

>>> npt.assert_almost_equal(2.3333333333333, 2.33333334, decimal=10) 

Traceback (most recent call last): 

... 

AssertionError: 

Arrays are not almost equal to 10 decimals 

ACTUAL: 2.3333333333333 

DESIRED: 2.33333334 

 

>>> npt.assert_almost_equal(np.array([1.0,2.3333333333333]), 

... np.array([1.0,2.33333334]), decimal=9) 

Traceback (most recent call last): 

... 

AssertionError: 

Arrays are not almost equal to 9 decimals 

Mismatch: 50% 

Max absolute difference: 6.66669964e-09 

Max relative difference: 2.85715698e-09 

x: array([1. , 2.333333333]) 

y: array([1. , 2.33333334]) 

 

""" 

__tracebackhide__ = True # Hide traceback for py.test 

from numpy.core import ndarray 

from numpy.lib import iscomplexobj, real, imag 

 

# Handle complex numbers: separate into real/imag to handle 

# nan/inf/negative zero correctly 

# XXX: catch ValueError for subclasses of ndarray where iscomplex fail 

try: 

usecomplex = iscomplexobj(actual) or iscomplexobj(desired) 

except ValueError: 

usecomplex = False 

 

def _build_err_msg(): 

header = ('Arrays are not almost equal to %d decimals' % decimal) 

return build_err_msg([actual, desired], err_msg, verbose=verbose, 

header=header) 

 

if usecomplex: 

if iscomplexobj(actual): 

actualr = real(actual) 

actuali = imag(actual) 

else: 

actualr = actual 

actuali = 0 

if iscomplexobj(desired): 

desiredr = real(desired) 

desiredi = imag(desired) 

else: 

desiredr = desired 

desiredi = 0 

try: 

assert_almost_equal(actualr, desiredr, decimal=decimal) 

assert_almost_equal(actuali, desiredi, decimal=decimal) 

except AssertionError: 

raise AssertionError(_build_err_msg()) 

 

if isinstance(actual, (ndarray, tuple, list)) \ 

or isinstance(desired, (ndarray, tuple, list)): 

return assert_array_almost_equal(actual, desired, decimal, err_msg) 

try: 

# If one of desired/actual is not finite, handle it specially here: 

# check that both are nan if any is a nan, and test for equality 

# otherwise 

if not (gisfinite(desired) and gisfinite(actual)): 

if gisnan(desired) or gisnan(actual): 

if not (gisnan(desired) and gisnan(actual)): 

raise AssertionError(_build_err_msg()) 

else: 

if not desired == actual: 

raise AssertionError(_build_err_msg()) 

return 

except (NotImplementedError, TypeError): 

pass 

if abs(desired - actual) >= 1.5 * 10.0**(-decimal): 

raise AssertionError(_build_err_msg()) 

 

 

def assert_approx_equal(actual,desired,significant=7,err_msg='',verbose=True): 

""" 

Raises an AssertionError if two items are not equal up to significant 

digits. 

 

.. note:: It is recommended to use one of `assert_allclose`, 

`assert_array_almost_equal_nulp` or `assert_array_max_ulp` 

instead of this function for more consistent floating point 

comparisons. 

 

Given two numbers, check that they are approximately equal. 

Approximately equal is defined as the number of significant digits 

that agree. 

 

Parameters 

---------- 

actual : scalar 

The object to check. 

desired : scalar 

The expected object. 

significant : int, optional 

Desired precision, default is 7. 

err_msg : str, optional 

The error message to be printed in case of failure. 

verbose : bool, optional 

If True, the conflicting values are appended to the error message. 

 

Raises 

------ 

AssertionError 

If actual and desired are not equal up to specified precision. 

 

See Also 

-------- 

assert_allclose: Compare two array_like objects for equality with desired 

relative and/or absolute precision. 

assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal 

 

Examples 

-------- 

>>> np.testing.assert_approx_equal(0.12345677777777e-20, 0.1234567e-20) 

>>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345671e-20, 

... significant=8) 

>>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345672e-20, 

... significant=8) 

Traceback (most recent call last): 

... 

AssertionError: 

Items are not equal to 8 significant digits: 

ACTUAL: 1.234567e-21 

DESIRED: 1.2345672e-21 

 

the evaluated condition that raises the exception is 

 

>>> abs(0.12345670e-20/1e-21 - 0.12345672e-20/1e-21) >= 10**-(8-1) 

True 

 

""" 

__tracebackhide__ = True # Hide traceback for py.test 

import numpy as np 

 

(actual, desired) = map(float, (actual, desired)) 

if desired == actual: 

return 

# Normalized the numbers to be in range (-10.0,10.0) 

# scale = float(pow(10,math.floor(math.log10(0.5*(abs(desired)+abs(actual)))))) 

with np.errstate(invalid='ignore'): 

scale = 0.5*(np.abs(desired) + np.abs(actual)) 

scale = np.power(10, np.floor(np.log10(scale))) 

try: 

sc_desired = desired/scale 

except ZeroDivisionError: 

sc_desired = 0.0 

try: 

sc_actual = actual/scale 

except ZeroDivisionError: 

sc_actual = 0.0 

msg = build_err_msg( 

[actual, desired], err_msg, 

header='Items are not equal to %d significant digits:' % significant, 

verbose=verbose) 

try: 

# If one of desired/actual is not finite, handle it specially here: 

# check that both are nan if any is a nan, and test for equality 

# otherwise 

if not (gisfinite(desired) and gisfinite(actual)): 

if gisnan(desired) or gisnan(actual): 

if not (gisnan(desired) and gisnan(actual)): 

raise AssertionError(msg) 

else: 

if not desired == actual: 

raise AssertionError(msg) 

return 

except (TypeError, NotImplementedError): 

pass 

if np.abs(sc_desired - sc_actual) >= np.power(10., -(significant-1)): 

raise AssertionError(msg) 

 

 

def assert_array_compare(comparison, x, y, err_msg='', verbose=True, 

header='', precision=6, equal_nan=True, 

equal_inf=True): 

__tracebackhide__ = True # Hide traceback for py.test 

from numpy.core import array, array2string, isnan, inf, bool_, errstate 

 

x = array(x, copy=False, subok=True) 

y = array(y, copy=False, subok=True) 

 

# original array for output formating 

ox, oy = x, y 

 

def isnumber(x): 

return x.dtype.char in '?bhilqpBHILQPefdgFDG' 

 

def istime(x): 

return x.dtype.char in "Mm" 

 

def func_assert_same_pos(x, y, func=isnan, hasval='nan'): 

"""Handling nan/inf. 

 

Combine results of running func on x and y, checking that they are True 

at the same locations. 

 

""" 

x_id = func(x) 

y_id = func(y) 

# We include work-arounds here to handle three types of slightly 

# pathological ndarray subclasses: 

# (1) all() on `masked` array scalars can return masked arrays, so we 

# use != True 

# (2) __eq__ on some ndarray subclasses returns Python booleans 

# instead of element-wise comparisons, so we cast to bool_() and 

# use isinstance(..., bool) checks 

# (3) subclasses with bare-bones __array_function__ implemenations may 

# not implement np.all(), so favor using the .all() method 

# We are not committed to supporting such subclasses, but it's nice to 

# support them if possible. 

if bool_(x_id == y_id).all() != True: 

msg = build_err_msg([x, y], 

err_msg + '\nx and y %s location mismatch:' 

% (hasval), verbose=verbose, header=header, 

names=('x', 'y'), precision=precision) 

raise AssertionError(msg) 

# If there is a scalar, then here we know the array has the same 

# flag as it everywhere, so we should return the scalar flag. 

if isinstance(x_id, bool) or x_id.ndim == 0: 

return bool_(x_id) 

elif isinstance(x_id, bool) or y_id.ndim == 0: 

return bool_(y_id) 

else: 

return y_id 

 

try: 

cond = (x.shape == () or y.shape == ()) or x.shape == y.shape 

if not cond: 

msg = build_err_msg([x, y], 

err_msg 

+ '\n(shapes %s, %s mismatch)' % (x.shape, 

y.shape), 

verbose=verbose, header=header, 

names=('x', 'y'), precision=precision) 

raise AssertionError(msg) 

 

flagged = bool_(False) 

if isnumber(x) and isnumber(y): 

if equal_nan: 

flagged = func_assert_same_pos(x, y, func=isnan, hasval='nan') 

 

if equal_inf: 

flagged |= func_assert_same_pos(x, y, 

func=lambda xy: xy == +inf, 

hasval='+inf') 

flagged |= func_assert_same_pos(x, y, 

func=lambda xy: xy == -inf, 

hasval='-inf') 

 

elif istime(x) and istime(y): 

# If one is datetime64 and the other timedelta64 there is no point 

if equal_nan and x.dtype.type == y.dtype.type: 

flagged = func_assert_same_pos(x, y, func=isnat, hasval="NaT") 

 

if flagged.ndim > 0: 

x, y = x[~flagged], y[~flagged] 

# Only do the comparison if actual values are left 

if x.size == 0: 

return 

elif flagged: 

# no sense doing comparison if everything is flagged. 

return 

 

val = comparison(x, y) 

 

if isinstance(val, bool): 

cond = val 

reduced = [0] 

else: 

reduced = val.ravel() 

cond = reduced.all() 

reduced = reduced.tolist() 

 

# The below comparison is a hack to ensure that fully masked 

# results, for which val.ravel().all() returns np.ma.masked, 

# do not trigger a failure (np.ma.masked != True evaluates as 

# np.ma.masked, which is falsy). 

if cond != True: 

mismatch = 100.0 * reduced.count(0) / ox.size 

remarks = ['Mismatch: {:.3g}%'.format(mismatch)] 

 

with errstate(invalid='ignore', divide='ignore'): 

# ignore errors for non-numeric types 

try: 

error = abs(x - y) 

max_abs_error = error.max() 

remarks.append('Max absolute difference: ' 

+ array2string(max_abs_error)) 

 

# note: this definition of relative error matches that one 

# used by assert_allclose (found in np.isclose) 

max_rel_error = (error / abs(y)).max() 

remarks.append('Max relative difference: ' 

+ array2string(max_rel_error)) 

except TypeError: 

pass 

 

err_msg += '\n' + '\n'.join(remarks) 

msg = build_err_msg([ox, oy], err_msg, 

verbose=verbose, header=header, 

names=('x', 'y'), precision=precision) 

raise AssertionError(msg) 

except ValueError: 

import traceback 

efmt = traceback.format_exc() 

header = 'error during assertion:\n\n%s\n\n%s' % (efmt, header) 

 

msg = build_err_msg([x, y], err_msg, verbose=verbose, header=header, 

names=('x', 'y'), precision=precision) 

raise ValueError(msg) 

 

 

def assert_array_equal(x, y, err_msg='', verbose=True): 

""" 

Raises an AssertionError if two array_like objects are not equal. 

 

Given two array_like objects, check that the shape is equal and all 

elements of these objects are equal. An exception is raised at 

shape mismatch or conflicting values. In contrast to the standard usage 

in numpy, NaNs are compared like numbers, no assertion is raised if 

both objects have NaNs in the same positions. 

 

The usual caution for verifying equality with floating point numbers is 

advised. 

 

Parameters 

---------- 

x : array_like 

The actual object to check. 

y : array_like 

The desired, expected object. 

err_msg : str, optional 

The error message to be printed in case of failure. 

verbose : bool, optional 

If True, the conflicting values are appended to the error message. 

 

Raises 

------ 

AssertionError 

If actual and desired objects are not equal. 

 

See Also 

-------- 

assert_allclose: Compare two array_like objects for equality with desired 

relative and/or absolute precision. 

assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal 

 

Examples 

-------- 

The first assert does not raise an exception: 

 

>>> np.testing.assert_array_equal([1.0,2.33333,np.nan], 

... [np.exp(0),2.33333, np.nan]) 

 

Assert fails with numerical inprecision with floats: 

 

>>> np.testing.assert_array_equal([1.0,np.pi,np.nan], 

... [1, np.sqrt(np.pi)**2, np.nan]) 

Traceback (most recent call last): 

... 

AssertionError: 

Arrays are not equal 

Mismatch: 33.3% 

Max absolute difference: 4.4408921e-16 

Max relative difference: 1.41357986e-16 

x: array([1. , 3.141593, nan]) 

y: array([1. , 3.141593, nan]) 

 

Use `assert_allclose` or one of the nulp (number of floating point values) 

functions for these cases instead: 

 

>>> np.testing.assert_allclose([1.0,np.pi,np.nan], 

... [1, np.sqrt(np.pi)**2, np.nan], 

... rtol=1e-10, atol=0) 

 

""" 

__tracebackhide__ = True # Hide traceback for py.test 

assert_array_compare(operator.__eq__, x, y, err_msg=err_msg, 

verbose=verbose, header='Arrays are not equal') 

 

 

def assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True): 

""" 

Raises an AssertionError if two objects are not equal up to desired 

precision. 

 

.. note:: It is recommended to use one of `assert_allclose`, 

`assert_array_almost_equal_nulp` or `assert_array_max_ulp` 

instead of this function for more consistent floating point 

comparisons. 

 

The test verifies identical shapes and that the elements of ``actual`` and 

``desired`` satisfy. 

 

``abs(desired-actual) < 1.5 * 10**(-decimal)`` 

 

That is a looser test than originally documented, but agrees with what the 

actual implementation did up to rounding vagaries. An exception is raised 

at shape mismatch or conflicting values. In contrast to the standard usage 

in numpy, NaNs are compared like numbers, no assertion is raised if both 

objects have NaNs in the same positions. 

 

Parameters 

---------- 

x : array_like 

The actual object to check. 

y : array_like 

The desired, expected object. 

decimal : int, optional 

Desired precision, default is 6. 

err_msg : str, optional 

The error message to be printed in case of failure. 

verbose : bool, optional 

If True, the conflicting values are appended to the error message. 

 

Raises 

------ 

AssertionError 

If actual and desired are not equal up to specified precision. 

 

See Also 

-------- 

assert_allclose: Compare two array_like objects for equality with desired 

relative and/or absolute precision. 

assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal 

 

Examples 

-------- 

the first assert does not raise an exception 

 

>>> np.testing.assert_array_almost_equal([1.0,2.333,np.nan], 

... [1.0,2.333,np.nan]) 

 

>>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan], 

... [1.0,2.33339,np.nan], decimal=5) 

Traceback (most recent call last): 

... 

AssertionError: 

Arrays are not almost equal to 5 decimals 

Mismatch: 33.3% 

Max absolute difference: 6.e-05 

Max relative difference: 2.57136612e-05 

x: array([1. , 2.33333, nan]) 

y: array([1. , 2.33339, nan]) 

 

>>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan], 

... [1.0,2.33333, 5], decimal=5) 

Traceback (most recent call last): 

... 

AssertionError: 

Arrays are not almost equal to 5 decimals 

x and y nan location mismatch: 

x: array([1. , 2.33333, nan]) 

y: array([1. , 2.33333, 5. ]) 

 

""" 

__tracebackhide__ = True # Hide traceback for py.test 

from numpy.core import number, float_, result_type, array 

from numpy.core.numerictypes import issubdtype 

from numpy.core.fromnumeric import any as npany 

 

def compare(x, y): 

try: 

if npany(gisinf(x)) or npany( gisinf(y)): 

xinfid = gisinf(x) 

yinfid = gisinf(y) 

if not (xinfid == yinfid).all(): 

return False 

# if one item, x and y is +- inf 

if x.size == y.size == 1: 

return x == y 

x = x[~xinfid] 

y = y[~yinfid] 

except (TypeError, NotImplementedError): 

pass 

 

# make sure y is an inexact type to avoid abs(MIN_INT); will cause 

# casting of x later. 

dtype = result_type(y, 1.) 

y = array(y, dtype=dtype, copy=False, subok=True) 

z = abs(x - y) 

 

if not issubdtype(z.dtype, number): 

z = z.astype(float_) # handle object arrays 

 

return z < 1.5 * 10.0**(-decimal) 

 

assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose, 

header=('Arrays are not almost equal to %d decimals' % decimal), 

precision=decimal) 

 

 

def assert_array_less(x, y, err_msg='', verbose=True): 

""" 

Raises an AssertionError if two array_like objects are not ordered by less 

than. 

 

Given two array_like objects, check that the shape is equal and all 

elements of the first object are strictly smaller than those of the 

second object. An exception is raised at shape mismatch or incorrectly 

ordered values. Shape mismatch does not raise if an object has zero 

dimension. In contrast to the standard usage in numpy, NaNs are 

compared, no assertion is raised if both objects have NaNs in the same 

positions. 

 

 

 

Parameters 

---------- 

x : array_like 

The smaller object to check. 

y : array_like 

The larger object to compare. 

err_msg : string 

The error message to be printed in case of failure. 

verbose : bool 

If True, the conflicting values are appended to the error message. 

 

Raises 

------ 

AssertionError 

If actual and desired objects are not equal. 

 

See Also 

-------- 

assert_array_equal: tests objects for equality 

assert_array_almost_equal: test objects for equality up to precision 

 

 

 

Examples 

-------- 

>>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1.1, 2.0, np.nan]) 

>>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1, 2.0, np.nan]) 

Traceback (most recent call last): 

... 

AssertionError: 

Arrays are not less-ordered 

Mismatch: 33.3% 

Max absolute difference: 1. 

Max relative difference: 0.5 

x: array([ 1., 1., nan]) 

y: array([ 1., 2., nan]) 

 

>>> np.testing.assert_array_less([1.0, 4.0], 3) 

Traceback (most recent call last): 

... 

AssertionError: 

Arrays are not less-ordered 

Mismatch: 50% 

Max absolute difference: 2. 

Max relative difference: 0.66666667 

x: array([1., 4.]) 

y: array(3) 

 

>>> np.testing.assert_array_less([1.0, 2.0, 3.0], [4]) 

Traceback (most recent call last): 

... 

AssertionError: 

Arrays are not less-ordered 

(shapes (3,), (1,) mismatch) 

x: array([1., 2., 3.]) 

y: array([4]) 

 

""" 

__tracebackhide__ = True # Hide traceback for py.test 

assert_array_compare(operator.__lt__, x, y, err_msg=err_msg, 

verbose=verbose, 

header='Arrays are not less-ordered', 

equal_inf=False) 

 

 

def runstring(astr, dict): 

exec(astr, dict) 

 

 

def assert_string_equal(actual, desired): 

""" 

Test if two strings are equal. 

 

If the given strings are equal, `assert_string_equal` does nothing. 

If they are not equal, an AssertionError is raised, and the diff 

between the strings is shown. 

 

Parameters 

---------- 

actual : str 

The string to test for equality against the expected string. 

desired : str 

The expected string. 

 

Examples 

-------- 

>>> np.testing.assert_string_equal('abc', 'abc') 

>>> np.testing.assert_string_equal('abc', 'abcd') 

Traceback (most recent call last): 

File "<stdin>", line 1, in <module> 

... 

AssertionError: Differences in strings: 

- abc+ abcd? + 

 

""" 

# delay import of difflib to reduce startup time 

__tracebackhide__ = True # Hide traceback for py.test 

import difflib 

 

if not isinstance(actual, str): 

raise AssertionError(repr(type(actual))) 

if not isinstance(desired, str): 

raise AssertionError(repr(type(desired))) 

if desired == actual: 

return 

 

diff = list(difflib.Differ().compare(actual.splitlines(1), desired.splitlines(1))) 

diff_list = [] 

while diff: 

d1 = diff.pop(0) 

if d1.startswith(' '): 

continue 

if d1.startswith('- '): 

l = [d1] 

d2 = diff.pop(0) 

if d2.startswith('? '): 

l.append(d2) 

d2 = diff.pop(0) 

if not d2.startswith('+ '): 

raise AssertionError(repr(d2)) 

l.append(d2) 

if diff: 

d3 = diff.pop(0) 

if d3.startswith('? '): 

l.append(d3) 

else: 

diff.insert(0, d3) 

if d2[2:] == d1[2:]: 

continue 

diff_list.extend(l) 

continue 

raise AssertionError(repr(d1)) 

if not diff_list: 

return 

msg = 'Differences in strings:\n%s' % (''.join(diff_list)).rstrip() 

if actual != desired: 

raise AssertionError(msg) 

 

 

def rundocs(filename=None, raise_on_error=True): 

""" 

Run doctests found in the given file. 

 

By default `rundocs` raises an AssertionError on failure. 

 

Parameters 

---------- 

filename : str 

The path to the file for which the doctests are run. 

raise_on_error : bool 

Whether to raise an AssertionError when a doctest fails. Default is 

True. 

 

Notes 

----- 

The doctests can be run by the user/developer by adding the ``doctests`` 

argument to the ``test()`` call. For example, to run all tests (including 

doctests) for `numpy.lib`: 

 

>>> np.lib.test(doctests=True) # doctest: +SKIP 

""" 

from numpy.compat import npy_load_module 

import doctest 

if filename is None: 

f = sys._getframe(1) 

filename = f.f_globals['__file__'] 

name = os.path.splitext(os.path.basename(filename))[0] 

m = npy_load_module(name, filename) 

 

tests = doctest.DocTestFinder().find(m) 

runner = doctest.DocTestRunner(verbose=False) 

 

msg = [] 

if raise_on_error: 

out = lambda s: msg.append(s) 

else: 

out = None 

 

for test in tests: 

runner.run(test, out=out) 

 

if runner.failures > 0 and raise_on_error: 

raise AssertionError("Some doctests failed:\n%s" % "\n".join(msg)) 

 

 

def raises(*args): 

"""Decorator to check for raised exceptions. 

 

The decorated test function must raise one of the passed exceptions to 

pass. If you want to test many assertions about exceptions in a single 

test, you may want to use `assert_raises` instead. 

 

.. warning:: 

This decorator is nose specific, do not use it if you are using a 

different test framework. 

 

Parameters 

---------- 

args : exceptions 

The test passes if any of the passed exceptions is raised. 

 

Raises 

------ 

AssertionError 

 

Examples 

-------- 

 

Usage:: 

 

@raises(TypeError, ValueError) 

def test_raises_type_error(): 

raise TypeError("This test passes") 

 

@raises(Exception) 

def test_that_fails_by_passing(): 

pass 

 

""" 

nose = import_nose() 

return nose.tools.raises(*args) 

 

# 

# assert_raises and assert_raises_regex are taken from unittest. 

# 

import unittest 

 

 

class _Dummy(unittest.TestCase): 

def nop(self): 

pass 

 

_d = _Dummy('nop') 

 

def assert_raises(*args, **kwargs): 

""" 

assert_raises(exception_class, callable, *args, **kwargs) 

assert_raises(exception_class) 

 

Fail unless an exception of class exception_class is thrown 

by callable when invoked with arguments args and keyword 

arguments kwargs. If a different type of exception is 

thrown, it will not be caught, and the test case will be 

deemed to have suffered an error, exactly as for an 

unexpected exception. 

 

Alternatively, `assert_raises` can be used as a context manager: 

 

>>> from numpy.testing import assert_raises 

>>> with assert_raises(ZeroDivisionError): 

... 1 / 0 

 

is equivalent to 

 

>>> def div(x, y): 

... return x / y 

>>> assert_raises(ZeroDivisionError, div, 1, 0) 

 

""" 

__tracebackhide__ = True # Hide traceback for py.test 

return _d.assertRaises(*args,**kwargs) 

 

 

def assert_raises_regex(exception_class, expected_regexp, *args, **kwargs): 

""" 

assert_raises_regex(exception_class, expected_regexp, callable, *args, 

**kwargs) 

assert_raises_regex(exception_class, expected_regexp) 

 

Fail unless an exception of class exception_class and with message that 

matches expected_regexp is thrown by callable when invoked with arguments 

args and keyword arguments kwargs. 

 

Alternatively, can be used as a context manager like `assert_raises`. 

 

Name of this function adheres to Python 3.2+ reference, but should work in 

all versions down to 2.6. 

 

Notes 

----- 

.. versionadded:: 1.9.0 

 

""" 

__tracebackhide__ = True # Hide traceback for py.test 

 

if sys.version_info.major >= 3: 

funcname = _d.assertRaisesRegex 

else: 

# Only present in Python 2.7, missing from unittest in 2.6 

funcname = _d.assertRaisesRegexp 

 

return funcname(exception_class, expected_regexp, *args, **kwargs) 

 

 

def decorate_methods(cls, decorator, testmatch=None): 

""" 

Apply a decorator to all methods in a class matching a regular expression. 

 

The given decorator is applied to all public methods of `cls` that are 

matched by the regular expression `testmatch` 

(``testmatch.search(methodname)``). Methods that are private, i.e. start 

with an underscore, are ignored. 

 

Parameters 

---------- 

cls : class 

Class whose methods to decorate. 

decorator : function 

Decorator to apply to methods 

testmatch : compiled regexp or str, optional 

The regular expression. Default value is None, in which case the 

nose default (``re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep)``) 

is used. 

If `testmatch` is a string, it is compiled to a regular expression 

first. 

 

""" 

if testmatch is None: 

testmatch = re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep) 

else: 

testmatch = re.compile(testmatch) 

cls_attr = cls.__dict__ 

 

# delayed import to reduce startup time 

from inspect import isfunction 

 

methods = [_m for _m in cls_attr.values() if isfunction(_m)] 

for function in methods: 

try: 

if hasattr(function, 'compat_func_name'): 

funcname = function.compat_func_name 

else: 

funcname = function.__name__ 

except AttributeError: 

# not a function 

continue 

if testmatch.search(funcname) and not funcname.startswith('_'): 

setattr(cls, funcname, decorator(function)) 

return 

 

 

def measure(code_str, times=1, label=None): 

""" 

Return elapsed time for executing code in the namespace of the caller. 

 

The supplied code string is compiled with the Python builtin ``compile``. 

The precision of the timing is 10 milli-seconds. If the code will execute 

fast on this timescale, it can be executed many times to get reasonable 

timing accuracy. 

 

Parameters 

---------- 

code_str : str 

The code to be timed. 

times : int, optional 

The number of times the code is executed. Default is 1. The code is 

only compiled once. 

label : str, optional 

A label to identify `code_str` with. This is passed into ``compile`` 

as the second argument (for run-time error messages). 

 

Returns 

------- 

elapsed : float 

Total elapsed time in seconds for executing `code_str` `times` times. 

 

Examples 

-------- 

>>> times = 10 

>>> etime = np.testing.measure('for i in range(1000): np.sqrt(i**2)', times=times) 

>>> print("Time for a single execution : ", etime / times, "s") # doctest: +SKIP 

Time for a single execution : 0.005 s 

 

""" 

frame = sys._getframe(1) 

locs, globs = frame.f_locals, frame.f_globals 

 

code = compile(code_str, 

'Test name: %s ' % label, 

'exec') 

i = 0 

elapsed = jiffies() 

while i < times: 

i += 1 

exec(code, globs, locs) 

elapsed = jiffies() - elapsed 

return 0.01*elapsed 

 

 

def _assert_valid_refcount(op): 

""" 

Check that ufuncs don't mishandle refcount of object `1`. 

Used in a few regression tests. 

""" 

if not HAS_REFCOUNT: 

return True 

import numpy as np, gc 

 

b = np.arange(100*100).reshape(100, 100) 

c = b 

i = 1 

 

gc.disable() 

try: 

rc = sys.getrefcount(i) 

for j in range(15): 

d = op(b, c) 

assert_(sys.getrefcount(i) >= rc) 

finally: 

gc.enable() 

del d # for pyflakes 

 

 

def assert_allclose(actual, desired, rtol=1e-7, atol=0, equal_nan=True, 

err_msg='', verbose=True): 

""" 

Raises an AssertionError if two objects are not equal up to desired 

tolerance. 

 

The test is equivalent to ``allclose(actual, desired, rtol, atol)``. 

It compares the difference between `actual` and `desired` to 

``atol + rtol * abs(desired)``. 

 

.. versionadded:: 1.5.0 

 

Parameters 

---------- 

actual : array_like 

Array obtained. 

desired : array_like 

Array desired. 

rtol : float, optional 

Relative tolerance. 

atol : float, optional 

Absolute tolerance. 

equal_nan : bool, optional. 

If True, NaNs will compare equal. 

err_msg : str, optional 

The error message to be printed in case of failure. 

verbose : bool, optional 

If True, the conflicting values are appended to the error message. 

 

Raises 

------ 

AssertionError 

If actual and desired are not equal up to specified precision. 

 

See Also 

-------- 

assert_array_almost_equal_nulp, assert_array_max_ulp 

 

Examples 

-------- 

>>> x = [1e-5, 1e-3, 1e-1] 

>>> y = np.arccos(np.cos(x)) 

>>> np.testing.assert_allclose(x, y, rtol=1e-5, atol=0) 

 

""" 

__tracebackhide__ = True # Hide traceback for py.test 

import numpy as np 

 

def compare(x, y): 

return np.core.numeric.isclose(x, y, rtol=rtol, atol=atol, 

equal_nan=equal_nan) 

 

actual, desired = np.asanyarray(actual), np.asanyarray(desired) 

header = 'Not equal to tolerance rtol=%g, atol=%g' % (rtol, atol) 

assert_array_compare(compare, actual, desired, err_msg=str(err_msg), 

verbose=verbose, header=header, equal_nan=equal_nan) 

 

 

def assert_array_almost_equal_nulp(x, y, nulp=1): 

""" 

Compare two arrays relatively to their spacing. 

 

This is a relatively robust method to compare two arrays whose amplitude 

is variable. 

 

Parameters 

---------- 

x, y : array_like 

Input arrays. 

nulp : int, optional 

The maximum number of unit in the last place for tolerance (see Notes). 

Default is 1. 

 

Returns 

------- 

None 

 

Raises 

------ 

AssertionError 

If the spacing between `x` and `y` for one or more elements is larger 

than `nulp`. 

 

See Also 

-------- 

assert_array_max_ulp : Check that all items of arrays differ in at most 

N Units in the Last Place. 

spacing : Return the distance between x and the nearest adjacent number. 

 

Notes 

----- 

An assertion is raised if the following condition is not met:: 

 

abs(x - y) <= nulps * spacing(maximum(abs(x), abs(y))) 

 

Examples 

-------- 

>>> x = np.array([1., 1e-10, 1e-20]) 

>>> eps = np.finfo(x.dtype).eps 

>>> np.testing.assert_array_almost_equal_nulp(x, x*eps/2 + x) 

 

>>> np.testing.assert_array_almost_equal_nulp(x, x*eps + x) 

Traceback (most recent call last): 

... 

AssertionError: X and Y are not equal to 1 ULP (max is 2) 

 

""" 

__tracebackhide__ = True # Hide traceback for py.test 

import numpy as np 

ax = np.abs(x) 

ay = np.abs(y) 

ref = nulp * np.spacing(np.where(ax > ay, ax, ay)) 

if not np.all(np.abs(x-y) <= ref): 

if np.iscomplexobj(x) or np.iscomplexobj(y): 

msg = "X and Y are not equal to %d ULP" % nulp 

else: 

max_nulp = np.max(nulp_diff(x, y)) 

msg = "X and Y are not equal to %d ULP (max is %g)" % (nulp, max_nulp) 

raise AssertionError(msg) 

 

 

def assert_array_max_ulp(a, b, maxulp=1, dtype=None): 

""" 

Check that all items of arrays differ in at most N Units in the Last Place. 

 

Parameters 

---------- 

a, b : array_like 

Input arrays to be compared. 

maxulp : int, optional 

The maximum number of units in the last place that elements of `a` and 

`b` can differ. Default is 1. 

dtype : dtype, optional 

Data-type to convert `a` and `b` to if given. Default is None. 

 

Returns 

------- 

ret : ndarray 

Array containing number of representable floating point numbers between 

items in `a` and `b`. 

 

Raises 

------ 

AssertionError 

If one or more elements differ by more than `maxulp`. 

 

See Also 

-------- 

assert_array_almost_equal_nulp : Compare two arrays relatively to their 

spacing. 

 

Examples 

-------- 

>>> a = np.linspace(0., 1., 100) 

>>> res = np.testing.assert_array_max_ulp(a, np.arcsin(np.sin(a))) 

 

""" 

__tracebackhide__ = True # Hide traceback for py.test 

import numpy as np 

ret = nulp_diff(a, b, dtype) 

if not np.all(ret <= maxulp): 

raise AssertionError("Arrays are not almost equal up to %g ULP" % 

maxulp) 

return ret 

 

 

def nulp_diff(x, y, dtype=None): 

"""For each item in x and y, return the number of representable floating 

points between them. 

 

Parameters 

---------- 

x : array_like 

first input array 

y : array_like 

second input array 

dtype : dtype, optional 

Data-type to convert `x` and `y` to if given. Default is None. 

 

Returns 

------- 

nulp : array_like 

number of representable floating point numbers between each item in x 

and y. 

 

Examples 

-------- 

# By definition, epsilon is the smallest number such as 1 + eps != 1, so 

# there should be exactly one ULP between 1 and 1 + eps 

>>> nulp_diff(1, 1 + np.finfo(x.dtype).eps) 

1.0 

""" 

import numpy as np 

if dtype: 

x = np.array(x, dtype=dtype) 

y = np.array(y, dtype=dtype) 

else: 

x = np.array(x) 

y = np.array(y) 

 

t = np.common_type(x, y) 

if np.iscomplexobj(x) or np.iscomplexobj(y): 

raise NotImplementedError("_nulp not implemented for complex array") 

 

x = np.array(x, dtype=t) 

y = np.array(y, dtype=t) 

 

if not x.shape == y.shape: 

raise ValueError("x and y do not have the same shape: %s - %s" % 

(x.shape, y.shape)) 

 

def _diff(rx, ry, vdt): 

diff = np.array(rx-ry, dtype=vdt) 

return np.abs(diff) 

 

rx = integer_repr(x) 

ry = integer_repr(y) 

return _diff(rx, ry, t) 

 

 

def _integer_repr(x, vdt, comp): 

# Reinterpret binary representation of the float as sign-magnitude: 

# take into account two-complement representation 

# See also 

# https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ 

rx = x.view(vdt) 

if not (rx.size == 1): 

rx[rx < 0] = comp - rx[rx < 0] 

else: 

if rx < 0: 

rx = comp - rx 

 

return rx 

 

 

def integer_repr(x): 

"""Return the signed-magnitude interpretation of the binary representation of 

x.""" 

import numpy as np 

if x.dtype == np.float16: 

return _integer_repr(x, np.int16, np.int16(-2**15)) 

elif x.dtype == np.float32: 

return _integer_repr(x, np.int32, np.int32(-2**31)) 

elif x.dtype == np.float64: 

return _integer_repr(x, np.int64, np.int64(-2**63)) 

else: 

raise ValueError("Unsupported dtype %s" % x.dtype) 

 

 

@contextlib.contextmanager 

def _assert_warns_context(warning_class, name=None): 

__tracebackhide__ = True # Hide traceback for py.test 

with suppress_warnings() as sup: 

l = sup.record(warning_class) 

yield 

if not len(l) > 0: 

name_str = " when calling %s" % name if name is not None else "" 

raise AssertionError("No warning raised" + name_str) 

 

 

def assert_warns(warning_class, *args, **kwargs): 

""" 

Fail unless the given callable throws the specified warning. 

 

A warning of class warning_class should be thrown by the callable when 

invoked with arguments args and keyword arguments kwargs. 

If a different type of warning is thrown, it will not be caught. 

 

If called with all arguments other than the warning class omitted, may be 

used as a context manager: 

 

with assert_warns(SomeWarning): 

do_something() 

 

The ability to be used as a context manager is new in NumPy v1.11.0. 

 

.. versionadded:: 1.4.0 

 

Parameters 

---------- 

warning_class : class 

The class defining the warning that `func` is expected to throw. 

func : callable 

The callable to test. 

\\*args : Arguments 

Arguments passed to `func`. 

\\*\\*kwargs : Kwargs 

Keyword arguments passed to `func`. 

 

Returns 

------- 

The value returned by `func`. 

 

""" 

if not args: 

return _assert_warns_context(warning_class) 

 

func = args[0] 

args = args[1:] 

with _assert_warns_context(warning_class, name=func.__name__): 

return func(*args, **kwargs) 

 

 

@contextlib.contextmanager 

def _assert_no_warnings_context(name=None): 

__tracebackhide__ = True # Hide traceback for py.test 

with warnings.catch_warnings(record=True) as l: 

warnings.simplefilter('always') 

yield 

if len(l) > 0: 

name_str = " when calling %s" % name if name is not None else "" 

raise AssertionError("Got warnings%s: %s" % (name_str, l)) 

 

 

def assert_no_warnings(*args, **kwargs): 

""" 

Fail if the given callable produces any warnings. 

 

If called with all arguments omitted, may be used as a context manager: 

 

with assert_no_warnings(): 

do_something() 

 

The ability to be used as a context manager is new in NumPy v1.11.0. 

 

.. versionadded:: 1.7.0 

 

Parameters 

---------- 

func : callable 

The callable to test. 

\\*args : Arguments 

Arguments passed to `func`. 

\\*\\*kwargs : Kwargs 

Keyword arguments passed to `func`. 

 

Returns 

------- 

The value returned by `func`. 

 

""" 

if not args: 

return _assert_no_warnings_context() 

 

func = args[0] 

args = args[1:] 

with _assert_no_warnings_context(name=func.__name__): 

return func(*args, **kwargs) 

 

 

def _gen_alignment_data(dtype=float32, type='binary', max_size=24): 

""" 

generator producing data with different alignment and offsets 

to test simd vectorization 

 

Parameters 

---------- 

dtype : dtype 

data type to produce 

type : string 

'unary': create data for unary operations, creates one input 

and output array 

'binary': create data for unary operations, creates two input 

and output array 

max_size : integer 

maximum size of data to produce 

 

Returns 

------- 

if type is 'unary' yields one output, one input array and a message 

containing information on the data 

if type is 'binary' yields one output array, two input array and a message 

containing information on the data 

 

""" 

ufmt = 'unary offset=(%d, %d), size=%d, dtype=%r, %s' 

bfmt = 'binary offset=(%d, %d, %d), size=%d, dtype=%r, %s' 

for o in range(3): 

for s in range(o + 2, max(o + 3, max_size)): 

if type == 'unary': 

inp = lambda: arange(s, dtype=dtype)[o:] 

out = empty((s,), dtype=dtype)[o:] 

yield out, inp(), ufmt % (o, o, s, dtype, 'out of place') 

d = inp() 

yield d, d, ufmt % (o, o, s, dtype, 'in place') 

yield out[1:], inp()[:-1], ufmt % \ 

(o + 1, o, s - 1, dtype, 'out of place') 

yield out[:-1], inp()[1:], ufmt % \ 

(o, o + 1, s - 1, dtype, 'out of place') 

yield inp()[:-1], inp()[1:], ufmt % \ 

(o, o + 1, s - 1, dtype, 'aliased') 

yield inp()[1:], inp()[:-1], ufmt % \ 

(o + 1, o, s - 1, dtype, 'aliased') 

if type == 'binary': 

inp1 = lambda: arange(s, dtype=dtype)[o:] 

inp2 = lambda: arange(s, dtype=dtype)[o:] 

out = empty((s,), dtype=dtype)[o:] 

yield out, inp1(), inp2(), bfmt % \ 

(o, o, o, s, dtype, 'out of place') 

d = inp1() 

yield d, d, inp2(), bfmt % \ 

(o, o, o, s, dtype, 'in place1') 

d = inp2() 

yield d, inp1(), d, bfmt % \ 

(o, o, o, s, dtype, 'in place2') 

yield out[1:], inp1()[:-1], inp2()[:-1], bfmt % \ 

(o + 1, o, o, s - 1, dtype, 'out of place') 

yield out[:-1], inp1()[1:], inp2()[:-1], bfmt % \ 

(o, o + 1, o, s - 1, dtype, 'out of place') 

yield out[:-1], inp1()[:-1], inp2()[1:], bfmt % \ 

(o, o, o + 1, s - 1, dtype, 'out of place') 

yield inp1()[1:], inp1()[:-1], inp2()[:-1], bfmt % \ 

(o + 1, o, o, s - 1, dtype, 'aliased') 

yield inp1()[:-1], inp1()[1:], inp2()[:-1], bfmt % \ 

(o, o + 1, o, s - 1, dtype, 'aliased') 

yield inp1()[:-1], inp1()[:-1], inp2()[1:], bfmt % \ 

(o, o, o + 1, s - 1, dtype, 'aliased') 

 

 

class IgnoreException(Exception): 

"Ignoring this exception due to disabled feature" 

pass 

 

 

@contextlib.contextmanager 

def tempdir(*args, **kwargs): 

"""Context manager to provide a temporary test folder. 

 

All arguments are passed as this to the underlying tempfile.mkdtemp 

function. 

 

""" 

tmpdir = mkdtemp(*args, **kwargs) 

try: 

yield tmpdir 

finally: 

shutil.rmtree(tmpdir) 

 

 

@contextlib.contextmanager 

def temppath(*args, **kwargs): 

"""Context manager for temporary files. 

 

Context manager that returns the path to a closed temporary file. Its 

parameters are the same as for tempfile.mkstemp and are passed directly 

to that function. The underlying file is removed when the context is 

exited, so it should be closed at that time. 

 

Windows does not allow a temporary file to be opened if it is already 

open, so the underlying file must be closed after opening before it 

can be opened again. 

 

""" 

fd, path = mkstemp(*args, **kwargs) 

os.close(fd) 

try: 

yield path 

finally: 

os.remove(path) 

 

 

class clear_and_catch_warnings(warnings.catch_warnings): 

""" Context manager that resets warning registry for catching warnings 

 

Warnings can be slippery, because, whenever a warning is triggered, Python 

adds a ``__warningregistry__`` member to the *calling* module. This makes 

it impossible to retrigger the warning in this module, whatever you put in 

the warnings filters. This context manager accepts a sequence of `modules` 

as a keyword argument to its constructor and: 

 

* stores and removes any ``__warningregistry__`` entries in given `modules` 

on entry; 

* resets ``__warningregistry__`` to its previous state on exit. 

 

This makes it possible to trigger any warning afresh inside the context 

manager without disturbing the state of warnings outside. 

 

For compatibility with Python 3.0, please consider all arguments to be 

keyword-only. 

 

Parameters 

---------- 

record : bool, optional 

Specifies whether warnings should be captured by a custom 

implementation of ``warnings.showwarning()`` and be appended to a list 

returned by the context manager. Otherwise None is returned by the 

context manager. The objects appended to the list are arguments whose 

attributes mirror the arguments to ``showwarning()``. 

modules : sequence, optional 

Sequence of modules for which to reset warnings registry on entry and 

restore on exit. To work correctly, all 'ignore' filters should 

filter by one of these modules. 

 

Examples 

-------- 

>>> import warnings 

>>> with np.testing.clear_and_catch_warnings( 

... modules=[np.core.fromnumeric]): 

... warnings.simplefilter('always') 

... warnings.filterwarnings('ignore', module='np.core.fromnumeric') 

... # do something that raises a warning but ignore those in 

... # np.core.fromnumeric 

""" 

class_modules = () 

 

def __init__(self, record=False, modules=()): 

self.modules = set(modules).union(self.class_modules) 

self._warnreg_copies = {} 

super(clear_and_catch_warnings, self).__init__(record=record) 

 

def __enter__(self): 

for mod in self.modules: 

if hasattr(mod, '__warningregistry__'): 

mod_reg = mod.__warningregistry__ 

self._warnreg_copies[mod] = mod_reg.copy() 

mod_reg.clear() 

return super(clear_and_catch_warnings, self).__enter__() 

 

def __exit__(self, *exc_info): 

super(clear_and_catch_warnings, self).__exit__(*exc_info) 

for mod in self.modules: 

if hasattr(mod, '__warningregistry__'): 

mod.__warningregistry__.clear() 

if mod in self._warnreg_copies: 

mod.__warningregistry__.update(self._warnreg_copies[mod]) 

 

 

class suppress_warnings(object): 

""" 

Context manager and decorator doing much the same as 

``warnings.catch_warnings``. 

 

However, it also provides a filter mechanism to work around 

https://bugs.python.org/issue4180. 

 

This bug causes Python before 3.4 to not reliably show warnings again 

after they have been ignored once (even within catch_warnings). It 

means that no "ignore" filter can be used easily, since following 

tests might need to see the warning. Additionally it allows easier 

specificity for testing warnings and can be nested. 

 

Parameters 

---------- 

forwarding_rule : str, optional 

One of "always", "once", "module", or "location". Analogous to 

the usual warnings module filter mode, it is useful to reduce 

noise mostly on the outmost level. Unsuppressed and unrecorded 

warnings will be forwarded based on this rule. Defaults to "always". 

"location" is equivalent to the warnings "default", match by exact 

location the warning warning originated from. 

 

Notes 

----- 

Filters added inside the context manager will be discarded again 

when leaving it. Upon entering all filters defined outside a 

context will be applied automatically. 

 

When a recording filter is added, matching warnings are stored in the 

``log`` attribute as well as in the list returned by ``record``. 

 

If filters are added and the ``module`` keyword is given, the 

warning registry of this module will additionally be cleared when 

applying it, entering the context, or exiting it. This could cause 

warnings to appear a second time after leaving the context if they 

were configured to be printed once (default) and were already 

printed before the context was entered. 

 

Nesting this context manager will work as expected when the 

forwarding rule is "always" (default). Unfiltered and unrecorded 

warnings will be passed out and be matched by the outer level. 

On the outmost level they will be printed (or caught by another 

warnings context). The forwarding rule argument can modify this 

behaviour. 

 

Like ``catch_warnings`` this context manager is not threadsafe. 

 

Examples 

-------- 

 

With a context manager:: 

 

with np.testing.suppress_warnings() as sup: 

sup.filter(DeprecationWarning, "Some text") 

sup.filter(module=np.ma.core) 

log = sup.record(FutureWarning, "Does this occur?") 

command_giving_warnings() 

# The FutureWarning was given once, the filtered warnings were 

# ignored. All other warnings abide outside settings (may be 

# printed/error) 

assert_(len(log) == 1) 

assert_(len(sup.log) == 1) # also stored in log attribute 

 

Or as a decorator:: 

 

sup = np.testing.suppress_warnings() 

sup.filter(module=np.ma.core) # module must match exactly 

@sup 

def some_function(): 

# do something which causes a warning in np.ma.core 

pass 

""" 

def __init__(self, forwarding_rule="always"): 

self._entered = False 

 

# Suppressions are either instance or defined inside one with block: 

self._suppressions = [] 

 

if forwarding_rule not in {"always", "module", "once", "location"}: 

raise ValueError("unsupported forwarding rule.") 

self._forwarding_rule = forwarding_rule 

 

def _clear_registries(self): 

if hasattr(warnings, "_filters_mutated"): 

# clearing the registry should not be necessary on new pythons, 

# instead the filters should be mutated. 

warnings._filters_mutated() 

return 

# Simply clear the registry, this should normally be harmless, 

# note that on new pythons it would be invalidated anyway. 

for module in self._tmp_modules: 

if hasattr(module, "__warningregistry__"): 

module.__warningregistry__.clear() 

 

def _filter(self, category=Warning, message="", module=None, record=False): 

if record: 

record = [] # The log where to store warnings 

else: 

record = None 

if self._entered: 

if module is None: 

warnings.filterwarnings( 

"always", category=category, message=message) 

else: 

module_regex = module.__name__.replace('.', r'\.') + '$' 

warnings.filterwarnings( 

"always", category=category, message=message, 

module=module_regex) 

self._tmp_modules.add(module) 

self._clear_registries() 

 

self._tmp_suppressions.append( 

(category, message, re.compile(message, re.I), module, record)) 

else: 

self._suppressions.append( 

(category, message, re.compile(message, re.I), module, record)) 

 

return record 

 

def filter(self, category=Warning, message="", module=None): 

""" 

Add a new suppressing filter or apply it if the state is entered. 

 

Parameters 

---------- 

category : class, optional 

Warning class to filter 

message : string, optional 

Regular expression matching the warning message. 

module : module, optional 

Module to filter for. Note that the module (and its file) 

must match exactly and cannot be a submodule. This may make 

it unreliable for external modules. 

 

Notes 

----- 

When added within a context, filters are only added inside 

the context and will be forgotten when the context is exited. 

""" 

self._filter(category=category, message=message, module=module, 

record=False) 

 

def record(self, category=Warning, message="", module=None): 

""" 

Append a new recording filter or apply it if the state is entered. 

 

All warnings matching will be appended to the ``log`` attribute. 

 

Parameters 

---------- 

category : class, optional 

Warning class to filter 

message : string, optional 

Regular expression matching the warning message. 

module : module, optional 

Module to filter for. Note that the module (and its file) 

must match exactly and cannot be a submodule. This may make 

it unreliable for external modules. 

 

Returns 

------- 

log : list 

A list which will be filled with all matched warnings. 

 

Notes 

----- 

When added within a context, filters are only added inside 

the context and will be forgotten when the context is exited. 

""" 

return self._filter(category=category, message=message, module=module, 

record=True) 

 

def __enter__(self): 

if self._entered: 

raise RuntimeError("cannot enter suppress_warnings twice.") 

 

self._orig_show = warnings.showwarning 

self._filters = warnings.filters 

warnings.filters = self._filters[:] 

 

self._entered = True 

self._tmp_suppressions = [] 

self._tmp_modules = set() 

self._forwarded = set() 

 

self.log = [] # reset global log (no need to keep same list) 

 

for cat, mess, _, mod, log in self._suppressions: 

if log is not None: 

del log[:] # clear the log 

if mod is None: 

warnings.filterwarnings( 

"always", category=cat, message=mess) 

else: 

module_regex = mod.__name__.replace('.', r'\.') + '$' 

warnings.filterwarnings( 

"always", category=cat, message=mess, 

module=module_regex) 

self._tmp_modules.add(mod) 

warnings.showwarning = self._showwarning 

self._clear_registries() 

 

return self 

 

def __exit__(self, *exc_info): 

warnings.showwarning = self._orig_show 

warnings.filters = self._filters 

self._clear_registries() 

self._entered = False 

del self._orig_show 

del self._filters 

 

def _showwarning(self, message, category, filename, lineno, 

*args, **kwargs): 

use_warnmsg = kwargs.pop("use_warnmsg", None) 

for cat, _, pattern, mod, rec in ( 

self._suppressions + self._tmp_suppressions)[::-1]: 

if (issubclass(category, cat) and 

pattern.match(message.args[0]) is not None): 

if mod is None: 

# Message and category match, either recorded or ignored 

if rec is not None: 

msg = WarningMessage(message, category, filename, 

lineno, **kwargs) 

self.log.append(msg) 

rec.append(msg) 

return 

# Use startswith, because warnings strips the c or o from 

# .pyc/.pyo files. 

elif mod.__file__.startswith(filename): 

# The message and module (filename) match 

if rec is not None: 

msg = WarningMessage(message, category, filename, 

lineno, **kwargs) 

self.log.append(msg) 

rec.append(msg) 

return 

 

# There is no filter in place, so pass to the outside handler 

# unless we should only pass it once 

if self._forwarding_rule == "always": 

if use_warnmsg is None: 

self._orig_show(message, category, filename, lineno, 

*args, **kwargs) 

else: 

self._orig_showmsg(use_warnmsg) 

return 

 

if self._forwarding_rule == "once": 

signature = (message.args, category) 

elif self._forwarding_rule == "module": 

signature = (message.args, category, filename) 

elif self._forwarding_rule == "location": 

signature = (message.args, category, filename, lineno) 

 

if signature in self._forwarded: 

return 

self._forwarded.add(signature) 

if use_warnmsg is None: 

self._orig_show(message, category, filename, lineno, *args, 

**kwargs) 

else: 

self._orig_showmsg(use_warnmsg) 

 

def __call__(self, func): 

""" 

Function decorator to apply certain suppressions to a whole 

function. 

""" 

@wraps(func) 

def new_func(*args, **kwargs): 

with self: 

return func(*args, **kwargs) 

 

return new_func 

 

 

@contextlib.contextmanager 

def _assert_no_gc_cycles_context(name=None): 

__tracebackhide__ = True # Hide traceback for py.test 

 

# not meaningful to test if there is no refcounting 

if not HAS_REFCOUNT: 

return 

 

assert_(gc.isenabled()) 

gc.disable() 

gc_debug = gc.get_debug() 

try: 

for i in range(100): 

if gc.collect() == 0: 

break 

else: 

raise RuntimeError( 

"Unable to fully collect garbage - perhaps a __del__ method is " 

"creating more reference cycles?") 

 

gc.set_debug(gc.DEBUG_SAVEALL) 

yield 

# gc.collect returns the number of unreachable objects in cycles that 

# were found -- we are checking that no cycles were created in the context 

n_objects_in_cycles = gc.collect() 

objects_in_cycles = gc.garbage[:] 

finally: 

del gc.garbage[:] 

gc.set_debug(gc_debug) 

gc.enable() 

 

if n_objects_in_cycles: 

name_str = " when calling %s" % name if name is not None else "" 

raise AssertionError( 

"Reference cycles were found{}: {} objects were collected, " 

"of which {} are shown below:{}" 

.format( 

name_str, 

n_objects_in_cycles, 

len(objects_in_cycles), 

''.join( 

"\n {} object with id={}:\n {}".format( 

type(o).__name__, 

id(o), 

pprint.pformat(o).replace('\n', '\n ') 

) for o in objects_in_cycles 

) 

) 

) 

 

 

def assert_no_gc_cycles(*args, **kwargs): 

""" 

Fail if the given callable produces any reference cycles. 

 

If called with all arguments omitted, may be used as a context manager: 

 

with assert_no_gc_cycles(): 

do_something() 

 

.. versionadded:: 1.15.0 

 

Parameters 

---------- 

func : callable 

The callable to test. 

\\*args : Arguments 

Arguments passed to `func`. 

\\*\\*kwargs : Kwargs 

Keyword arguments passed to `func`. 

 

Returns 

------- 

Nothing. The result is deliberately discarded to ensure that all cycles 

are found. 

 

""" 

if not args: 

return _assert_no_gc_cycles_context() 

 

func = args[0] 

args = args[1:] 

with _assert_no_gc_cycles_context(name=func.__name__): 

func(*args, **kwargs)