""" Discrete Fourier Transforms - basic.py """ # Created by Pearu Peterson, August,September 2002
'fft2','ifft2']
return issubclass(arr.dtype.type, typeclass)
""" Strict check for `arr` not sharing any data with `original`, under the assumption that arr = asarray(original)
""" if arr is original: return False if not isinstance(original, numpy.ndarray) and hasattr(original, '__array__'): return False return arr.base is None
# XXX: single precision FFTs partially disabled due to accuracy issues # for large prime-sized inputs. # # See http://permalink.gmane.org/gmane.comp.python.scientific.devel/13834 # ("fftpack test failures for 0.8.0b1", Ralf Gommers, 17 Jun 2010, # @ scipy-dev) # # These should be re-enabled once the problems are resolved
""" Is the size of FFT such that FFTPACK can handle it in single precision with sufficient accuracy?
Composite numbers of 2, 3, and 5 are accepted, as FFTPACK has those """ n = int(n)
if n == 0: return True
# Divide by 3 until you can't, then by 5 until you can't for c in (3, 5): while n % c == 0: n //= c
# Return True if the remainder is a power of 2 return not n & (n-1)
if _is_safe_size(n): return _fftpack.crfft(x, n, *a, **kw) else: return _fftpack.zrfft(x, n, *a, **kw).astype(numpy.complex64)
if _is_safe_size(n): return _fftpack.cfft(x, n, *a, **kw) else: return _fftpack.zfft(x, n, *a, **kw).astype(numpy.complex64)
if _is_safe_size(n): return _fftpack.rfft(x, n, *a, **kw) else: return _fftpack.drfft(x, n, *a, **kw).astype(numpy.float32)
if numpy.all(list(map(_is_safe_size, shape))): return _fftpack.cfftnd(x, shape, *a, **kw) else: return _fftpack.zfftnd(x, shape, *a, **kw).astype(numpy.complex64)
# numpy.dtype(numpy.float32): _fftpack.crfft, numpy.dtype(numpy.float32): _fake_crfft, numpy.dtype(numpy.float64): _fftpack.zrfft, # numpy.dtype(numpy.complex64): _fftpack.cfft, numpy.dtype(numpy.complex64): _fake_cfft, numpy.dtype(numpy.complex128): _fftpack.zfft, }
# numpy.dtype(numpy.float32): _fftpack.rfft, numpy.dtype(numpy.float32): _fake_rfft, numpy.dtype(numpy.float64): _fftpack.drfft, }
# numpy.dtype(numpy.complex64): _fftpack.cfftnd, numpy.dtype(numpy.complex64): _fake_cfftnd, numpy.dtype(numpy.complex128): _fftpack.zfftnd, # numpy.dtype(numpy.float32): _fftpack.cfftnd, numpy.dtype(numpy.float32): _fake_cfftnd, numpy.dtype(numpy.float64): _fftpack.zfftnd, }
"""Like numpy asfarray, except that it does not modify x dtype if x is already an array with a float dtype, and do not cast complex types to real.""" if hasattr(x, "dtype") and x.dtype.char in numpy.typecodes["AllFloat"]: # 'dtype' attribute does not ensure that the # object is an ndarray (e.g. Series class # from the pandas library) if x.dtype == numpy.half: # no half-precision routines, so convert to single precision return numpy.asarray(x, dtype=numpy.float32) return numpy.asarray(x, dtype=x.dtype) else: # We cannot use asfarray directly because it converts sequences of # complex to sequence of real ret = numpy.asarray(x) if ret.dtype == numpy.half: return numpy.asarray(ret, dtype=numpy.float32) elif ret.dtype.char not in numpy.typecodes["AllFloat"]: return numpy.asfarray(x) return ret
""" Internal auxiliary function for _raw_fft, _raw_fftnd.""" s = list(x.shape) if s[axis] > n: index = [slice(None)]*len(s) index[axis] = slice(0,n) x = x[index] return x, False else: index = [slice(None)]*len(s) index[axis] = slice(0,s[axis]) s[axis] = n z = zeros(s,x.dtype.char) z[index] = x return z, True
""" Internal auxiliary function for fft, ifft, rfft, irfft.""" if n is None: n = x.shape[axis] elif n != x.shape[axis]: x, copy_made = _fix_shape(x,n,axis) overwrite_x = overwrite_x or copy_made
if n < 1: raise ValueError("Invalid number of FFT data points " "(%d) specified." % n)
if axis == -1 or axis == len(x.shape)-1: r = work_function(x,n,direction,overwrite_x=overwrite_x) else: x = swapaxes(x, axis, -1) r = work_function(x,n,direction,overwrite_x=overwrite_x) r = swapaxes(r, axis, -1) return r
""" Return discrete Fourier transform of real or complex sequence.
The returned complex array contains ``y(0), y(1),..., y(n-1)`` where
``y(j) = (x * exp(-2*pi*sqrt(-1)*j*np.arange(n)/n)).sum()``.
Parameters ---------- x : array_like Array to Fourier transform. n : int, optional Length of the Fourier transform. If ``n < x.shape[axis]``, `x` is truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The default results in ``n = x.shape[axis]``. axis : int, optional Axis along which the fft's are computed; the default is over the last axis (i.e., ``axis=-1``). overwrite_x : bool, optional If True, the contents of `x` can be destroyed; the default is False.
Returns ------- z : complex ndarray with the elements::
[y(0),y(1),..,y(n/2),y(1-n/2),...,y(-1)] if n is even [y(0),y(1),..,y((n-1)/2),y(-(n-1)/2),...,y(-1)] if n is odd
where::
y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k* 2*pi/n), j = 0..n-1
See Also -------- ifft : Inverse FFT rfft : FFT of a real sequence
Notes ----- The packing of the result is "standard": If ``A = fft(a, n)``, then ``A[0]`` contains the zero-frequency term, ``A[1:n/2]`` contains the positive-frequency terms, and ``A[n/2:]`` contains the negative-frequency terms, in order of decreasingly negative frequency. So for an 8-point transform, the frequencies of the result are [0, 1, 2, 3, -4, -3, -2, -1]. To rearrange the fft output so that the zero-frequency component is centered, like [-4, -3, -2, -1, 0, 1, 2, 3], use `fftshift`.
Both single and double precision routines are implemented. Half precision inputs will be converted to single precision. Non floating-point inputs will be converted to double precision. Long-double precision inputs are not supported.
This function is most efficient when `n` is a power of two, and least efficient when `n` is prime.
Note that if ``x`` is real-valued then ``A[j] == A[n-j].conjugate()``. If ``x`` is real-valued and ``n`` is even then ``A[n/2]`` is real.
If the data type of `x` is real, a "real FFT" algorithm is automatically used, which roughly halves the computation time. To increase efficiency a little further, use `rfft`, which does the same calculation, but only outputs half of the symmetrical spectrum. If the data is both real and symmetrical, the `dct` can again double the efficiency, by generating half of the spectrum from half of the signal.
Examples -------- >>> from scipy.fftpack import fft, ifft >>> x = np.arange(5) >>> np.allclose(fft(ifft(x)), x, atol=1e-15) # within numerical accuracy. True
""" tmp = _asfarray(x)
try: work_function = _DTYPE_TO_FFT[tmp.dtype] except KeyError: raise ValueError("type %s is not supported" % tmp.dtype)
if not (istype(tmp, numpy.complex64) or istype(tmp, numpy.complex128)): overwrite_x = 1
overwrite_x = overwrite_x or _datacopied(tmp, x)
if n is None: n = tmp.shape[axis] elif n != tmp.shape[axis]: tmp, copy_made = _fix_shape(tmp,n,axis) overwrite_x = overwrite_x or copy_made
if n < 1: raise ValueError("Invalid number of FFT data points " "(%d) specified." % n)
if axis == -1 or axis == len(tmp.shape) - 1: return work_function(tmp,n,1,0,overwrite_x)
tmp = swapaxes(tmp, axis, -1) tmp = work_function(tmp,n,1,0,overwrite_x) return swapaxes(tmp, axis, -1)
""" Return discrete inverse Fourier transform of real or complex sequence.
The returned complex array contains ``y(0), y(1),..., y(n-1)`` where
``y(j) = (x * exp(2*pi*sqrt(-1)*j*np.arange(n)/n)).mean()``.
Parameters ---------- x : array_like Transformed data to invert. n : int, optional Length of the inverse Fourier transform. If ``n < x.shape[axis]``, `x` is truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The default results in ``n = x.shape[axis]``. axis : int, optional Axis along which the ifft's are computed; the default is over the last axis (i.e., ``axis=-1``). overwrite_x : bool, optional If True, the contents of `x` can be destroyed; the default is False.
Returns ------- ifft : ndarray of floats The inverse discrete Fourier transform.
See Also -------- fft : Forward FFT
Notes ----- Both single and double precision routines are implemented. Half precision inputs will be converted to single precision. Non floating-point inputs will be converted to double precision. Long-double precision inputs are not supported.
This function is most efficient when `n` is a power of two, and least efficient when `n` is prime.
If the data type of `x` is real, a "real IFFT" algorithm is automatically used, which roughly halves the computation time.
Examples -------- >>> from scipy.fftpack import fft, ifft >>> import numpy as np >>> x = np.arange(5) >>> np.allclose(ifft(fft(x)), x, atol=1e-15) # within numerical accuracy. True
""" tmp = _asfarray(x)
try: work_function = _DTYPE_TO_FFT[tmp.dtype] except KeyError: raise ValueError("type %s is not supported" % tmp.dtype)
if not (istype(tmp, numpy.complex64) or istype(tmp, numpy.complex128)): overwrite_x = 1
overwrite_x = overwrite_x or _datacopied(tmp, x)
if n is None: n = tmp.shape[axis] elif n != tmp.shape[axis]: tmp, copy_made = _fix_shape(tmp,n,axis) overwrite_x = overwrite_x or copy_made
if n < 1: raise ValueError("Invalid number of FFT data points " "(%d) specified." % n)
if axis == -1 or axis == len(tmp.shape) - 1: return work_function(tmp,n,-1,1,overwrite_x)
tmp = swapaxes(tmp, axis, -1) tmp = work_function(tmp,n,-1,1,overwrite_x) return swapaxes(tmp, axis, -1)
""" Discrete Fourier transform of a real sequence.
Parameters ---------- x : array_like, real-valued The data to transform. n : int, optional Defines the length of the Fourier transform. If `n` is not specified (the default) then ``n = x.shape[axis]``. If ``n < x.shape[axis]``, `x` is truncated, if ``n > x.shape[axis]``, `x` is zero-padded. axis : int, optional The axis along which the transform is applied. The default is the last axis. overwrite_x : bool, optional If set to true, the contents of `x` can be overwritten. Default is False.
Returns ------- z : real ndarray The returned real array contains::
[y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2))] if n is even [y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2)),Im(y(n/2))] if n is odd
where::
y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k*2*pi/n) j = 0..n-1
See Also -------- fft, irfft, numpy.fft.rfft
Notes ----- Within numerical accuracy, ``y == rfft(irfft(y))``.
Both single and double precision routines are implemented. Half precision inputs will be converted to single precision. Non floating-point inputs will be converted to double precision. Long-double precision inputs are not supported.
To get an output with a complex datatype, consider using the related function `numpy.fft.rfft`.
Examples -------- >>> from scipy.fftpack import fft, rfft >>> a = [9, -9, 1, 3] >>> fft(a) array([ 4. +0.j, 8.+12.j, 16. +0.j, 8.-12.j]) >>> rfft(a) array([ 4., 8., 12., 16.])
""" tmp = _asfarray(x)
if not numpy.isrealobj(tmp): raise TypeError("1st argument must be real sequence")
try: work_function = _DTYPE_TO_RFFT[tmp.dtype] except KeyError: raise ValueError("type %s is not supported" % tmp.dtype)
overwrite_x = overwrite_x or _datacopied(tmp, x)
return _raw_fft(tmp,n,axis,1,overwrite_x,work_function)
""" Return inverse discrete Fourier transform of real sequence x.
The contents of `x` are interpreted as the output of the `rfft` function.
Parameters ---------- x : array_like Transformed data to invert. n : int, optional Length of the inverse Fourier transform. If n < x.shape[axis], x is truncated. If n > x.shape[axis], x is zero-padded. The default results in n = x.shape[axis]. axis : int, optional Axis along which the ifft's are computed; the default is over the last axis (i.e., axis=-1). overwrite_x : bool, optional If True, the contents of `x` can be destroyed; the default is False.
Returns ------- irfft : ndarray of floats The inverse discrete Fourier transform.
See Also -------- rfft, ifft, numpy.fft.irfft
Notes ----- The returned real array contains::
[y(0),y(1),...,y(n-1)]
where for n is even::
y(j) = 1/n (sum[k=1..n/2-1] (x[2*k-1]+sqrt(-1)*x[2*k]) * exp(sqrt(-1)*j*k* 2*pi/n) + c.c. + x[0] + (-1)**(j) x[n-1])
and for n is odd::
y(j) = 1/n (sum[k=1..(n-1)/2] (x[2*k-1]+sqrt(-1)*x[2*k]) * exp(sqrt(-1)*j*k* 2*pi/n) + c.c. + x[0])
c.c. denotes complex conjugate of preceding expression.
For details on input parameters, see `rfft`.
To process (conjugate-symmetric) frequency-domain data with a complex datatype, consider using the related function `numpy.fft.irfft`. """ tmp = _asfarray(x) if not numpy.isrealobj(tmp): raise TypeError("1st argument must be real sequence")
try: work_function = _DTYPE_TO_RFFT[tmp.dtype] except KeyError: raise ValueError("type %s is not supported" % tmp.dtype)
overwrite_x = overwrite_x or _datacopied(tmp, x)
return _raw_fft(tmp,n,axis,-1,overwrite_x,work_function)
""" Internal auxiliary function for fftnd, ifftnd.""" if s is None: if axes is None: s = x.shape else: s = numpy.take(x.shape, axes)
s = tuple(s) if axes is None: noaxes = True axes = list(range(-x.ndim, 0)) else: noaxes = False if len(axes) != len(s): raise ValueError("when given, axes and shape arguments " "have to be of the same length")
for dim in s: if dim < 1: raise ValueError("Invalid number of FFT data points " "(%s) specified." % (s,))
# No need to swap axes, array is in C order if noaxes: for i in axes: x, copy_made = _fix_shape(x, s[i], i) overwrite_x = overwrite_x or copy_made return work_function(x,s,direction,overwrite_x=overwrite_x)
# We ordered axes, because the code below to push axes at the end of the # array assumes axes argument is in ascending order. a = numpy.array(axes, numpy.intc) abs_axes = numpy.where(a < 0, a + x.ndim, a) id_ = numpy.argsort(abs_axes) axes = [axes[i] for i in id_] s = [s[i] for i in id_]
# Swap the request axes, last first (i.e. First swap the axis which ends up # at -1, then at -2, etc...), such as the request axes on which the # operation is carried become the last ones for i in range(1, len(axes)+1): x = numpy.swapaxes(x, axes[-i], -i)
# We can now operate on the axes waxes, the p last axes (p = len(axes)), by # fixing the shape of the input array to 1 for any axis the fft is not # carried upon. waxes = list(range(x.ndim - len(axes), x.ndim)) shape = numpy.ones(x.ndim) shape[waxes] = s
for i in range(len(waxes)): x, copy_made = _fix_shape(x, s[i], waxes[i]) overwrite_x = overwrite_x or copy_made
r = work_function(x, shape, direction, overwrite_x=overwrite_x)
# reswap in the reverse order (first axis first, etc...) to get original # order for i in range(len(axes), 0, -1): r = numpy.swapaxes(r, -i, axes[-i])
return r
""" Return multidimensional discrete Fourier transform.
The returned array contains::
y[j_1,..,j_d] = sum[k_1=0..n_1-1, ..., k_d=0..n_d-1] x[k_1,..,k_d] * prod[i=1..d] exp(-sqrt(-1)*2*pi/n_i * j_i * k_i)
where d = len(x.shape) and n = x.shape.
Parameters ---------- x : array_like The (n-dimensional) array to transform. shape : tuple of ints, optional The shape of the result. If both `shape` and `axes` (see below) are None, `shape` is ``x.shape``; if `shape` is None but `axes` is not None, then `shape` is ``scipy.take(x.shape, axes, axis=0)``. If ``shape[i] > x.shape[i]``, the i-th dimension is padded with zeros. If ``shape[i] < x.shape[i]``, the i-th dimension is truncated to length ``shape[i]``. axes : array_like of ints, optional The axes of `x` (`y` if `shape` is not None) along which the transform is applied. overwrite_x : bool, optional If True, the contents of `x` can be destroyed. Default is False.
Returns ------- y : complex-valued n-dimensional numpy array The (n-dimensional) DFT of the input array.
See Also -------- ifftn
Notes ----- If ``x`` is real-valued, then ``y[..., j_i, ...] == y[..., n_i-j_i, ...].conjugate()``.
Both single and double precision routines are implemented. Half precision inputs will be converted to single precision. Non floating-point inputs will be converted to double precision. Long-double precision inputs are not supported.
Examples -------- >>> from scipy.fftpack import fftn, ifftn >>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16)) >>> np.allclose(y, fftn(ifftn(y))) True
""" return _raw_fftn_dispatch(x, shape, axes, overwrite_x, 1)
tmp = _asfarray(x)
try: work_function = _DTYPE_TO_FFTN[tmp.dtype] except KeyError: raise ValueError("type %s is not supported" % tmp.dtype)
if not (istype(tmp, numpy.complex64) or istype(tmp, numpy.complex128)): overwrite_x = 1
overwrite_x = overwrite_x or _datacopied(tmp, x) return _raw_fftnd(tmp,shape,axes,direction,overwrite_x,work_function)
""" Return inverse multi-dimensional discrete Fourier transform of arbitrary type sequence x.
The returned array contains::
y[j_1,..,j_d] = 1/p * sum[k_1=0..n_1-1, ..., k_d=0..n_d-1] x[k_1,..,k_d] * prod[i=1..d] exp(sqrt(-1)*2*pi/n_i * j_i * k_i)
where ``d = len(x.shape)``, ``n = x.shape``, and ``p = prod[i=1..d] n_i``.
For description of parameters see `fftn`.
See Also -------- fftn : for detailed information.
Examples -------- >>> from scipy.fftpack import fftn, ifftn >>> import numpy as np >>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16)) >>> np.allclose(y, ifftn(fftn(y))) True
""" return _raw_fftn_dispatch(x, shape, axes, overwrite_x, -1)
""" 2-D discrete Fourier transform.
Return the two-dimensional discrete Fourier transform of the 2-D argument `x`.
See Also -------- fftn : for detailed information.
""" return fftn(x,shape,axes,overwrite_x)
""" 2-D discrete inverse Fourier transform of real or complex sequence.
Return inverse two-dimensional discrete Fourier transform of arbitrary type sequence x.
See `ifft` for more information.
See also -------- fft2, ifft
""" return ifftn(x,shape,axes,overwrite_x) |