"""Helper function for checking arguments common to all solvers.""" y0 = np.asarray(y0) if np.issubdtype(y0.dtype, np.complexfloating): if not support_complex: raise ValueError("`y0` is complex, but the chosen solver does " "not support integration in a complex domain.") dtype = complex else: dtype = float y0 = y0.astype(dtype, copy=False)
if y0.ndim != 1: raise ValueError("`y0` must be 1-dimensional.")
def fun_wrapped(t, y): return np.asarray(fun(t, y), dtype=dtype)
return fun_wrapped, y0
"""Base class for ODE solvers.
In order to implement a new solver you need to follow the guidelines:
1. A constructor must accept parameters presented in the base class (listed below) along with any other parameters specific to a solver. 2. A constructor must accept arbitrary extraneous arguments ``**extraneous``, but warn that these arguments are irrelevant using `common.warn_extraneous` function. Do not pass these arguments to the base class. 3. A solver must implement a private method `_step_impl(self)` which propagates a solver one step further. It must return tuple ``(success, message)``, where ``success`` is a boolean indicating whether a step was successful, and ``message`` is a string containing description of a failure if a step failed or None otherwise. 4. A solver must implement a private method `_dense_output_impl(self)` which returns a `DenseOutput` object covering the last successful step. 5. A solver must have attributes listed below in Attributes section. Note that `t_old` and `step_size` are updated automatically. 6. Use `fun(self, t, y)` method for the system rhs evaluation, this way the number of function evaluations (`nfev`) will be tracked automatically. 7. For convenience a base class provides `fun_single(self, t, y)` and `fun_vectorized(self, t, y)` for evaluating the rhs in non-vectorized and vectorized fashions respectively (regardless of how `fun` from the constructor is implemented). These calls don't increment `nfev`. 8. If a solver uses a Jacobian matrix and LU decompositions, it should track the number of Jacobian evaluations (`njev`) and the number of LU decompositions (`nlu`). 9. By convention the function evaluations used to compute a finite difference approximation of the Jacobian should not be counted in `nfev`, thus use `fun_single(self, t, y)` or `fun_vectorized(self, t, y)` when computing a finite difference approximation of the Jacobian.
Parameters ---------- fun : callable Right-hand side of the system. The calling signature is ``fun(t, y)``. Here ``t`` is a scalar and there are two options for ndarray ``y``. It can either have shape (n,), then ``fun`` must return array_like with shape (n,). Or alternatively it can have shape (n, n_points), then ``fun`` must return array_like with shape (n, n_points) (each column corresponds to a single column in ``y``). The choice between the two options is determined by `vectorized` argument (see below). t0 : float Initial time. y0 : array_like, shape (n,) Initial state. t_bound : float Boundary time --- the integration won't continue beyond it. It also determines the direction of the integration. vectorized : bool Whether `fun` is implemented in a vectorized fashion. support_complex : bool, optional Whether integration in a complex domain should be supported. Generally determined by a derived solver class capabilities. Default is False.
Attributes ---------- n : int Number of equations. status : string Current status of the solver: 'running', 'finished' or 'failed'. t_bound : float Boundary time. direction : float Integration direction: +1 or -1. t : float Current time. y : ndarray Current state. t_old : float Previous time. None if no steps were made yet. step_size : float Size of the last successful step. None if no steps were made yet. nfev : int Number of the system's rhs evaluations. njev : int Number of the Jacobian evaluations. nlu : int Number of LU decompositions. """
support_complex=False): self.t_old = None self.t = t0 self._fun, self.y = check_arguments(fun, y0, support_complex) self.t_bound = t_bound self.vectorized = vectorized
if vectorized: def fun_single(t, y): return self._fun(t, y[:, None]).ravel() fun_vectorized = self._fun else: fun_single = self._fun
def fun_vectorized(t, y): f = np.empty_like(y) for i, yi in enumerate(y.T): f[:, i] = self._fun(t, yi) return f
def fun(t, y): self.nfev += 1 return self.fun_single(t, y)
self.fun = fun self.fun_single = fun_single self.fun_vectorized = fun_vectorized
self.direction = np.sign(t_bound - t0) if t_bound != t0 else 1 self.n = self.y.size self.status = 'running'
self.nfev = 0 self.njev = 0 self.nlu = 0
def step_size(self): if self.t_old is None: return None else: return np.abs(self.t - self.t_old)
"""Perform one integration step.
Returns ------- message : string or None Report from the solver. Typically a reason for a failure if `self.status` is 'failed' after the step was taken or None otherwise. """ if self.status != 'running': raise RuntimeError("Attempt to step on a failed or finished " "solver.")
if self.n == 0 or self.t == self.t_bound: # Handle corner cases of empty solver or no integration. self.t_old = self.t self.t = self.t_bound message = None self.status = 'finished' else: t = self.t success, message = self._step_impl()
if not success: self.status = 'failed' else: self.t_old = t if self.direction * (self.t - self.t_bound) >= 0: self.status = 'finished'
return message
"""Compute a local interpolant over the last successful step.
Returns ------- sol : `DenseOutput` Local interpolant over the last successful step. """ if self.t_old is None: raise RuntimeError("Dense output is available after a successful " "step was made.")
if self.n == 0 or self.t == self.t_old: # Handle corner cases of empty solver and no integration. return ConstantDenseOutput(self.t_old, self.t, self.y) else: return self._dense_output_impl()
raise NotImplementedError
raise NotImplementedError
"""Base class for local interpolant over step made by an ODE solver.
It interpolates between `t_min` and `t_max` (see Attributes below). Evaluation outside this interval is not forbidden, but the accuracy is not guaranteed.
Attributes ---------- t_min, t_max : float Time range of the interpolation. """ self.t_old = t_old self.t = t self.t_min = min(t, t_old) self.t_max = max(t, t_old)
"""Evaluate the interpolant.
Parameters ---------- t : float or array_like with shape (n_points,) Points to evaluate the solution at.
Returns ------- y : ndarray, shape (n,) or (n, n_points) Computed values. Shape depends on whether `t` was a scalar or a 1-d array. """ t = np.asarray(t) if t.ndim > 1: raise ValueError("`t` must be float or 1-d array.") return self._call_impl(t)
raise NotImplementedError
"""Constant value interpolator.
This class used for degenerate integration cases: equal integration limits or a system with 0 equations. """ super(ConstantDenseOutput, self).__init__(t_old, t) self.value = value
if t.ndim == 0: return self.value else: ret = np.empty((self.value.shape[0], t.shape[0])) ret[:] = self.value[:, None] return ret |