1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

from __future__ import division, print_function, absolute_import 

from itertools import groupby 

from warnings import warn 

import numpy as np 

from scipy.sparse import find, coo_matrix 

 

 

EPS = np.finfo(float).eps 

 

 

def validate_max_step(max_step): 

"""Assert that max_Step is valid and return it.""" 

if max_step <= 0: 

raise ValueError("`max_step` must be positive.") 

return max_step 

 

 

def warn_extraneous(extraneous): 

"""Display a warning for extraneous keyword arguments. 

 

The initializer of each solver class is expected to collect keyword 

arguments that it doesn't understand and warn about them. This function 

prints a warning for each key in the supplied dictionary. 

 

Parameters 

---------- 

extraneous : dict 

Extraneous keyword arguments 

""" 

if extraneous: 

warn("The following arguments have no effect for a chosen solver: {}." 

.format(", ".join("`{}`".format(x) for x in extraneous))) 

 

 

def validate_tol(rtol, atol, n): 

"""Validate tolerance values.""" 

if rtol < 100 * EPS: 

warn("`rtol` is too low, setting to {}".format(100 * EPS)) 

rtol = 100 * EPS 

 

atol = np.asarray(atol) 

if atol.ndim > 0 and atol.shape != (n,): 

raise ValueError("`atol` has wrong shape.") 

 

if np.any(atol < 0): 

raise ValueError("`atol` must be positive.") 

 

return rtol, atol 

 

 

def norm(x): 

"""Compute RMS norm.""" 

return np.linalg.norm(x) / x.size ** 0.5 

 

 

def select_initial_step(fun, t0, y0, f0, direction, order, rtol, atol): 

"""Empirically select a good initial step. 

 

The algorithm is described in [1]_. 

 

Parameters 

---------- 

fun : callable 

Right-hand side of the system. 

t0 : float 

Initial value of the independent variable. 

y0 : ndarray, shape (n,) 

Initial value of the dependent variable. 

f0 : ndarray, shape (n,) 

Initial value of the derivative, i. e. ``fun(t0, y0)``. 

direction : float 

Integration direction. 

order : float 

Method order. 

rtol : float 

Desired relative tolerance. 

atol : float 

Desired absolute tolerance. 

 

Returns 

------- 

h_abs : float 

Absolute value of the suggested initial step. 

 

References 

---------- 

.. [1] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential 

Equations I: Nonstiff Problems", Sec. II.4. 

""" 

if y0.size == 0: 

return np.inf 

 

scale = atol + np.abs(y0) * rtol 

d0 = norm(y0 / scale) 

d1 = norm(f0 / scale) 

if d0 < 1e-5 or d1 < 1e-5: 

h0 = 1e-6 

else: 

h0 = 0.01 * d0 / d1 

 

y1 = y0 + h0 * direction * f0 

f1 = fun(t0 + h0 * direction, y1) 

d2 = norm((f1 - f0) / scale) / h0 

 

if d1 <= 1e-15 and d2 <= 1e-15: 

h1 = max(1e-6, h0 * 1e-3) 

else: 

h1 = (0.01 / max(d1, d2)) ** (1 / (order + 1)) 

 

return min(100 * h0, h1) 

 

 

class OdeSolution(object): 

"""Continuous ODE solution. 

 

It is organized as a collection of `DenseOutput` objects which represent 

local interpolants. It provides an algorithm to select a right interpolant 

for each given point. 

 

The interpolants cover the range between `t_min` and `t_max` (see 

Attributes below). Evaluation outside this interval is not forbidden, but 

the accuracy is not guaranteed. 

 

When evaluating at a breakpoint (one of the values in `ts`) a segment with 

the lower index is selected. 

 

Parameters 

---------- 

ts : array_like, shape (n_segments + 1,) 

Time instants between which local interpolants are defined. Must 

be strictly increasing or decreasing (zero segment with two points is 

also allowed). 

interpolants : list of DenseOutput with n_segments elements 

Local interpolants. An i-th interpolant is assumed to be defined 

between ``ts[i]`` and ``ts[i + 1]``. 

 

Attributes 

---------- 

t_min, t_max : float 

Time range of the interpolation. 

""" 

def __init__(self, ts, interpolants): 

ts = np.asarray(ts) 

d = np.diff(ts) 

# The first case covers integration on zero segment. 

if not ((ts.size == 2 and ts[0] == ts[-1]) 

or np.all(d > 0) or np.all(d < 0)): 

raise ValueError("`ts` must be strictly increasing or decreasing.") 

 

self.n_segments = len(interpolants) 

if ts.shape != (self.n_segments + 1,): 

raise ValueError("Numbers of time stamps and interpolants " 

"don't match.") 

 

self.ts = ts 

self.interpolants = interpolants 

if ts[-1] >= ts[0]: 

self.t_min = ts[0] 

self.t_max = ts[-1] 

self.ascending = True 

self.ts_sorted = ts 

else: 

self.t_min = ts[-1] 

self.t_max = ts[0] 

self.ascending = False 

self.ts_sorted = ts[::-1] 

 

def _call_single(self, t): 

# Here we preserve a certain symmetry that when t is in self.ts, 

# then we prioritize a segment with a lower index. 

if self.ascending: 

ind = np.searchsorted(self.ts_sorted, t, side='left') 

else: 

ind = np.searchsorted(self.ts_sorted, t, side='right') 

 

segment = min(max(ind - 1, 0), self.n_segments - 1) 

if not self.ascending: 

segment = self.n_segments - 1 - segment 

 

return self.interpolants[segment](t) 

 

def __call__(self, t): 

"""Evaluate the solution. 

 

Parameters 

---------- 

t : float or array_like with shape (n_points,) 

Points to evaluate at. 

 

Returns 

------- 

y : ndarray, shape (n_states,) or (n_states, n_points) 

Computed values. Shape depends on whether `t` is a scalar or a 

1-d array. 

""" 

t = np.asarray(t) 

 

if t.ndim == 0: 

return self._call_single(t) 

 

order = np.argsort(t) 

reverse = np.empty_like(order) 

reverse[order] = np.arange(order.shape[0]) 

t_sorted = t[order] 

 

# See comment in self._call_single. 

if self.ascending: 

segments = np.searchsorted(self.ts_sorted, t_sorted, side='left') 

else: 

segments = np.searchsorted(self.ts_sorted, t_sorted, side='right') 

segments -= 1 

segments[segments < 0] = 0 

segments[segments > self.n_segments - 1] = self.n_segments - 1 

if not self.ascending: 

segments = self.n_segments - 1 - segments 

 

ys = [] 

group_start = 0 

for segment, group in groupby(segments): 

group_end = group_start + len(list(group)) 

y = self.interpolants[segment](t_sorted[group_start:group_end]) 

ys.append(y) 

group_start = group_end 

 

ys = np.hstack(ys) 

ys = ys[:, reverse] 

 

return ys 

 

 

NUM_JAC_DIFF_REJECT = EPS ** 0.875 

NUM_JAC_DIFF_SMALL = EPS ** 0.75 

NUM_JAC_DIFF_BIG = EPS ** 0.25 

NUM_JAC_MIN_FACTOR = 1e3 * EPS 

NUM_JAC_FACTOR_INCREASE = 10 

NUM_JAC_FACTOR_DECREASE = 0.1 

 

 

def num_jac(fun, t, y, f, threshold, factor, sparsity=None): 

"""Finite differences Jacobian approximation tailored for ODE solvers. 

 

This function computes finite difference approximation to the Jacobian 

matrix of `fun` with respect to `y` using forward differences. 

The Jacobian matrix has shape (n, n) and its element (i, j) is equal to 

``d f_i / d y_j``. 

 

A special feature of this function is the ability to correct the step 

size from iteration to iteration. The main idea is to keep the finite 

difference significantly separated from its round-off error which 

approximately equals ``EPS * np.abs(f)``. It reduces a possibility of a 

huge error and assures that the estimated derivative are reasonably close 

to the true values (i.e. the finite difference approximation is at least 

qualitatively reflects the structure of the true Jacobian). 

 

Parameters 

---------- 

fun : callable 

Right-hand side of the system implemented in a vectorized fashion. 

t : float 

Current time. 

y : ndarray, shape (n,) 

Current state. 

f : ndarray, shape (n,) 

Value of the right hand side at (t, y). 

threshold : float 

Threshold for `y` value used for computing the step size as 

``factor * np.maximum(np.abs(y), threshold)``. Typically the value of 

absolute tolerance (atol) for a solver should be passed as `threshold`. 

factor : ndarray with shape (n,) or None 

Factor to use for computing the step size. Pass None for the very 

evaluation, then use the value returned from this function. 

sparsity : tuple (structure, groups) or None 

Sparsity structure of the Jacobian, `structure` must be csc_matrix. 

 

Returns 

------- 

J : ndarray or csc_matrix, shape (n, n) 

Jacobian matrix. 

factor : ndarray, shape (n,) 

Suggested `factor` for the next evaluation. 

""" 

y = np.asarray(y) 

n = y.shape[0] 

if n == 0: 

return np.empty((0, 0)), factor 

 

if factor is None: 

factor = np.ones(n) * EPS ** 0.5 

else: 

factor = factor.copy() 

 

# Direct the step as ODE dictates, hoping that such a step won't lead to 

# a problematic region. For complex ODEs it makes sense to use the real 

# part of f as we use steps along real axis. 

f_sign = 2 * (np.real(f) >= 0).astype(float) - 1 

y_scale = f_sign * np.maximum(threshold, np.abs(y)) 

h = (y + factor * y_scale) - y 

 

# Make sure that the step is not 0 to start with. Not likely it will be 

# executed often. 

for i in np.nonzero(h == 0)[0]: 

while h[i] == 0: 

factor[i] *= 10 

h[i] = (y[i] + factor[i] * y_scale[i]) - y[i] 

 

if sparsity is None: 

return _dense_num_jac(fun, t, y, f, h, factor, y_scale) 

else: 

structure, groups = sparsity 

return _sparse_num_jac(fun, t, y, f, h, factor, y_scale, 

structure, groups) 

 

 

def _dense_num_jac(fun, t, y, f, h, factor, y_scale): 

n = y.shape[0] 

h_vecs = np.diag(h) 

f_new = fun(t, y[:, None] + h_vecs) 

diff = f_new - f[:, None] 

max_ind = np.argmax(np.abs(diff), axis=0) 

r = np.arange(n) 

max_diff = np.abs(diff[max_ind, r]) 

scale = np.maximum(np.abs(f[max_ind]), np.abs(f_new[max_ind, r])) 

 

diff_too_small = max_diff < NUM_JAC_DIFF_REJECT * scale 

if np.any(diff_too_small): 

ind, = np.nonzero(diff_too_small) 

new_factor = NUM_JAC_FACTOR_INCREASE * factor[ind] 

h_new = (y[ind] + new_factor * y_scale[ind]) - y[ind] 

h_vecs[ind, ind] = h_new 

f_new = fun(t, y[:, None] + h_vecs[:, ind]) 

diff_new = f_new - f[:, None] 

max_ind = np.argmax(np.abs(diff_new), axis=0) 

r = np.arange(ind.shape[0]) 

max_diff_new = np.abs(diff_new[max_ind, r]) 

scale_new = np.maximum(np.abs(f[max_ind]), np.abs(f_new[max_ind, r])) 

 

update = max_diff[ind] * scale_new < max_diff_new * scale[ind] 

if np.any(update): 

update, = np.where(update) 

update_ind = ind[update] 

factor[update_ind] = new_factor[update] 

h[update_ind] = h_new[update] 

diff[:, update_ind] = diff_new[:, update] 

scale[update_ind] = scale_new[update] 

max_diff[update_ind] = max_diff_new[update] 

 

diff /= h 

 

factor[max_diff < NUM_JAC_DIFF_SMALL * scale] *= NUM_JAC_FACTOR_INCREASE 

factor[max_diff > NUM_JAC_DIFF_BIG * scale] *= NUM_JAC_FACTOR_DECREASE 

factor = np.maximum(factor, NUM_JAC_MIN_FACTOR) 

 

return diff, factor 

 

 

def _sparse_num_jac(fun, t, y, f, h, factor, y_scale, structure, groups): 

n = y.shape[0] 

n_groups = np.max(groups) + 1 

h_vecs = np.empty((n_groups, n)) 

for group in range(n_groups): 

e = np.equal(group, groups) 

h_vecs[group] = h * e 

h_vecs = h_vecs.T 

 

f_new = fun(t, y[:, None] + h_vecs) 

df = f_new - f[:, None] 

 

i, j, _ = find(structure) 

diff = coo_matrix((df[i, groups[j]], (i, j)), shape=(n, n)).tocsc() 

max_ind = np.array(abs(diff).argmax(axis=0)).ravel() 

r = np.arange(n) 

max_diff = np.asarray(np.abs(diff[max_ind, r])).ravel() 

scale = np.maximum(np.abs(f[max_ind]), 

np.abs(f_new[max_ind, groups[r]])) 

 

diff_too_small = max_diff < NUM_JAC_DIFF_REJECT * scale 

if np.any(diff_too_small): 

ind, = np.nonzero(diff_too_small) 

new_factor = NUM_JAC_FACTOR_INCREASE * factor[ind] 

h_new = (y[ind] + new_factor * y_scale[ind]) - y[ind] 

h_new_all = np.zeros(n) 

h_new_all[ind] = h_new 

 

groups_unique = np.unique(groups[ind]) 

groups_map = np.empty(n_groups, dtype=int) 

h_vecs = np.empty((groups_unique.shape[0], n)) 

for k, group in enumerate(groups_unique): 

e = np.equal(group, groups) 

h_vecs[k] = h_new_all * e 

groups_map[group] = k 

h_vecs = h_vecs.T 

 

f_new = fun(t, y[:, None] + h_vecs) 

df = f_new - f[:, None] 

i, j, _ = find(structure[:, ind]) 

diff_new = coo_matrix((df[i, groups_map[groups[ind[j]]]], 

(i, j)), shape=(n, ind.shape[0])).tocsc() 

 

max_ind_new = np.array(abs(diff_new).argmax(axis=0)).ravel() 

r = np.arange(ind.shape[0]) 

max_diff_new = np.asarray(np.abs(diff_new[max_ind_new, r])).ravel() 

scale_new = np.maximum( 

np.abs(f[max_ind_new]), 

np.abs(f_new[max_ind_new, groups_map[groups[ind]]])) 

 

update = max_diff[ind] * scale_new < max_diff_new * scale[ind] 

if np.any(update): 

update, = np.where(update) 

update_ind = ind[update] 

factor[update_ind] = new_factor[update] 

h[update_ind] = h_new[update] 

diff[:, update_ind] = diff_new[:, update] 

scale[update_ind] = scale_new[update] 

max_diff[update_ind] = max_diff_new[update] 

 

diff.data /= np.repeat(h, np.diff(diff.indptr)) 

 

factor[max_diff < NUM_JAC_DIFF_SMALL * scale] *= NUM_JAC_FACTOR_INCREASE 

factor[max_diff > NUM_JAC_DIFF_BIG * scale] *= NUM_JAC_FACTOR_DECREASE 

factor = np.maximum(factor, NUM_JAC_MIN_FACTOR) 

 

return diff, factor