1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

# Authors: Pearu Peterson, Pauli Virtanen, John Travers 

""" 

First-order ODE integrators. 

 

User-friendly interface to various numerical integrators for solving a 

system of first order ODEs with prescribed initial conditions:: 

 

d y(t)[i] 

--------- = f(t,y(t))[i], 

d t 

 

y(t=0)[i] = y0[i], 

 

where:: 

 

i = 0, ..., len(y0) - 1 

 

class ode 

--------- 

 

A generic interface class to numeric integrators. It has the following 

methods:: 

 

integrator = ode(f, jac=None) 

integrator = integrator.set_integrator(name, **params) 

integrator = integrator.set_initial_value(y0, t0=0.0) 

integrator = integrator.set_f_params(*args) 

integrator = integrator.set_jac_params(*args) 

y1 = integrator.integrate(t1, step=False, relax=False) 

flag = integrator.successful() 

 

class complex_ode 

----------------- 

 

This class has the same generic interface as ode, except it can handle complex 

f, y and Jacobians by transparently translating them into the equivalent 

real valued system. It supports the real valued solvers (i.e not zvode) and is 

an alternative to ode with the zvode solver, sometimes performing better. 

""" 

from __future__ import division, print_function, absolute_import 

 

# XXX: Integrators must have: 

# =========================== 

# cvode - C version of vode and vodpk with many improvements. 

# Get it from http://www.netlib.org/ode/cvode.tar.gz 

# To wrap cvode to Python, one must write extension module by 

# hand. Its interface is too much 'advanced C' that using f2py 

# would be too complicated (or impossible). 

# 

# How to define a new integrator: 

# =============================== 

# 

# class myodeint(IntegratorBase): 

# 

# runner = <odeint function> or None 

# 

# def __init__(self,...): # required 

# <initialize> 

# 

# def reset(self,n,has_jac): # optional 

# # n - the size of the problem (number of equations) 

# # has_jac - whether user has supplied its own routine for Jacobian 

# <allocate memory,initialize further> 

# 

# def run(self,f,jac,y0,t0,t1,f_params,jac_params): # required 

# # this method is called to integrate from t=t0 to t=t1 

# # with initial condition y0. f and jac are user-supplied functions 

# # that define the problem. f_params,jac_params are additional 

# # arguments 

# # to these functions. 

# <calculate y1> 

# if <calculation was unsuccessful>: 

# self.success = 0 

# return t1,y1 

# 

# # In addition, one can define step() and run_relax() methods (they 

# # take the same arguments as run()) if the integrator can support 

# # these features (see IntegratorBase doc strings). 

# 

# if myodeint.runner: 

# IntegratorBase.integrator_classes.append(myodeint) 

 

__all__ = ['ode', 'complex_ode'] 

__version__ = "$Id$" 

__docformat__ = "restructuredtext en" 

 

import re 

import warnings 

 

from numpy import asarray, array, zeros, int32, isscalar, real, imag, vstack 

 

from . import vode as _vode 

from . import _dop 

from . import lsoda as _lsoda 

 

 

# ------------------------------------------------------------------------------ 

# User interface 

# ------------------------------------------------------------------------------ 

 

 

class ode(object): 

""" 

A generic interface class to numeric integrators. 

 

Solve an equation system :math:`y'(t) = f(t,y)` with (optional) ``jac = df/dy``. 

 

*Note*: The first two arguments of ``f(t, y, ...)`` are in the 

opposite order of the arguments in the system definition function used 

by `scipy.integrate.odeint`. 

 

Parameters 

---------- 

f : callable ``f(t, y, *f_args)`` 

Right-hand side of the differential equation. t is a scalar, 

``y.shape == (n,)``. 

``f_args`` is set by calling ``set_f_params(*args)``. 

`f` should return a scalar, array or list (not a tuple). 

jac : callable ``jac(t, y, *jac_args)``, optional 

Jacobian of the right-hand side, ``jac[i,j] = d f[i] / d y[j]``. 

``jac_args`` is set by calling ``set_jac_params(*args)``. 

 

Attributes 

---------- 

t : float 

Current time. 

y : ndarray 

Current variable values. 

 

See also 

-------- 

odeint : an integrator with a simpler interface based on lsoda from ODEPACK 

quad : for finding the area under a curve 

 

Notes 

----- 

Available integrators are listed below. They can be selected using 

the `set_integrator` method. 

 

"vode" 

 

Real-valued Variable-coefficient Ordinary Differential Equation 

solver, with fixed-leading-coefficient implementation. It provides 

implicit Adams method (for non-stiff problems) and a method based on 

backward differentiation formulas (BDF) (for stiff problems). 

 

Source: http://www.netlib.org/ode/vode.f 

 

.. warning:: 

 

This integrator is not re-entrant. You cannot have two `ode` 

instances using the "vode" integrator at the same time. 

 

This integrator accepts the following parameters in `set_integrator` 

method of the `ode` class: 

 

- atol : float or sequence 

absolute tolerance for solution 

- rtol : float or sequence 

relative tolerance for solution 

- lband : None or int 

- uband : None or int 

Jacobian band width, jac[i,j] != 0 for i-lband <= j <= i+uband. 

Setting these requires your jac routine to return the jacobian 

in packed format, jac_packed[i-j+uband, j] = jac[i,j]. The 

dimension of the matrix must be (lband+uband+1, len(y)). 

- method: 'adams' or 'bdf' 

Which solver to use, Adams (non-stiff) or BDF (stiff) 

- with_jacobian : bool 

This option is only considered when the user has not supplied a 

Jacobian function and has not indicated (by setting either band) 

that the Jacobian is banded. In this case, `with_jacobian` specifies 

whether the iteration method of the ODE solver's correction step is 

chord iteration with an internally generated full Jacobian or 

functional iteration with no Jacobian. 

- nsteps : int 

Maximum number of (internally defined) steps allowed during one 

call to the solver. 

- first_step : float 

- min_step : float 

- max_step : float 

Limits for the step sizes used by the integrator. 

- order : int 

Maximum order used by the integrator, 

order <= 12 for Adams, <= 5 for BDF. 

 

"zvode" 

 

Complex-valued Variable-coefficient Ordinary Differential Equation 

solver, with fixed-leading-coefficient implementation. It provides 

implicit Adams method (for non-stiff problems) and a method based on 

backward differentiation formulas (BDF) (for stiff problems). 

 

Source: http://www.netlib.org/ode/zvode.f 

 

.. warning:: 

 

This integrator is not re-entrant. You cannot have two `ode` 

instances using the "zvode" integrator at the same time. 

 

This integrator accepts the same parameters in `set_integrator` 

as the "vode" solver. 

 

.. note:: 

 

When using ZVODE for a stiff system, it should only be used for 

the case in which the function f is analytic, that is, when each f(i) 

is an analytic function of each y(j). Analyticity means that the 

partial derivative df(i)/dy(j) is a unique complex number, and this 

fact is critical in the way ZVODE solves the dense or banded linear 

systems that arise in the stiff case. For a complex stiff ODE system 

in which f is not analytic, ZVODE is likely to have convergence 

failures, and for this problem one should instead use DVODE on the 

equivalent real system (in the real and imaginary parts of y). 

 

"lsoda" 

 

Real-valued Variable-coefficient Ordinary Differential Equation 

solver, with fixed-leading-coefficient implementation. It provides 

automatic method switching between implicit Adams method (for non-stiff 

problems) and a method based on backward differentiation formulas (BDF) 

(for stiff problems). 

 

Source: http://www.netlib.org/odepack 

 

.. warning:: 

 

This integrator is not re-entrant. You cannot have two `ode` 

instances using the "lsoda" integrator at the same time. 

 

This integrator accepts the following parameters in `set_integrator` 

method of the `ode` class: 

 

- atol : float or sequence 

absolute tolerance for solution 

- rtol : float or sequence 

relative tolerance for solution 

- lband : None or int 

- uband : None or int 

Jacobian band width, jac[i,j] != 0 for i-lband <= j <= i+uband. 

Setting these requires your jac routine to return the jacobian 

in packed format, jac_packed[i-j+uband, j] = jac[i,j]. 

- with_jacobian : bool 

*Not used.* 

- nsteps : int 

Maximum number of (internally defined) steps allowed during one 

call to the solver. 

- first_step : float 

- min_step : float 

- max_step : float 

Limits for the step sizes used by the integrator. 

- max_order_ns : int 

Maximum order used in the nonstiff case (default 12). 

- max_order_s : int 

Maximum order used in the stiff case (default 5). 

- max_hnil : int 

Maximum number of messages reporting too small step size (t + h = t) 

(default 0) 

- ixpr : int 

Whether to generate extra printing at method switches (default False). 

 

"dopri5" 

 

This is an explicit runge-kutta method of order (4)5 due to Dormand & 

Prince (with stepsize control and dense output). 

 

Authors: 

 

E. Hairer and G. Wanner 

Universite de Geneve, Dept. de Mathematiques 

CH-1211 Geneve 24, Switzerland 

e-mail: ernst.hairer@math.unige.ch, gerhard.wanner@math.unige.ch 

 

This code is described in [HNW93]_. 

 

This integrator accepts the following parameters in set_integrator() 

method of the ode class: 

 

- atol : float or sequence 

absolute tolerance for solution 

- rtol : float or sequence 

relative tolerance for solution 

- nsteps : int 

Maximum number of (internally defined) steps allowed during one 

call to the solver. 

- first_step : float 

- max_step : float 

- safety : float 

Safety factor on new step selection (default 0.9) 

- ifactor : float 

- dfactor : float 

Maximum factor to increase/decrease step size by in one step 

- beta : float 

Beta parameter for stabilised step size control. 

- verbosity : int 

Switch for printing messages (< 0 for no messages). 

 

"dop853" 

 

This is an explicit runge-kutta method of order 8(5,3) due to Dormand 

& Prince (with stepsize control and dense output). 

 

Options and references the same as "dopri5". 

 

Examples 

-------- 

 

A problem to integrate and the corresponding jacobian: 

 

>>> from scipy.integrate import ode 

>>> 

>>> y0, t0 = [1.0j, 2.0], 0 

>>> 

>>> def f(t, y, arg1): 

... return [1j*arg1*y[0] + y[1], -arg1*y[1]**2] 

>>> def jac(t, y, arg1): 

... return [[1j*arg1, 1], [0, -arg1*2*y[1]]] 

 

The integration: 

 

>>> r = ode(f, jac).set_integrator('zvode', method='bdf') 

>>> r.set_initial_value(y0, t0).set_f_params(2.0).set_jac_params(2.0) 

>>> t1 = 10 

>>> dt = 1 

>>> while r.successful() and r.t < t1: 

... print(r.t+dt, r.integrate(r.t+dt)) 

1 [-0.71038232+0.23749653j 0.40000271+0.j ] 

2.0 [0.19098503-0.52359246j 0.22222356+0.j ] 

3.0 [0.47153208+0.52701229j 0.15384681+0.j ] 

4.0 [-0.61905937+0.30726255j 0.11764744+0.j ] 

5.0 [0.02340997-0.61418799j 0.09523835+0.j ] 

6.0 [0.58643071+0.339819j 0.08000018+0.j ] 

7.0 [-0.52070105+0.44525141j 0.06896565+0.j ] 

8.0 [-0.15986733-0.61234476j 0.06060616+0.j ] 

9.0 [0.64850462+0.15048982j 0.05405414+0.j ] 

10.0 [-0.38404699+0.56382299j 0.04878055+0.j ] 

 

References 

---------- 

.. [HNW93] E. Hairer, S.P. Norsett and G. Wanner, Solving Ordinary 

Differential Equations i. Nonstiff Problems. 2nd edition. 

Springer Series in Computational Mathematics, 

Springer-Verlag (1993) 

 

""" 

 

def __init__(self, f, jac=None): 

self.stiff = 0 

self.f = f 

self.jac = jac 

self.f_params = () 

self.jac_params = () 

self._y = [] 

 

@property 

def y(self): 

return self._y 

 

def set_initial_value(self, y, t=0.0): 

"""Set initial conditions y(t) = y.""" 

if isscalar(y): 

y = [y] 

n_prev = len(self._y) 

if not n_prev: 

self.set_integrator('') # find first available integrator 

self._y = asarray(y, self._integrator.scalar) 

self.t = t 

self._integrator.reset(len(self._y), self.jac is not None) 

return self 

 

def set_integrator(self, name, **integrator_params): 

""" 

Set integrator by name. 

 

Parameters 

---------- 

name : str 

Name of the integrator. 

integrator_params 

Additional parameters for the integrator. 

""" 

integrator = find_integrator(name) 

if integrator is None: 

# FIXME: this really should be raise an exception. Will that break 

# any code? 

warnings.warn('No integrator name match with %r or is not ' 

'available.' % name) 

else: 

self._integrator = integrator(**integrator_params) 

if not len(self._y): 

self.t = 0.0 

self._y = array([0.0], self._integrator.scalar) 

self._integrator.reset(len(self._y), self.jac is not None) 

return self 

 

def integrate(self, t, step=False, relax=False): 

"""Find y=y(t), set y as an initial condition, and return y. 

 

Parameters 

---------- 

t : float 

The endpoint of the integration step. 

step : bool 

If True, and if the integrator supports the step method, 

then perform a single integration step and return. 

This parameter is provided in order to expose internals of 

the implementation, and should not be changed from its default 

value in most cases. 

relax : bool 

If True and if the integrator supports the run_relax method, 

then integrate until t_1 >= t and return. ``relax`` is not 

referenced if ``step=True``. 

This parameter is provided in order to expose internals of 

the implementation, and should not be changed from its default 

value in most cases. 

 

Returns 

------- 

y : float 

The integrated value at t 

""" 

if step and self._integrator.supports_step: 

mth = self._integrator.step 

elif relax and self._integrator.supports_run_relax: 

mth = self._integrator.run_relax 

else: 

mth = self._integrator.run 

 

try: 

self._y, self.t = mth(self.f, self.jac or (lambda: None), 

self._y, self.t, t, 

self.f_params, self.jac_params) 

except SystemError: 

# f2py issue with tuple returns, see ticket 1187. 

raise ValueError('Function to integrate must not return a tuple.') 

 

return self._y 

 

def successful(self): 

"""Check if integration was successful.""" 

try: 

self._integrator 

except AttributeError: 

self.set_integrator('') 

return self._integrator.success == 1 

 

def get_return_code(self): 

"""Extracts the return code for the integration to enable better control 

if the integration fails. 

 

In general, a return code > 0 implies success while a return code < 0 

implies failure. 

 

Notes 

----- 

This section describes possible return codes and their meaning, for available 

integrators that can be selected by `set_integrator` method. 

 

"vode" 

 

=========== ======= 

Return Code Message 

=========== ======= 

2 Integration successful. 

-1 Excess work done on this call. (Perhaps wrong MF.) 

-2 Excess accuracy requested. (Tolerances too small.) 

-3 Illegal input detected. (See printed message.) 

-4 Repeated error test failures. (Check all input.) 

-5 Repeated convergence failures. (Perhaps bad Jacobian 

supplied or wrong choice of MF or tolerances.) 

-6 Error weight became zero during problem. (Solution 

component i vanished, and ATOL or ATOL(i) = 0.) 

=========== ======= 

 

"zvode" 

 

=========== ======= 

Return Code Message 

=========== ======= 

2 Integration successful. 

-1 Excess work done on this call. (Perhaps wrong MF.) 

-2 Excess accuracy requested. (Tolerances too small.) 

-3 Illegal input detected. (See printed message.) 

-4 Repeated error test failures. (Check all input.) 

-5 Repeated convergence failures. (Perhaps bad Jacobian 

supplied or wrong choice of MF or tolerances.) 

-6 Error weight became zero during problem. (Solution 

component i vanished, and ATOL or ATOL(i) = 0.) 

=========== ======= 

 

"dopri5" 

 

=========== ======= 

Return Code Message 

=========== ======= 

1 Integration successful. 

2 Integration successful (interrupted by solout). 

-1 Input is not consistent. 

-2 Larger nsteps is needed. 

-3 Step size becomes too small. 

-4 Problem is probably stiff (interrupted). 

=========== ======= 

 

"dop853" 

 

=========== ======= 

Return Code Message 

=========== ======= 

1 Integration successful. 

2 Integration successful (interrupted by solout). 

-1 Input is not consistent. 

-2 Larger nsteps is needed. 

-3 Step size becomes too small. 

-4 Problem is probably stiff (interrupted). 

=========== ======= 

 

"lsoda" 

 

=========== ======= 

Return Code Message 

=========== ======= 

2 Integration successful. 

-1 Excess work done on this call (perhaps wrong Dfun type). 

-2 Excess accuracy requested (tolerances too small). 

-3 Illegal input detected (internal error). 

-4 Repeated error test failures (internal error). 

-5 Repeated convergence failures (perhaps bad Jacobian or tolerances). 

-6 Error weight became zero during problem. 

-7 Internal workspace insufficient to finish (internal error). 

=========== ======= 

""" 

try: 

self._integrator 

except AttributeError: 

self.set_integrator('') 

return self._integrator.istate 

 

def set_f_params(self, *args): 

"""Set extra parameters for user-supplied function f.""" 

self.f_params = args 

return self 

 

def set_jac_params(self, *args): 

"""Set extra parameters for user-supplied function jac.""" 

self.jac_params = args 

return self 

 

def set_solout(self, solout): 

""" 

Set callable to be called at every successful integration step. 

 

Parameters 

---------- 

solout : callable 

``solout(t, y)`` is called at each internal integrator step, 

t is a scalar providing the current independent position 

y is the current soloution ``y.shape == (n,)`` 

solout should return -1 to stop integration 

otherwise it should return None or 0 

 

""" 

if self._integrator.supports_solout: 

self._integrator.set_solout(solout) 

if self._y is not None: 

self._integrator.reset(len(self._y), self.jac is not None) 

else: 

raise ValueError("selected integrator does not support solout," 

" choose another one") 

 

 

def _transform_banded_jac(bjac): 

""" 

Convert a real matrix of the form (for example) 

 

[0 0 A B] [0 0 0 B] 

[0 0 C D] [0 0 A D] 

[E F G H] to [0 F C H] 

[I J K L] [E J G L] 

[I 0 K 0] 

 

That is, every other column is shifted up one. 

""" 

# Shift every other column. 

newjac = zeros((bjac.shape[0] + 1, bjac.shape[1])) 

newjac[1:, ::2] = bjac[:, ::2] 

newjac[:-1, 1::2] = bjac[:, 1::2] 

return newjac 

 

 

class complex_ode(ode): 

""" 

A wrapper of ode for complex systems. 

 

This functions similarly as `ode`, but re-maps a complex-valued 

equation system to a real-valued one before using the integrators. 

 

Parameters 

---------- 

f : callable ``f(t, y, *f_args)`` 

Rhs of the equation. t is a scalar, ``y.shape == (n,)``. 

``f_args`` is set by calling ``set_f_params(*args)``. 

jac : callable ``jac(t, y, *jac_args)`` 

Jacobian of the rhs, ``jac[i,j] = d f[i] / d y[j]``. 

``jac_args`` is set by calling ``set_f_params(*args)``. 

 

Attributes 

---------- 

t : float 

Current time. 

y : ndarray 

Current variable values. 

 

Examples 

-------- 

For usage examples, see `ode`. 

 

""" 

 

def __init__(self, f, jac=None): 

self.cf = f 

self.cjac = jac 

if jac is None: 

ode.__init__(self, self._wrap, None) 

else: 

ode.__init__(self, self._wrap, self._wrap_jac) 

 

def _wrap(self, t, y, *f_args): 

f = self.cf(*((t, y[::2] + 1j * y[1::2]) + f_args)) 

# self.tmp is a real-valued array containing the interleaved 

# real and imaginary parts of f. 

self.tmp[::2] = real(f) 

self.tmp[1::2] = imag(f) 

return self.tmp 

 

def _wrap_jac(self, t, y, *jac_args): 

# jac is the complex Jacobian computed by the user-defined function. 

jac = self.cjac(*((t, y[::2] + 1j * y[1::2]) + jac_args)) 

 

# jac_tmp is the real version of the complex Jacobian. Each complex 

# entry in jac, say 2+3j, becomes a 2x2 block of the form 

# [2 -3] 

# [3 2] 

jac_tmp = zeros((2 * jac.shape[0], 2 * jac.shape[1])) 

jac_tmp[1::2, 1::2] = jac_tmp[::2, ::2] = real(jac) 

jac_tmp[1::2, ::2] = imag(jac) 

jac_tmp[::2, 1::2] = -jac_tmp[1::2, ::2] 

 

ml = getattr(self._integrator, 'ml', None) 

mu = getattr(self._integrator, 'mu', None) 

if ml is not None or mu is not None: 

# Jacobian is banded. The user's Jacobian function has computed 

# the complex Jacobian in packed format. The corresponding 

# real-valued version has every other column shifted up. 

jac_tmp = _transform_banded_jac(jac_tmp) 

 

return jac_tmp 

 

@property 

def y(self): 

return self._y[::2] + 1j * self._y[1::2] 

 

def set_integrator(self, name, **integrator_params): 

""" 

Set integrator by name. 

 

Parameters 

---------- 

name : str 

Name of the integrator 

integrator_params 

Additional parameters for the integrator. 

""" 

if name == 'zvode': 

raise ValueError("zvode must be used with ode, not complex_ode") 

 

lband = integrator_params.get('lband') 

uband = integrator_params.get('uband') 

if lband is not None or uband is not None: 

# The Jacobian is banded. Override the user-supplied bandwidths 

# (which are for the complex Jacobian) with the bandwidths of 

# the corresponding real-valued Jacobian wrapper of the complex 

# Jacobian. 

integrator_params['lband'] = 2 * (lband or 0) + 1 

integrator_params['uband'] = 2 * (uband or 0) + 1 

 

return ode.set_integrator(self, name, **integrator_params) 

 

def set_initial_value(self, y, t=0.0): 

"""Set initial conditions y(t) = y.""" 

y = asarray(y) 

self.tmp = zeros(y.size * 2, 'float') 

self.tmp[::2] = real(y) 

self.tmp[1::2] = imag(y) 

return ode.set_initial_value(self, self.tmp, t) 

 

def integrate(self, t, step=False, relax=False): 

"""Find y=y(t), set y as an initial condition, and return y. 

 

Parameters 

---------- 

t : float 

The endpoint of the integration step. 

step : bool 

If True, and if the integrator supports the step method, 

then perform a single integration step and return. 

This parameter is provided in order to expose internals of 

the implementation, and should not be changed from its default 

value in most cases. 

relax : bool 

If True and if the integrator supports the run_relax method, 

then integrate until t_1 >= t and return. ``relax`` is not 

referenced if ``step=True``. 

This parameter is provided in order to expose internals of 

the implementation, and should not be changed from its default 

value in most cases. 

 

Returns 

------- 

y : float 

The integrated value at t 

""" 

y = ode.integrate(self, t, step, relax) 

return y[::2] + 1j * y[1::2] 

 

def set_solout(self, solout): 

""" 

Set callable to be called at every successful integration step. 

 

Parameters 

---------- 

solout : callable 

``solout(t, y)`` is called at each internal integrator step, 

t is a scalar providing the current independent position 

y is the current soloution ``y.shape == (n,)`` 

solout should return -1 to stop integration 

otherwise it should return None or 0 

 

""" 

if self._integrator.supports_solout: 

self._integrator.set_solout(solout, complex=True) 

else: 

raise TypeError("selected integrator does not support solouta," 

+ "choose another one") 

 

 

# ------------------------------------------------------------------------------ 

# ODE integrators 

# ------------------------------------------------------------------------------ 

 

def find_integrator(name): 

for cl in IntegratorBase.integrator_classes: 

if re.match(name, cl.__name__, re.I): 

return cl 

return None 

 

 

class IntegratorConcurrencyError(RuntimeError): 

""" 

Failure due to concurrent usage of an integrator that can be used 

only for a single problem at a time. 

 

""" 

 

def __init__(self, name): 

msg = ("Integrator `%s` can be used to solve only a single problem " 

"at a time. If you want to integrate multiple problems, " 

"consider using a different integrator " 

"(see `ode.set_integrator`)") % name 

RuntimeError.__init__(self, msg) 

 

 

class IntegratorBase(object): 

runner = None # runner is None => integrator is not available 

success = None # success==1 if integrator was called successfully 

istate = None # istate > 0 means success, istate < 0 means failure 

supports_run_relax = None 

supports_step = None 

supports_solout = False 

integrator_classes = [] 

scalar = float 

 

def acquire_new_handle(self): 

# Some of the integrators have internal state (ancient 

# Fortran...), and so only one instance can use them at a time. 

# We keep track of this, and fail when concurrent usage is tried. 

self.__class__.active_global_handle += 1 

self.handle = self.__class__.active_global_handle 

 

def check_handle(self): 

if self.handle is not self.__class__.active_global_handle: 

raise IntegratorConcurrencyError(self.__class__.__name__) 

 

def reset(self, n, has_jac): 

"""Prepare integrator for call: allocate memory, set flags, etc. 

n - number of equations. 

has_jac - if user has supplied function for evaluating Jacobian. 

""" 

 

def run(self, f, jac, y0, t0, t1, f_params, jac_params): 

"""Integrate from t=t0 to t=t1 using y0 as an initial condition. 

Return 2-tuple (y1,t1) where y1 is the result and t=t1 

defines the stoppage coordinate of the result. 

""" 

raise NotImplementedError('all integrators must define ' 

'run(f, jac, t0, t1, y0, f_params, jac_params)') 

 

def step(self, f, jac, y0, t0, t1, f_params, jac_params): 

"""Make one integration step and return (y1,t1).""" 

raise NotImplementedError('%s does not support step() method' % 

self.__class__.__name__) 

 

def run_relax(self, f, jac, y0, t0, t1, f_params, jac_params): 

"""Integrate from t=t0 to t>=t1 and return (y1,t).""" 

raise NotImplementedError('%s does not support run_relax() method' % 

self.__class__.__name__) 

 

# XXX: __str__ method for getting visual state of the integrator 

 

 

def _vode_banded_jac_wrapper(jacfunc, ml, jac_params): 

""" 

Wrap a banded Jacobian function with a function that pads 

the Jacobian with `ml` rows of zeros. 

""" 

 

def jac_wrapper(t, y): 

jac = asarray(jacfunc(t, y, *jac_params)) 

padded_jac = vstack((jac, zeros((ml, jac.shape[1])))) 

return padded_jac 

 

return jac_wrapper 

 

 

class vode(IntegratorBase): 

runner = getattr(_vode, 'dvode', None) 

 

messages = {-1: 'Excess work done on this call. (Perhaps wrong MF.)', 

-2: 'Excess accuracy requested. (Tolerances too small.)', 

-3: 'Illegal input detected. (See printed message.)', 

-4: 'Repeated error test failures. (Check all input.)', 

-5: 'Repeated convergence failures. (Perhaps bad' 

' Jacobian supplied or wrong choice of MF or tolerances.)', 

-6: 'Error weight became zero during problem. (Solution' 

' component i vanished, and ATOL or ATOL(i) = 0.)' 

} 

supports_run_relax = 1 

supports_step = 1 

active_global_handle = 0 

 

def __init__(self, 

method='adams', 

with_jacobian=False, 

rtol=1e-6, atol=1e-12, 

lband=None, uband=None, 

order=12, 

nsteps=500, 

max_step=0.0, # corresponds to infinite 

min_step=0.0, 

first_step=0.0, # determined by solver 

): 

 

if re.match(method, r'adams', re.I): 

self.meth = 1 

elif re.match(method, r'bdf', re.I): 

self.meth = 2 

else: 

raise ValueError('Unknown integration method %s' % method) 

self.with_jacobian = with_jacobian 

self.rtol = rtol 

self.atol = atol 

self.mu = uband 

self.ml = lband 

 

self.order = order 

self.nsteps = nsteps 

self.max_step = max_step 

self.min_step = min_step 

self.first_step = first_step 

self.success = 1 

 

self.initialized = False 

 

def _determine_mf_and_set_bands(self, has_jac): 

""" 

Determine the `MF` parameter (Method Flag) for the Fortran subroutine `dvode`. 

 

In the Fortran code, the legal values of `MF` are: 

10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 

-11, -12, -14, -15, -21, -22, -24, -25 

but this python wrapper does not use negative values. 

 

Returns 

 

mf = 10*self.meth + miter 

 

self.meth is the linear multistep method: 

self.meth == 1: method="adams" 

self.meth == 2: method="bdf" 

 

miter is the correction iteration method: 

miter == 0: Functional iteraton; no Jacobian involved. 

miter == 1: Chord iteration with user-supplied full Jacobian 

miter == 2: Chord iteration with internally computed full Jacobian 

miter == 3: Chord iteration with internally computed diagonal Jacobian 

miter == 4: Chord iteration with user-supplied banded Jacobian 

miter == 5: Chord iteration with internally computed banded Jacobian 

 

Side effects: If either self.mu or self.ml is not None and the other is None, 

then the one that is None is set to 0. 

""" 

 

jac_is_banded = self.mu is not None or self.ml is not None 

if jac_is_banded: 

if self.mu is None: 

self.mu = 0 

if self.ml is None: 

self.ml = 0 

 

# has_jac is True if the user provided a jacobian function. 

if has_jac: 

if jac_is_banded: 

miter = 4 

else: 

miter = 1 

else: 

if jac_is_banded: 

if self.ml == self.mu == 0: 

miter = 3 # Chord iteration with internal diagonal Jacobian. 

else: 

miter = 5 # Chord iteration with internal banded Jacobian. 

else: 

# self.with_jacobian is set by the user in the call to ode.set_integrator. 

if self.with_jacobian: 

miter = 2 # Chord iteration with internal full Jacobian. 

else: 

miter = 0 # Functional iteraton; no Jacobian involved. 

 

mf = 10 * self.meth + miter 

return mf 

 

def reset(self, n, has_jac): 

mf = self._determine_mf_and_set_bands(has_jac) 

 

if mf == 10: 

lrw = 20 + 16 * n 

elif mf in [11, 12]: 

lrw = 22 + 16 * n + 2 * n * n 

elif mf == 13: 

lrw = 22 + 17 * n 

elif mf in [14, 15]: 

lrw = 22 + 18 * n + (3 * self.ml + 2 * self.mu) * n 

elif mf == 20: 

lrw = 20 + 9 * n 

elif mf in [21, 22]: 

lrw = 22 + 9 * n + 2 * n * n 

elif mf == 23: 

lrw = 22 + 10 * n 

elif mf in [24, 25]: 

lrw = 22 + 11 * n + (3 * self.ml + 2 * self.mu) * n 

else: 

raise ValueError('Unexpected mf=%s' % mf) 

 

if mf % 10 in [0, 3]: 

liw = 30 

else: 

liw = 30 + n 

 

rwork = zeros((lrw,), float) 

rwork[4] = self.first_step 

rwork[5] = self.max_step 

rwork[6] = self.min_step 

self.rwork = rwork 

 

iwork = zeros((liw,), int32) 

if self.ml is not None: 

iwork[0] = self.ml 

if self.mu is not None: 

iwork[1] = self.mu 

iwork[4] = self.order 

iwork[5] = self.nsteps 

iwork[6] = 2 # mxhnil 

self.iwork = iwork 

 

self.call_args = [self.rtol, self.atol, 1, 1, 

self.rwork, self.iwork, mf] 

self.success = 1 

self.initialized = False 

 

def run(self, f, jac, y0, t0, t1, f_params, jac_params): 

if self.initialized: 

self.check_handle() 

else: 

self.initialized = True 

self.acquire_new_handle() 

 

if self.ml is not None and self.ml > 0: 

# Banded Jacobian. Wrap the user-provided function with one 

# that pads the Jacobian array with the extra `self.ml` rows 

# required by the f2py-generated wrapper. 

jac = _vode_banded_jac_wrapper(jac, self.ml, jac_params) 

 

args = ((f, jac, y0, t0, t1) + tuple(self.call_args) + 

(f_params, jac_params)) 

y1, t, istate = self.runner(*args) 

self.istate = istate 

if istate < 0: 

unexpected_istate_msg = 'Unexpected istate={:d}'.format(istate) 

warnings.warn('{:s}: {:s}'.format(self.__class__.__name__, 

self.messages.get(istate, unexpected_istate_msg))) 

self.success = 0 

else: 

self.call_args[3] = 2 # upgrade istate from 1 to 2 

self.istate = 2 

return y1, t 

 

def step(self, *args): 

itask = self.call_args[2] 

self.call_args[2] = 2 

r = self.run(*args) 

self.call_args[2] = itask 

return r 

 

def run_relax(self, *args): 

itask = self.call_args[2] 

self.call_args[2] = 3 

r = self.run(*args) 

self.call_args[2] = itask 

return r 

 

 

if vode.runner is not None: 

IntegratorBase.integrator_classes.append(vode) 

 

 

class zvode(vode): 

runner = getattr(_vode, 'zvode', None) 

 

supports_run_relax = 1 

supports_step = 1 

scalar = complex 

active_global_handle = 0 

 

def reset(self, n, has_jac): 

mf = self._determine_mf_and_set_bands(has_jac) 

 

if mf in (10,): 

lzw = 15 * n 

elif mf in (11, 12): 

lzw = 15 * n + 2 * n ** 2 

elif mf in (-11, -12): 

lzw = 15 * n + n ** 2 

elif mf in (13,): 

lzw = 16 * n 

elif mf in (14, 15): 

lzw = 17 * n + (3 * self.ml + 2 * self.mu) * n 

elif mf in (-14, -15): 

lzw = 16 * n + (2 * self.ml + self.mu) * n 

elif mf in (20,): 

lzw = 8 * n 

elif mf in (21, 22): 

lzw = 8 * n + 2 * n ** 2 

elif mf in (-21, -22): 

lzw = 8 * n + n ** 2 

elif mf in (23,): 

lzw = 9 * n 

elif mf in (24, 25): 

lzw = 10 * n + (3 * self.ml + 2 * self.mu) * n 

elif mf in (-24, -25): 

lzw = 9 * n + (2 * self.ml + self.mu) * n 

 

lrw = 20 + n 

 

if mf % 10 in (0, 3): 

liw = 30 

else: 

liw = 30 + n 

 

zwork = zeros((lzw,), complex) 

self.zwork = zwork 

 

rwork = zeros((lrw,), float) 

rwork[4] = self.first_step 

rwork[5] = self.max_step 

rwork[6] = self.min_step 

self.rwork = rwork 

 

iwork = zeros((liw,), int32) 

if self.ml is not None: 

iwork[0] = self.ml 

if self.mu is not None: 

iwork[1] = self.mu 

iwork[4] = self.order 

iwork[5] = self.nsteps 

iwork[6] = 2 # mxhnil 

self.iwork = iwork 

 

self.call_args = [self.rtol, self.atol, 1, 1, 

self.zwork, self.rwork, self.iwork, mf] 

self.success = 1 

self.initialized = False 

 

 

if zvode.runner is not None: 

IntegratorBase.integrator_classes.append(zvode) 

 

 

class dopri5(IntegratorBase): 

runner = getattr(_dop, 'dopri5', None) 

name = 'dopri5' 

supports_solout = True 

 

messages = {1: 'computation successful', 

2: 'comput. successful (interrupted by solout)', 

-1: 'input is not consistent', 

-2: 'larger nsteps is needed', 

-3: 'step size becomes too small', 

-4: 'problem is probably stiff (interrupted)', 

} 

 

def __init__(self, 

rtol=1e-6, atol=1e-12, 

nsteps=500, 

max_step=0.0, 

first_step=0.0, # determined by solver 

safety=0.9, 

ifactor=10.0, 

dfactor=0.2, 

beta=0.0, 

method=None, 

verbosity=-1, # no messages if negative 

): 

self.rtol = rtol 

self.atol = atol 

self.nsteps = nsteps 

self.max_step = max_step 

self.first_step = first_step 

self.safety = safety 

self.ifactor = ifactor 

self.dfactor = dfactor 

self.beta = beta 

self.verbosity = verbosity 

self.success = 1 

self.set_solout(None) 

 

def set_solout(self, solout, complex=False): 

self.solout = solout 

self.solout_cmplx = complex 

if solout is None: 

self.iout = 0 

else: 

self.iout = 1 

 

def reset(self, n, has_jac): 

work = zeros((8 * n + 21,), float) 

work[1] = self.safety 

work[2] = self.dfactor 

work[3] = self.ifactor 

work[4] = self.beta 

work[5] = self.max_step 

work[6] = self.first_step 

self.work = work 

iwork = zeros((21,), int32) 

iwork[0] = self.nsteps 

iwork[2] = self.verbosity 

self.iwork = iwork 

self.call_args = [self.rtol, self.atol, self._solout, 

self.iout, self.work, self.iwork] 

self.success = 1 

 

def run(self, f, jac, y0, t0, t1, f_params, jac_params): 

x, y, iwork, istate = self.runner(*((f, t0, y0, t1) + 

tuple(self.call_args) + (f_params,))) 

self.istate = istate 

if istate < 0: 

unexpected_istate_msg = 'Unexpected istate={:d}'.format(istate) 

warnings.warn('{:s}: {:s}'.format(self.__class__.__name__, 

self.messages.get(istate, unexpected_istate_msg))) 

self.success = 0 

return y, x 

 

def _solout(self, nr, xold, x, y, nd, icomp, con): 

if self.solout is not None: 

if self.solout_cmplx: 

y = y[::2] + 1j * y[1::2] 

return self.solout(x, y) 

else: 

return 1 

 

 

if dopri5.runner is not None: 

IntegratorBase.integrator_classes.append(dopri5) 

 

 

class dop853(dopri5): 

runner = getattr(_dop, 'dop853', None) 

name = 'dop853' 

 

def __init__(self, 

rtol=1e-6, atol=1e-12, 

nsteps=500, 

max_step=0.0, 

first_step=0.0, # determined by solver 

safety=0.9, 

ifactor=6.0, 

dfactor=0.3, 

beta=0.0, 

method=None, 

verbosity=-1, # no messages if negative 

): 

super(self.__class__, self).__init__(rtol, atol, nsteps, max_step, 

first_step, safety, ifactor, 

dfactor, beta, method, 

verbosity) 

 

def reset(self, n, has_jac): 

work = zeros((11 * n + 21,), float) 

work[1] = self.safety 

work[2] = self.dfactor 

work[3] = self.ifactor 

work[4] = self.beta 

work[5] = self.max_step 

work[6] = self.first_step 

self.work = work 

iwork = zeros((21,), int32) 

iwork[0] = self.nsteps 

iwork[2] = self.verbosity 

self.iwork = iwork 

self.call_args = [self.rtol, self.atol, self._solout, 

self.iout, self.work, self.iwork] 

self.success = 1 

 

 

if dop853.runner is not None: 

IntegratorBase.integrator_classes.append(dop853) 

 

 

class lsoda(IntegratorBase): 

runner = getattr(_lsoda, 'lsoda', None) 

active_global_handle = 0 

 

messages = { 

2: "Integration successful.", 

-1: "Excess work done on this call (perhaps wrong Dfun type).", 

-2: "Excess accuracy requested (tolerances too small).", 

-3: "Illegal input detected (internal error).", 

-4: "Repeated error test failures (internal error).", 

-5: "Repeated convergence failures (perhaps bad Jacobian or tolerances).", 

-6: "Error weight became zero during problem.", 

-7: "Internal workspace insufficient to finish (internal error)." 

} 

 

def __init__(self, 

with_jacobian=False, 

rtol=1e-6, atol=1e-12, 

lband=None, uband=None, 

nsteps=500, 

max_step=0.0, # corresponds to infinite 

min_step=0.0, 

first_step=0.0, # determined by solver 

ixpr=0, 

max_hnil=0, 

max_order_ns=12, 

max_order_s=5, 

method=None 

): 

 

self.with_jacobian = with_jacobian 

self.rtol = rtol 

self.atol = atol 

self.mu = uband 

self.ml = lband 

 

self.max_order_ns = max_order_ns 

self.max_order_s = max_order_s 

self.nsteps = nsteps 

self.max_step = max_step 

self.min_step = min_step 

self.first_step = first_step 

self.ixpr = ixpr 

self.max_hnil = max_hnil 

self.success = 1 

 

self.initialized = False 

 

def reset(self, n, has_jac): 

# Calculate parameters for Fortran subroutine dvode. 

if has_jac: 

if self.mu is None and self.ml is None: 

jt = 1 

else: 

if self.mu is None: 

self.mu = 0 

if self.ml is None: 

self.ml = 0 

jt = 4 

else: 

if self.mu is None and self.ml is None: 

jt = 2 

else: 

if self.mu is None: 

self.mu = 0 

if self.ml is None: 

self.ml = 0 

jt = 5 

lrn = 20 + (self.max_order_ns + 4) * n 

if jt in [1, 2]: 

lrs = 22 + (self.max_order_s + 4) * n + n * n 

elif jt in [4, 5]: 

lrs = 22 + (self.max_order_s + 5 + 2 * self.ml + self.mu) * n 

else: 

raise ValueError('Unexpected jt=%s' % jt) 

lrw = max(lrn, lrs) 

liw = 20 + n 

rwork = zeros((lrw,), float) 

rwork[4] = self.first_step 

rwork[5] = self.max_step 

rwork[6] = self.min_step 

self.rwork = rwork 

iwork = zeros((liw,), int32) 

if self.ml is not None: 

iwork[0] = self.ml 

if self.mu is not None: 

iwork[1] = self.mu 

iwork[4] = self.ixpr 

iwork[5] = self.nsteps 

iwork[6] = self.max_hnil 

iwork[7] = self.max_order_ns 

iwork[8] = self.max_order_s 

self.iwork = iwork 

self.call_args = [self.rtol, self.atol, 1, 1, 

self.rwork, self.iwork, jt] 

self.success = 1 

self.initialized = False 

 

def run(self, f, jac, y0, t0, t1, f_params, jac_params): 

if self.initialized: 

self.check_handle() 

else: 

self.initialized = True 

self.acquire_new_handle() 

args = [f, y0, t0, t1] + self.call_args[:-1] + \ 

[jac, self.call_args[-1], f_params, 0, jac_params] 

y1, t, istate = self.runner(*args) 

self.istate = istate 

if istate < 0: 

unexpected_istate_msg = 'Unexpected istate={:d}'.format(istate) 

warnings.warn('{:s}: {:s}'.format(self.__class__.__name__, 

self.messages.get(istate, unexpected_istate_msg))) 

self.success = 0 

else: 

self.call_args[3] = 2 # upgrade istate from 1 to 2 

self.istate = 2 

return y1, t 

 

def step(self, *args): 

itask = self.call_args[2] 

self.call_args[2] = 2 

r = self.run(*args) 

self.call_args[2] = itask 

return r 

 

def run_relax(self, *args): 

itask = self.call_args[2] 

self.call_args[2] = 3 

r = self.run(*args) 

self.call_args[2] = itask 

return r 

 

 

if lsoda.runner: 

IntegratorBase.integrator_classes.append(lsoda)