1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

from __future__ import division, print_function, absolute_import 

 

import numpy as np 

import math 

import warnings 

 

# trapz is a public function for scipy.integrate, 

# even though it's actually a numpy function. 

from numpy import trapz 

from scipy.special import roots_legendre 

from scipy.special import gammaln 

from scipy._lib.six import xrange 

 

__all__ = ['fixed_quad', 'quadrature', 'romberg', 'trapz', 'simps', 'romb', 

'cumtrapz', 'newton_cotes'] 

 

 

class AccuracyWarning(Warning): 

pass 

 

 

def _cached_roots_legendre(n): 

""" 

Cache roots_legendre results to speed up calls of the fixed_quad 

function. 

""" 

if n in _cached_roots_legendre.cache: 

return _cached_roots_legendre.cache[n] 

 

_cached_roots_legendre.cache[n] = roots_legendre(n) 

return _cached_roots_legendre.cache[n] 

 

 

_cached_roots_legendre.cache = dict() 

 

 

def fixed_quad(func, a, b, args=(), n=5): 

""" 

Compute a definite integral using fixed-order Gaussian quadrature. 

 

Integrate `func` from `a` to `b` using Gaussian quadrature of 

order `n`. 

 

Parameters 

---------- 

func : callable 

A Python function or method to integrate (must accept vector inputs). 

If integrating a vector-valued function, the returned array must have 

shape ``(..., len(x))``. 

a : float 

Lower limit of integration. 

b : float 

Upper limit of integration. 

args : tuple, optional 

Extra arguments to pass to function, if any. 

n : int, optional 

Order of quadrature integration. Default is 5. 

 

Returns 

------- 

val : float 

Gaussian quadrature approximation to the integral 

none : None 

Statically returned value of None 

 

 

See Also 

-------- 

quad : adaptive quadrature using QUADPACK 

dblquad : double integrals 

tplquad : triple integrals 

romberg : adaptive Romberg quadrature 

quadrature : adaptive Gaussian quadrature 

romb : integrators for sampled data 

simps : integrators for sampled data 

cumtrapz : cumulative integration for sampled data 

ode : ODE integrator 

odeint : ODE integrator 

 

""" 

x, w = _cached_roots_legendre(n) 

x = np.real(x) 

if np.isinf(a) or np.isinf(b): 

raise ValueError("Gaussian quadrature is only available for " 

"finite limits.") 

y = (b-a)*(x+1)/2.0 + a 

return (b-a)/2.0 * np.sum(w*func(y, *args), axis=-1), None 

 

 

def vectorize1(func, args=(), vec_func=False): 

"""Vectorize the call to a function. 

 

This is an internal utility function used by `romberg` and 

`quadrature` to create a vectorized version of a function. 

 

If `vec_func` is True, the function `func` is assumed to take vector 

arguments. 

 

Parameters 

---------- 

func : callable 

User defined function. 

args : tuple, optional 

Extra arguments for the function. 

vec_func : bool, optional 

True if the function func takes vector arguments. 

 

Returns 

------- 

vfunc : callable 

A function that will take a vector argument and return the 

result. 

 

""" 

if vec_func: 

def vfunc(x): 

return func(x, *args) 

else: 

def vfunc(x): 

if np.isscalar(x): 

return func(x, *args) 

x = np.asarray(x) 

# call with first point to get output type 

y0 = func(x[0], *args) 

n = len(x) 

dtype = getattr(y0, 'dtype', type(y0)) 

output = np.empty((n,), dtype=dtype) 

output[0] = y0 

for i in xrange(1, n): 

output[i] = func(x[i], *args) 

return output 

return vfunc 

 

 

def quadrature(func, a, b, args=(), tol=1.49e-8, rtol=1.49e-8, maxiter=50, 

vec_func=True, miniter=1): 

""" 

Compute a definite integral using fixed-tolerance Gaussian quadrature. 

 

Integrate `func` from `a` to `b` using Gaussian quadrature 

with absolute tolerance `tol`. 

 

Parameters 

---------- 

func : function 

A Python function or method to integrate. 

a : float 

Lower limit of integration. 

b : float 

Upper limit of integration. 

args : tuple, optional 

Extra arguments to pass to function. 

tol, rtol : float, optional 

Iteration stops when error between last two iterates is less than 

`tol` OR the relative change is less than `rtol`. 

maxiter : int, optional 

Maximum order of Gaussian quadrature. 

vec_func : bool, optional 

True or False if func handles arrays as arguments (is 

a "vector" function). Default is True. 

miniter : int, optional 

Minimum order of Gaussian quadrature. 

 

Returns 

------- 

val : float 

Gaussian quadrature approximation (within tolerance) to integral. 

err : float 

Difference between last two estimates of the integral. 

 

See also 

-------- 

romberg: adaptive Romberg quadrature 

fixed_quad: fixed-order Gaussian quadrature 

quad: adaptive quadrature using QUADPACK 

dblquad: double integrals 

tplquad: triple integrals 

romb: integrator for sampled data 

simps: integrator for sampled data 

cumtrapz: cumulative integration for sampled data 

ode: ODE integrator 

odeint: ODE integrator 

 

""" 

if not isinstance(args, tuple): 

args = (args,) 

vfunc = vectorize1(func, args, vec_func=vec_func) 

val = np.inf 

err = np.inf 

maxiter = max(miniter+1, maxiter) 

for n in xrange(miniter, maxiter+1): 

newval = fixed_quad(vfunc, a, b, (), n)[0] 

err = abs(newval-val) 

val = newval 

 

if err < tol or err < rtol*abs(val): 

break 

else: 

warnings.warn( 

"maxiter (%d) exceeded. Latest difference = %e" % (maxiter, err), 

AccuracyWarning) 

return val, err 

 

 

def tupleset(t, i, value): 

l = list(t) 

l[i] = value 

return tuple(l) 

 

 

def cumtrapz(y, x=None, dx=1.0, axis=-1, initial=None): 

""" 

Cumulatively integrate y(x) using the composite trapezoidal rule. 

 

Parameters 

---------- 

y : array_like 

Values to integrate. 

x : array_like, optional 

The coordinate to integrate along. If None (default), use spacing `dx` 

between consecutive elements in `y`. 

dx : float, optional 

Spacing between elements of `y`. Only used if `x` is None. 

axis : int, optional 

Specifies the axis to cumulate. Default is -1 (last axis). 

initial : scalar, optional 

If given, insert this value at the beginning of the returned result. 

Typically this value should be 0. Default is None, which means no 

value at ``x[0]`` is returned and `res` has one element less than `y` 

along the axis of integration. 

 

Returns 

------- 

res : ndarray 

The result of cumulative integration of `y` along `axis`. 

If `initial` is None, the shape is such that the axis of integration 

has one less value than `y`. If `initial` is given, the shape is equal 

to that of `y`. 

 

See Also 

-------- 

numpy.cumsum, numpy.cumprod 

quad: adaptive quadrature using QUADPACK 

romberg: adaptive Romberg quadrature 

quadrature: adaptive Gaussian quadrature 

fixed_quad: fixed-order Gaussian quadrature 

dblquad: double integrals 

tplquad: triple integrals 

romb: integrators for sampled data 

ode: ODE integrators 

odeint: ODE integrators 

 

Examples 

-------- 

>>> from scipy import integrate 

>>> import matplotlib.pyplot as plt 

 

>>> x = np.linspace(-2, 2, num=20) 

>>> y = x 

>>> y_int = integrate.cumtrapz(y, x, initial=0) 

>>> plt.plot(x, y_int, 'ro', x, y[0] + 0.5 * x**2, 'b-') 

>>> plt.show() 

 

""" 

y = np.asarray(y) 

if x is None: 

d = dx 

else: 

x = np.asarray(x) 

if x.ndim == 1: 

d = np.diff(x) 

# reshape to correct shape 

shape = [1] * y.ndim 

shape[axis] = -1 

d = d.reshape(shape) 

elif len(x.shape) != len(y.shape): 

raise ValueError("If given, shape of x must be 1-d or the " 

"same as y.") 

else: 

d = np.diff(x, axis=axis) 

 

if d.shape[axis] != y.shape[axis] - 1: 

raise ValueError("If given, length of x along axis must be the " 

"same as y.") 

 

nd = len(y.shape) 

slice1 = tupleset((slice(None),)*nd, axis, slice(1, None)) 

slice2 = tupleset((slice(None),)*nd, axis, slice(None, -1)) 

res = np.cumsum(d * (y[slice1] + y[slice2]) / 2.0, axis=axis) 

 

if initial is not None: 

if not np.isscalar(initial): 

raise ValueError("`initial` parameter should be a scalar.") 

 

shape = list(res.shape) 

shape[axis] = 1 

res = np.concatenate([np.ones(shape, dtype=res.dtype) * initial, res], 

axis=axis) 

 

return res 

 

 

def _basic_simps(y, start, stop, x, dx, axis): 

nd = len(y.shape) 

if start is None: 

start = 0 

step = 2 

slice_all = (slice(None),)*nd 

slice0 = tupleset(slice_all, axis, slice(start, stop, step)) 

slice1 = tupleset(slice_all, axis, slice(start+1, stop+1, step)) 

slice2 = tupleset(slice_all, axis, slice(start+2, stop+2, step)) 

 

if x is None: # Even spaced Simpson's rule. 

result = np.sum(dx/3.0 * (y[slice0]+4*y[slice1]+y[slice2]), 

axis=axis) 

else: 

# Account for possibly different spacings. 

# Simpson's rule changes a bit. 

h = np.diff(x, axis=axis) 

sl0 = tupleset(slice_all, axis, slice(start, stop, step)) 

sl1 = tupleset(slice_all, axis, slice(start+1, stop+1, step)) 

h0 = h[sl0] 

h1 = h[sl1] 

hsum = h0 + h1 

hprod = h0 * h1 

h0divh1 = h0 / h1 

tmp = hsum/6.0 * (y[slice0]*(2-1.0/h0divh1) + 

y[slice1]*hsum*hsum/hprod + 

y[slice2]*(2-h0divh1)) 

result = np.sum(tmp, axis=axis) 

return result 

 

 

def simps(y, x=None, dx=1, axis=-1, even='avg'): 

""" 

Integrate y(x) using samples along the given axis and the composite 

Simpson's rule. If x is None, spacing of dx is assumed. 

 

If there are an even number of samples, N, then there are an odd 

number of intervals (N-1), but Simpson's rule requires an even number 

of intervals. The parameter 'even' controls how this is handled. 

 

Parameters 

---------- 

y : array_like 

Array to be integrated. 

x : array_like, optional 

If given, the points at which `y` is sampled. 

dx : int, optional 

Spacing of integration points along axis of `y`. Only used when 

`x` is None. Default is 1. 

axis : int, optional 

Axis along which to integrate. Default is the last axis. 

even : str {'avg', 'first', 'last'}, optional 

'avg' : Average two results:1) use the first N-2 intervals with 

a trapezoidal rule on the last interval and 2) use the last 

N-2 intervals with a trapezoidal rule on the first interval. 

 

'first' : Use Simpson's rule for the first N-2 intervals with 

a trapezoidal rule on the last interval. 

 

'last' : Use Simpson's rule for the last N-2 intervals with a 

trapezoidal rule on the first interval. 

 

See Also 

-------- 

quad: adaptive quadrature using QUADPACK 

romberg: adaptive Romberg quadrature 

quadrature: adaptive Gaussian quadrature 

fixed_quad: fixed-order Gaussian quadrature 

dblquad: double integrals 

tplquad: triple integrals 

romb: integrators for sampled data 

cumtrapz: cumulative integration for sampled data 

ode: ODE integrators 

odeint: ODE integrators 

 

Notes 

----- 

For an odd number of samples that are equally spaced the result is 

exact if the function is a polynomial of order 3 or less. If 

the samples are not equally spaced, then the result is exact only 

if the function is a polynomial of order 2 or less. 

 

Examples 

-------- 

>>> from scipy import integrate 

>>> x = np.arange(0, 10) 

>>> y = np.arange(0, 10) 

 

>>> integrate.simps(y, x) 

40.5 

 

>>> y = np.power(x, 3) 

>>> integrate.simps(y, x) 

1642.5 

>>> integrate.quad(lambda x: x**3, 0, 9)[0] 

1640.25 

 

>>> integrate.simps(y, x, even='first') 

1644.5 

 

""" 

y = np.asarray(y) 

nd = len(y.shape) 

N = y.shape[axis] 

last_dx = dx 

first_dx = dx 

returnshape = 0 

if x is not None: 

x = np.asarray(x) 

if len(x.shape) == 1: 

shapex = [1] * nd 

shapex[axis] = x.shape[0] 

saveshape = x.shape 

returnshape = 1 

x = x.reshape(tuple(shapex)) 

elif len(x.shape) != len(y.shape): 

raise ValueError("If given, shape of x must be 1-d or the " 

"same as y.") 

if x.shape[axis] != N: 

raise ValueError("If given, length of x along axis must be the " 

"same as y.") 

if N % 2 == 0: 

val = 0.0 

result = 0.0 

slice1 = (slice(None),)*nd 

slice2 = (slice(None),)*nd 

if even not in ['avg', 'last', 'first']: 

raise ValueError("Parameter 'even' must be " 

"'avg', 'last', or 'first'.") 

# Compute using Simpson's rule on first intervals 

if even in ['avg', 'first']: 

slice1 = tupleset(slice1, axis, -1) 

slice2 = tupleset(slice2, axis, -2) 

if x is not None: 

last_dx = x[slice1] - x[slice2] 

val += 0.5*last_dx*(y[slice1]+y[slice2]) 

result = _basic_simps(y, 0, N-3, x, dx, axis) 

# Compute using Simpson's rule on last set of intervals 

if even in ['avg', 'last']: 

slice1 = tupleset(slice1, axis, 0) 

slice2 = tupleset(slice2, axis, 1) 

if x is not None: 

first_dx = x[tuple(slice2)] - x[tuple(slice1)] 

val += 0.5*first_dx*(y[slice2]+y[slice1]) 

result += _basic_simps(y, 1, N-2, x, dx, axis) 

if even == 'avg': 

val /= 2.0 

result /= 2.0 

result = result + val 

else: 

result = _basic_simps(y, 0, N-2, x, dx, axis) 

if returnshape: 

x = x.reshape(saveshape) 

return result 

 

 

def romb(y, dx=1.0, axis=-1, show=False): 

""" 

Romberg integration using samples of a function. 

 

Parameters 

---------- 

y : array_like 

A vector of ``2**k + 1`` equally-spaced samples of a function. 

dx : float, optional 

The sample spacing. Default is 1. 

axis : int, optional 

The axis along which to integrate. Default is -1 (last axis). 

show : bool, optional 

When `y` is a single 1-D array, then if this argument is True 

print the table showing Richardson extrapolation from the 

samples. Default is False. 

 

Returns 

------- 

romb : ndarray 

The integrated result for `axis`. 

 

See also 

-------- 

quad : adaptive quadrature using QUADPACK 

romberg : adaptive Romberg quadrature 

quadrature : adaptive Gaussian quadrature 

fixed_quad : fixed-order Gaussian quadrature 

dblquad : double integrals 

tplquad : triple integrals 

simps : integrators for sampled data 

cumtrapz : cumulative integration for sampled data 

ode : ODE integrators 

odeint : ODE integrators 

 

Examples 

-------- 

>>> from scipy import integrate 

>>> x = np.arange(10, 14.25, 0.25) 

>>> y = np.arange(3, 12) 

 

>>> integrate.romb(y) 

56.0 

 

>>> y = np.sin(np.power(x, 2.5)) 

>>> integrate.romb(y) 

-0.742561336672229 

 

>>> integrate.romb(y, show=True) 

Richardson Extrapolation Table for Romberg Integration  

==================================================================== 

-0.81576  

4.63862 6.45674  

-1.10581 -3.02062 -3.65245  

-2.57379 -3.06311 -3.06595 -3.05664  

-1.34093 -0.92997 -0.78776 -0.75160 -0.74256  

==================================================================== 

-0.742561336672229 

""" 

y = np.asarray(y) 

nd = len(y.shape) 

Nsamps = y.shape[axis] 

Ninterv = Nsamps-1 

n = 1 

k = 0 

while n < Ninterv: 

n <<= 1 

k += 1 

if n != Ninterv: 

raise ValueError("Number of samples must be one plus a " 

"non-negative power of 2.") 

 

R = {} 

slice_all = (slice(None),) * nd 

slice0 = tupleset(slice_all, axis, 0) 

slicem1 = tupleset(slice_all, axis, -1) 

h = Ninterv * np.asarray(dx, dtype=float) 

R[(0, 0)] = (y[slice0] + y[slicem1])/2.0*h 

slice_R = slice_all 

start = stop = step = Ninterv 

for i in xrange(1, k+1): 

start >>= 1 

slice_R = tupleset(slice_R, axis, slice(start, stop, step)) 

step >>= 1 

R[(i, 0)] = 0.5*(R[(i-1, 0)] + h*y[slice_R].sum(axis=axis)) 

for j in xrange(1, i+1): 

prev = R[(i, j-1)] 

R[(i, j)] = prev + (prev-R[(i-1, j-1)]) / ((1 << (2*j))-1) 

h /= 2.0 

 

if show: 

if not np.isscalar(R[(0, 0)]): 

print("*** Printing table only supported for integrals" + 

" of a single data set.") 

else: 

try: 

precis = show[0] 

except (TypeError, IndexError): 

precis = 5 

try: 

width = show[1] 

except (TypeError, IndexError): 

width = 8 

formstr = "%%%d.%df" % (width, precis) 

 

title = "Richardson Extrapolation Table for Romberg Integration" 

print("", title.center(68), "=" * 68, sep="\n", end="\n") 

for i in xrange(k+1): 

for j in xrange(i+1): 

print(formstr % R[(i, j)], end=" ") 

print() 

print("=" * 68) 

print() 

 

return R[(k, k)] 

 

# Romberg quadratures for numeric integration. 

# 

# Written by Scott M. Ransom <ransom@cfa.harvard.edu> 

# last revision: 14 Nov 98 

# 

# Cosmetic changes by Konrad Hinsen <hinsen@cnrs-orleans.fr> 

# last revision: 1999-7-21 

# 

# Adapted to scipy by Travis Oliphant <oliphant.travis@ieee.org> 

# last revision: Dec 2001 

 

 

def _difftrap(function, interval, numtraps): 

""" 

Perform part of the trapezoidal rule to integrate a function. 

Assume that we had called difftrap with all lower powers-of-2 

starting with 1. Calling difftrap only returns the summation 

of the new ordinates. It does _not_ multiply by the width 

of the trapezoids. This must be performed by the caller. 

'function' is the function to evaluate (must accept vector arguments). 

'interval' is a sequence with lower and upper limits 

of integration. 

'numtraps' is the number of trapezoids to use (must be a 

power-of-2). 

""" 

if numtraps <= 0: 

raise ValueError("numtraps must be > 0 in difftrap().") 

elif numtraps == 1: 

return 0.5*(function(interval[0])+function(interval[1])) 

else: 

numtosum = numtraps/2 

h = float(interval[1]-interval[0])/numtosum 

lox = interval[0] + 0.5 * h 

points = lox + h * np.arange(numtosum) 

s = np.sum(function(points), axis=0) 

return s 

 

 

def _romberg_diff(b, c, k): 

""" 

Compute the differences for the Romberg quadrature corrections. 

See Forman Acton's "Real Computing Made Real," p 143. 

""" 

tmp = 4.0**k 

return (tmp * c - b)/(tmp - 1.0) 

 

 

def _printresmat(function, interval, resmat): 

# Print the Romberg result matrix. 

i = j = 0 

print('Romberg integration of', repr(function), end=' ') 

print('from', interval) 

print('') 

print('%6s %9s %9s' % ('Steps', 'StepSize', 'Results')) 

for i in xrange(len(resmat)): 

print('%6d %9f' % (2**i, (interval[1]-interval[0])/(2.**i)), end=' ') 

for j in xrange(i+1): 

print('%9f' % (resmat[i][j]), end=' ') 

print('') 

print('') 

print('The final result is', resmat[i][j], end=' ') 

print('after', 2**(len(resmat)-1)+1, 'function evaluations.') 

 

 

def romberg(function, a, b, args=(), tol=1.48e-8, rtol=1.48e-8, show=False, 

divmax=10, vec_func=False): 

""" 

Romberg integration of a callable function or method. 

 

Returns the integral of `function` (a function of one variable) 

over the interval (`a`, `b`). 

 

If `show` is 1, the triangular array of the intermediate results 

will be printed. If `vec_func` is True (default is False), then 

`function` is assumed to support vector arguments. 

 

Parameters 

---------- 

function : callable 

Function to be integrated. 

a : float 

Lower limit of integration. 

b : float 

Upper limit of integration. 

 

Returns 

------- 

results : float 

Result of the integration. 

 

Other Parameters 

---------------- 

args : tuple, optional 

Extra arguments to pass to function. Each element of `args` will 

be passed as a single argument to `func`. Default is to pass no 

extra arguments. 

tol, rtol : float, optional 

The desired absolute and relative tolerances. Defaults are 1.48e-8. 

show : bool, optional 

Whether to print the results. Default is False. 

divmax : int, optional 

Maximum order of extrapolation. Default is 10. 

vec_func : bool, optional 

Whether `func` handles arrays as arguments (i.e whether it is a 

"vector" function). Default is False. 

 

See Also 

-------- 

fixed_quad : Fixed-order Gaussian quadrature. 

quad : Adaptive quadrature using QUADPACK. 

dblquad : Double integrals. 

tplquad : Triple integrals. 

romb : Integrators for sampled data. 

simps : Integrators for sampled data. 

cumtrapz : Cumulative integration for sampled data. 

ode : ODE integrator. 

odeint : ODE integrator. 

 

References 

---------- 

.. [1] 'Romberg's method' http://en.wikipedia.org/wiki/Romberg%27s_method 

 

Examples 

-------- 

Integrate a gaussian from 0 to 1 and compare to the error function. 

 

>>> from scipy import integrate 

>>> from scipy.special import erf 

>>> gaussian = lambda x: 1/np.sqrt(np.pi) * np.exp(-x**2) 

>>> result = integrate.romberg(gaussian, 0, 1, show=True) 

Romberg integration of <function vfunc at ...> from [0, 1] 

 

:: 

 

Steps StepSize Results 

1 1.000000 0.385872 

2 0.500000 0.412631 0.421551 

4 0.250000 0.419184 0.421368 0.421356 

8 0.125000 0.420810 0.421352 0.421350 0.421350 

16 0.062500 0.421215 0.421350 0.421350 0.421350 0.421350 

32 0.031250 0.421317 0.421350 0.421350 0.421350 0.421350 0.421350 

 

The final result is 0.421350396475 after 33 function evaluations. 

 

>>> print("%g %g" % (2*result, erf(1))) 

0.842701 0.842701 

 

""" 

if np.isinf(a) or np.isinf(b): 

raise ValueError("Romberg integration only available " 

"for finite limits.") 

vfunc = vectorize1(function, args, vec_func=vec_func) 

n = 1 

interval = [a, b] 

intrange = b - a 

ordsum = _difftrap(vfunc, interval, n) 

result = intrange * ordsum 

resmat = [[result]] 

err = np.inf 

last_row = resmat[0] 

for i in xrange(1, divmax+1): 

n *= 2 

ordsum += _difftrap(vfunc, interval, n) 

row = [intrange * ordsum / n] 

for k in xrange(i): 

row.append(_romberg_diff(last_row[k], row[k], k+1)) 

result = row[i] 

lastresult = last_row[i-1] 

if show: 

resmat.append(row) 

err = abs(result - lastresult) 

if err < tol or err < rtol * abs(result): 

break 

last_row = row 

else: 

warnings.warn( 

"divmax (%d) exceeded. Latest difference = %e" % (divmax, err), 

AccuracyWarning) 

 

if show: 

_printresmat(vfunc, interval, resmat) 

return result 

 

 

# Coefficients for Netwon-Cotes quadrature 

# 

# These are the points being used 

# to construct the local interpolating polynomial 

# a are the weights for Newton-Cotes integration 

# B is the error coefficient. 

# error in these coefficients grows as N gets larger. 

# or as samples are closer and closer together 

 

# You can use maxima to find these rational coefficients 

# for equally spaced data using the commands 

# a(i,N) := integrate(product(r-j,j,0,i-1) * product(r-j,j,i+1,N),r,0,N) / ((N-i)! * i!) * (-1)^(N-i); 

# Be(N) := N^(N+2)/(N+2)! * (N/(N+3) - sum((i/N)^(N+2)*a(i,N),i,0,N)); 

# Bo(N) := N^(N+1)/(N+1)! * (N/(N+2) - sum((i/N)^(N+1)*a(i,N),i,0,N)); 

# B(N) := (if (mod(N,2)=0) then Be(N) else Bo(N)); 

# 

# pre-computed for equally-spaced weights 

# 

# num_a, den_a, int_a, num_B, den_B = _builtincoeffs[N] 

# 

# a = num_a*array(int_a)/den_a 

# B = num_B*1.0 / den_B 

# 

# integrate(f(x),x,x_0,x_N) = dx*sum(a*f(x_i)) + B*(dx)^(2k+3) f^(2k+2)(x*) 

# where k = N // 2 

# 

_builtincoeffs = { 

1: (1,2,[1,1],-1,12), 

2: (1,3,[1,4,1],-1,90), 

3: (3,8,[1,3,3,1],-3,80), 

4: (2,45,[7,32,12,32,7],-8,945), 

5: (5,288,[19,75,50,50,75,19],-275,12096), 

6: (1,140,[41,216,27,272,27,216,41],-9,1400), 

7: (7,17280,[751,3577,1323,2989,2989,1323,3577,751],-8183,518400), 

8: (4,14175,[989,5888,-928,10496,-4540,10496,-928,5888,989], 

-2368,467775), 

9: (9,89600,[2857,15741,1080,19344,5778,5778,19344,1080, 

15741,2857], -4671, 394240), 

10: (5,299376,[16067,106300,-48525,272400,-260550,427368, 

-260550,272400,-48525,106300,16067], 

-673175, 163459296), 

11: (11,87091200,[2171465,13486539,-3237113, 25226685,-9595542, 

15493566,15493566,-9595542,25226685,-3237113, 

13486539,2171465], -2224234463, 237758976000), 

12: (1, 5255250, [1364651,9903168,-7587864,35725120,-51491295, 

87516288,-87797136,87516288,-51491295,35725120, 

-7587864,9903168,1364651], -3012, 875875), 

13: (13, 402361344000,[8181904909, 56280729661, -31268252574, 

156074417954,-151659573325,206683437987, 

-43111992612,-43111992612,206683437987, 

-151659573325,156074417954,-31268252574, 

56280729661,8181904909], -2639651053, 

344881152000), 

14: (7, 2501928000, [90241897,710986864,-770720657,3501442784, 

-6625093363,12630121616,-16802270373,19534438464, 

-16802270373,12630121616,-6625093363,3501442784, 

-770720657,710986864,90241897], -3740727473, 

1275983280000) 

} 

 

 

def newton_cotes(rn, equal=0): 

""" 

Return weights and error coefficient for Newton-Cotes integration. 

 

Suppose we have (N+1) samples of f at the positions 

x_0, x_1, ..., x_N. Then an N-point Newton-Cotes formula for the 

integral between x_0 and x_N is: 

 

:math:`\\int_{x_0}^{x_N} f(x)dx = \\Delta x \\sum_{i=0}^{N} a_i f(x_i) 

+ B_N (\\Delta x)^{N+2} f^{N+1} (\\xi)` 

 

where :math:`\\xi \\in [x_0,x_N]` 

and :math:`\\Delta x = \\frac{x_N-x_0}{N}` is the average samples spacing. 

 

If the samples are equally-spaced and N is even, then the error 

term is :math:`B_N (\\Delta x)^{N+3} f^{N+2}(\\xi)`. 

 

Parameters 

---------- 

rn : int 

The integer order for equally-spaced data or the relative positions of 

the samples with the first sample at 0 and the last at N, where N+1 is 

the length of `rn`. N is the order of the Newton-Cotes integration. 

equal : int, optional 

Set to 1 to enforce equally spaced data. 

 

Returns 

------- 

an : ndarray 

1-D array of weights to apply to the function at the provided sample 

positions. 

B : float 

Error coefficient. 

 

Notes 

----- 

Normally, the Newton-Cotes rules are used on smaller integration 

regions and a composite rule is used to return the total integral. 

 

""" 

try: 

N = len(rn)-1 

if equal: 

rn = np.arange(N+1) 

elif np.all(np.diff(rn) == 1): 

equal = 1 

except: 

N = rn 

rn = np.arange(N+1) 

equal = 1 

 

if equal and N in _builtincoeffs: 

na, da, vi, nb, db = _builtincoeffs[N] 

an = na * np.array(vi, dtype=float) / da 

return an, float(nb)/db 

 

if (rn[0] != 0) or (rn[-1] != N): 

raise ValueError("The sample positions must start at 0" 

" and end at N") 

yi = rn / float(N) 

ti = 2 * yi - 1 

nvec = np.arange(N+1) 

C = ti ** nvec[:, np.newaxis] 

Cinv = np.linalg.inv(C) 

# improve precision of result 

for i in range(2): 

Cinv = 2*Cinv - Cinv.dot(C).dot(Cinv) 

vec = 2.0 / (nvec[::2]+1) 

ai = Cinv[:, ::2].dot(vec) * (N / 2.) 

 

if (N % 2 == 0) and equal: 

BN = N/(N+3.) 

power = N+2 

else: 

BN = N/(N+2.) 

power = N+1 

 

BN = BN - np.dot(yi**power, ai) 

p1 = power+1 

fac = power*math.log(N) - gammaln(p1) 

fac = math.exp(fac) 

return ai, BN*fac