1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

"""Interpolation algorithms using piecewise cubic polynomials.""" 

 

from __future__ import division, print_function, absolute_import 

 

import numpy as np 

 

from scipy._lib.six import string_types 

 

from . import BPoly, PPoly 

from .polyint import _isscalar 

from scipy._lib._util import _asarray_validated 

from scipy.linalg import solve_banded, solve 

 

 

__all__ = ["PchipInterpolator", "pchip_interpolate", "pchip", 

"Akima1DInterpolator", "CubicSpline"] 

 

 

class PchipInterpolator(BPoly): 

r"""PCHIP 1-d monotonic cubic interpolation. 

 

`x` and `y` are arrays of values used to approximate some function f, 

with ``y = f(x)``. The interpolant uses monotonic cubic splines 

to find the value of new points. (PCHIP stands for Piecewise Cubic 

Hermite Interpolating Polynomial). 

 

Parameters 

---------- 

x : ndarray 

A 1-D array of monotonically increasing real values. `x` cannot 

include duplicate values (otherwise f is overspecified) 

y : ndarray 

A 1-D array of real values. `y`'s length along the interpolation 

axis must be equal to the length of `x`. If N-D array, use `axis` 

parameter to select correct axis. 

axis : int, optional 

Axis in the y array corresponding to the x-coordinate values. 

extrapolate : bool, optional 

Whether to extrapolate to out-of-bounds points based on first 

and last intervals, or to return NaNs. 

 

Methods 

------- 

__call__ 

derivative 

antiderivative 

roots 

 

See Also 

-------- 

Akima1DInterpolator 

CubicSpline 

BPoly 

 

Notes 

----- 

The interpolator preserves monotonicity in the interpolation data and does 

not overshoot if the data is not smooth. 

 

The first derivatives are guaranteed to be continuous, but the second 

derivatives may jump at :math:`x_k`. 

 

Determines the derivatives at the points :math:`x_k`, :math:`f'_k`, 

by using PCHIP algorithm [1]_. 

 

Let :math:`h_k = x_{k+1} - x_k`, and :math:`d_k = (y_{k+1} - y_k) / h_k` 

are the slopes at internal points :math:`x_k`. 

If the signs of :math:`d_k` and :math:`d_{k-1}` are different or either of 

them equals zero, then :math:`f'_k = 0`. Otherwise, it is given by the 

weighted harmonic mean 

 

.. math:: 

 

\frac{w_1 + w_2}{f'_k} = \frac{w_1}{d_{k-1}} + \frac{w_2}{d_k} 

 

where :math:`w_1 = 2 h_k + h_{k-1}` and :math:`w_2 = h_k + 2 h_{k-1}`. 

 

The end slopes are set using a one-sided scheme [2]_. 

 

 

References 

---------- 

.. [1] F. N. Fritsch and R. E. Carlson, Monotone Piecewise Cubic Interpolation, 

SIAM J. Numer. Anal., 17(2), 238 (1980). 

:doi:`10.1137/0717021`. 

.. [2] see, e.g., C. Moler, Numerical Computing with Matlab, 2004. 

:doi:`10.1137/1.9780898717952` 

 

 

""" 

def __init__(self, x, y, axis=0, extrapolate=None): 

x = _asarray_validated(x, check_finite=False, as_inexact=True) 

y = _asarray_validated(y, check_finite=False, as_inexact=True) 

 

axis = axis % y.ndim 

 

xp = x.reshape((x.shape[0],) + (1,)*(y.ndim-1)) 

yp = np.rollaxis(y, axis) 

 

dk = self._find_derivatives(xp, yp) 

data = np.hstack((yp[:, None, ...], dk[:, None, ...])) 

 

_b = BPoly.from_derivatives(x, data, orders=None) 

super(PchipInterpolator, self).__init__(_b.c, _b.x, 

extrapolate=extrapolate) 

self.axis = axis 

 

def roots(self): 

""" 

Return the roots of the interpolated function. 

""" 

return (PPoly.from_bernstein_basis(self)).roots() 

 

@staticmethod 

def _edge_case(h0, h1, m0, m1): 

# one-sided three-point estimate for the derivative 

d = ((2*h0 + h1)*m0 - h0*m1) / (h0 + h1) 

 

# try to preserve shape 

mask = np.sign(d) != np.sign(m0) 

mask2 = (np.sign(m0) != np.sign(m1)) & (np.abs(d) > 3.*np.abs(m0)) 

mmm = (~mask) & mask2 

 

d[mask] = 0. 

d[mmm] = 3.*m0[mmm] 

 

return d 

 

@staticmethod 

def _find_derivatives(x, y): 

# Determine the derivatives at the points y_k, d_k, by using 

# PCHIP algorithm is: 

# We choose the derivatives at the point x_k by 

# Let m_k be the slope of the kth segment (between k and k+1) 

# If m_k=0 or m_{k-1}=0 or sgn(m_k) != sgn(m_{k-1}) then d_k == 0 

# else use weighted harmonic mean: 

# w_1 = 2h_k + h_{k-1}, w_2 = h_k + 2h_{k-1} 

# 1/d_k = 1/(w_1 + w_2)*(w_1 / m_k + w_2 / m_{k-1}) 

# where h_k is the spacing between x_k and x_{k+1} 

y_shape = y.shape 

if y.ndim == 1: 

# So that _edge_case doesn't end up assigning to scalars 

x = x[:, None] 

y = y[:, None] 

 

hk = x[1:] - x[:-1] 

mk = (y[1:] - y[:-1]) / hk 

 

if y.shape[0] == 2: 

# edge case: only have two points, use linear interpolation 

dk = np.zeros_like(y) 

dk[0] = mk 

dk[1] = mk 

return dk.reshape(y_shape) 

 

smk = np.sign(mk) 

condition = (smk[1:] != smk[:-1]) | (mk[1:] == 0) | (mk[:-1] == 0) 

 

w1 = 2*hk[1:] + hk[:-1] 

w2 = hk[1:] + 2*hk[:-1] 

 

# values where division by zero occurs will be excluded 

# by 'condition' afterwards 

with np.errstate(divide='ignore'): 

whmean = (w1/mk[:-1] + w2/mk[1:]) / (w1 + w2) 

 

dk = np.zeros_like(y) 

dk[1:-1][condition] = 0.0 

dk[1:-1][~condition] = 1.0 / whmean[~condition] 

 

# special case endpoints, as suggested in 

# Cleve Moler, Numerical Computing with MATLAB, Chap 3.4 

dk[0] = PchipInterpolator._edge_case(hk[0], hk[1], mk[0], mk[1]) 

dk[-1] = PchipInterpolator._edge_case(hk[-1], hk[-2], mk[-1], mk[-2]) 

 

return dk.reshape(y_shape) 

 

 

def pchip_interpolate(xi, yi, x, der=0, axis=0): 

""" 

Convenience function for pchip interpolation. 

xi and yi are arrays of values used to approximate some function f, 

with ``yi = f(xi)``. The interpolant uses monotonic cubic splines 

to find the value of new points x and the derivatives there. 

 

See `PchipInterpolator` for details. 

 

Parameters 

---------- 

xi : array_like 

A sorted list of x-coordinates, of length N. 

yi : array_like 

A 1-D array of real values. `yi`'s length along the interpolation 

axis must be equal to the length of `xi`. If N-D array, use axis 

parameter to select correct axis. 

x : scalar or array_like 

Of length M. 

der : int or list, optional 

Derivatives to extract. The 0-th derivative can be included to 

return the function value. 

axis : int, optional 

Axis in the yi array corresponding to the x-coordinate values. 

 

See Also 

-------- 

PchipInterpolator 

 

Returns 

------- 

y : scalar or array_like 

The result, of length R or length M or M by R, 

 

""" 

P = PchipInterpolator(xi, yi, axis=axis) 

 

if der == 0: 

return P(x) 

elif _isscalar(der): 

return P.derivative(der)(x) 

else: 

return [P.derivative(nu)(x) for nu in der] 

 

 

# Backwards compatibility 

pchip = PchipInterpolator 

 

 

class Akima1DInterpolator(PPoly): 

""" 

Akima interpolator 

 

Fit piecewise cubic polynomials, given vectors x and y. The interpolation 

method by Akima uses a continuously differentiable sub-spline built from 

piecewise cubic polynomials. The resultant curve passes through the given 

data points and will appear smooth and natural. 

 

Parameters 

---------- 

x : ndarray, shape (m, ) 

1-D array of monotonically increasing real values. 

y : ndarray, shape (m, ...) 

N-D array of real values. The length of `y` along the first axis must 

be equal to the length of `x`. 

axis : int, optional 

Specifies the axis of `y` along which to interpolate. Interpolation 

defaults to the first axis of `y`. 

 

Methods 

------- 

__call__ 

derivative 

antiderivative 

roots 

 

See Also 

-------- 

PchipInterpolator 

CubicSpline 

PPoly 

 

Notes 

----- 

.. versionadded:: 0.14 

 

Use only for precise data, as the fitted curve passes through the given 

points exactly. This routine is useful for plotting a pleasingly smooth 

curve through a few given points for purposes of plotting. 

 

References 

---------- 

[1] A new method of interpolation and smooth curve fitting based 

on local procedures. Hiroshi Akima, J. ACM, October 1970, 17(4), 

589-602. 

 

""" 

 

def __init__(self, x, y, axis=0): 

# Original implementation in MATLAB by N. Shamsundar (BSD licensed), see 

# http://www.mathworks.de/matlabcentral/fileexchange/1814-akima-interpolation 

x, y = map(np.asarray, (x, y)) 

axis = axis % y.ndim 

 

if np.any(np.diff(x) < 0.): 

raise ValueError("x must be strictly ascending") 

if x.ndim != 1: 

raise ValueError("x must be 1-dimensional") 

if x.size < 2: 

raise ValueError("at least 2 breakpoints are needed") 

if x.size != y.shape[axis]: 

raise ValueError("x.shape must equal y.shape[%s]" % axis) 

 

# move interpolation axis to front 

y = np.rollaxis(y, axis) 

 

# determine slopes between breakpoints 

m = np.empty((x.size + 3, ) + y.shape[1:]) 

dx = np.diff(x) 

dx = dx[(slice(None), ) + (None, ) * (y.ndim - 1)] 

m[2:-2] = np.diff(y, axis=0) / dx 

 

# add two additional points on the left ... 

m[1] = 2. * m[2] - m[3] 

m[0] = 2. * m[1] - m[2] 

# ... and on the right 

m[-2] = 2. * m[-3] - m[-4] 

m[-1] = 2. * m[-2] - m[-3] 

 

# if m1 == m2 != m3 == m4, the slope at the breakpoint is not defined. 

# This is the fill value: 

t = .5 * (m[3:] + m[:-3]) 

# get the denominator of the slope t 

dm = np.abs(np.diff(m, axis=0)) 

f1 = dm[2:] 

f2 = dm[:-2] 

f12 = f1 + f2 

# These are the mask of where the the slope at breakpoint is defined: 

ind = np.nonzero(f12 > 1e-9 * np.max(f12)) 

x_ind, y_ind = ind[0], ind[1:] 

# Set the slope at breakpoint 

t[ind] = (f1[ind] * m[(x_ind + 1,) + y_ind] + 

f2[ind] * m[(x_ind + 2,) + y_ind]) / f12[ind] 

# calculate the higher order coefficients 

c = (3. * m[2:-2] - 2. * t[:-1] - t[1:]) / dx 

d = (t[:-1] + t[1:] - 2. * m[2:-2]) / dx ** 2 

 

coeff = np.zeros((4, x.size - 1) + y.shape[1:]) 

coeff[3] = y[:-1] 

coeff[2] = t[:-1] 

coeff[1] = c 

coeff[0] = d 

 

super(Akima1DInterpolator, self).__init__(coeff, x, extrapolate=False) 

self.axis = axis 

 

def extend(self, c, x, right=True): 

raise NotImplementedError("Extending a 1D Akima interpolator is not " 

"yet implemented") 

 

# These are inherited from PPoly, but they do not produce an Akima 

# interpolator. Hence stub them out. 

@classmethod 

def from_spline(cls, tck, extrapolate=None): 

raise NotImplementedError("This method does not make sense for " 

"an Akima interpolator.") 

 

@classmethod 

def from_bernstein_basis(cls, bp, extrapolate=None): 

raise NotImplementedError("This method does not make sense for " 

"an Akima interpolator.") 

 

 

class CubicSpline(PPoly): 

"""Cubic spline data interpolator. 

 

Interpolate data with a piecewise cubic polynomial which is twice 

continuously differentiable [1]_. The result is represented as a `PPoly` 

instance with breakpoints matching the given data. 

 

Parameters 

---------- 

x : array_like, shape (n,) 

1-d array containing values of the independent variable. 

Values must be real, finite and in strictly increasing order. 

y : array_like 

Array containing values of the dependent variable. It can have 

arbitrary number of dimensions, but the length along `axis` (see below) 

must match the length of `x`. Values must be finite. 

axis : int, optional 

Axis along which `y` is assumed to be varying. Meaning that for 

``x[i]`` the corresponding values are ``np.take(y, i, axis=axis)``. 

Default is 0. 

bc_type : string or 2-tuple, optional 

Boundary condition type. Two additional equations, given by the 

boundary conditions, are required to determine all coefficients of 

polynomials on each segment [2]_. 

 

If `bc_type` is a string, then the specified condition will be applied 

at both ends of a spline. Available conditions are: 

 

* 'not-a-knot' (default): The first and second segment at a curve end 

are the same polynomial. It is a good default when there is no 

information on boundary conditions. 

* 'periodic': The interpolated functions is assumed to be periodic 

of period ``x[-1] - x[0]``. The first and last value of `y` must be 

identical: ``y[0] == y[-1]``. This boundary condition will result in 

``y'[0] == y'[-1]`` and ``y''[0] == y''[-1]``. 

* 'clamped': The first derivative at curves ends are zero. Assuming 

a 1D `y`, ``bc_type=((1, 0.0), (1, 0.0))`` is the same condition. 

* 'natural': The second derivative at curve ends are zero. Assuming 

a 1D `y`, ``bc_type=((2, 0.0), (2, 0.0))`` is the same condition. 

 

If `bc_type` is a 2-tuple, the first and the second value will be 

applied at the curve start and end respectively. The tuple values can 

be one of the previously mentioned strings (except 'periodic') or a 

tuple `(order, deriv_values)` allowing to specify arbitrary 

derivatives at curve ends: 

 

* `order`: the derivative order, 1 or 2. 

* `deriv_value`: array_like containing derivative values, shape must 

be the same as `y`, excluding `axis` dimension. For example, if `y` 

is 1D, then `deriv_value` must be a scalar. If `y` is 3D with the 

shape (n0, n1, n2) and axis=2, then `deriv_value` must be 2D 

and have the shape (n0, n1). 

extrapolate : {bool, 'periodic', None}, optional 

If bool, determines whether to extrapolate to out-of-bounds points 

based on first and last intervals, or to return NaNs. If 'periodic', 

periodic extrapolation is used. If None (default), `extrapolate` is 

set to 'periodic' for ``bc_type='periodic'`` and to True otherwise. 

 

Attributes 

---------- 

x : ndarray, shape (n,) 

Breakpoints. The same `x` which was passed to the constructor. 

c : ndarray, shape (4, n-1, ...) 

Coefficients of the polynomials on each segment. The trailing 

dimensions match the dimensions of `y`, excluding `axis`. For example, 

if `y` is 1-d, then ``c[k, i]`` is a coefficient for 

``(x-x[i])**(3-k)`` on the segment between ``x[i]`` and ``x[i+1]``. 

axis : int 

Interpolation axis. The same `axis` which was passed to the 

constructor. 

 

Methods 

------- 

__call__ 

derivative 

antiderivative 

integrate 

roots 

 

See Also 

-------- 

Akima1DInterpolator 

PchipInterpolator 

PPoly 

 

Notes 

----- 

Parameters `bc_type` and `interpolate` work independently, i.e. the former 

controls only construction of a spline, and the latter only evaluation. 

 

When a boundary condition is 'not-a-knot' and n = 2, it is replaced by 

a condition that the first derivative is equal to the linear interpolant 

slope. When both boundary conditions are 'not-a-knot' and n = 3, the 

solution is sought as a parabola passing through given points. 

 

When 'not-a-knot' boundary conditions is applied to both ends, the 

resulting spline will be the same as returned by `splrep` (with ``s=0``) 

and `InterpolatedUnivariateSpline`, but these two methods use a 

representation in B-spline basis. 

 

.. versionadded:: 0.18.0 

 

Examples 

-------- 

In this example the cubic spline is used to interpolate a sampled sinusoid. 

You can see that the spline continuity property holds for the first and 

second derivatives and violates only for the third derivative. 

 

>>> from scipy.interpolate import CubicSpline 

>>> import matplotlib.pyplot as plt 

>>> x = np.arange(10) 

>>> y = np.sin(x) 

>>> cs = CubicSpline(x, y) 

>>> xs = np.arange(-0.5, 9.6, 0.1) 

>>> plt.figure(figsize=(6.5, 4)) 

>>> plt.plot(x, y, 'o', label='data') 

>>> plt.plot(xs, np.sin(xs), label='true') 

>>> plt.plot(xs, cs(xs), label="S") 

>>> plt.plot(xs, cs(xs, 1), label="S'") 

>>> plt.plot(xs, cs(xs, 2), label="S''") 

>>> plt.plot(xs, cs(xs, 3), label="S'''") 

>>> plt.xlim(-0.5, 9.5) 

>>> plt.legend(loc='lower left', ncol=2) 

>>> plt.show() 

 

In the second example, the unit circle is interpolated with a spline. A 

periodic boundary condition is used. You can see that the first derivative 

values, ds/dx=0, ds/dy=1 at the periodic point (1, 0) are correctly 

computed. Note that a circle cannot be exactly represented by a cubic 

spline. To increase precision, more breakpoints would be required. 

 

>>> theta = 2 * np.pi * np.linspace(0, 1, 5) 

>>> y = np.c_[np.cos(theta), np.sin(theta)] 

>>> cs = CubicSpline(theta, y, bc_type='periodic') 

>>> print("ds/dx={:.1f} ds/dy={:.1f}".format(cs(0, 1)[0], cs(0, 1)[1])) 

ds/dx=0.0 ds/dy=1.0 

>>> xs = 2 * np.pi * np.linspace(0, 1, 100) 

>>> plt.figure(figsize=(6.5, 4)) 

>>> plt.plot(y[:, 0], y[:, 1], 'o', label='data') 

>>> plt.plot(np.cos(xs), np.sin(xs), label='true') 

>>> plt.plot(cs(xs)[:, 0], cs(xs)[:, 1], label='spline') 

>>> plt.axes().set_aspect('equal') 

>>> plt.legend(loc='center') 

>>> plt.show() 

 

The third example is the interpolation of a polynomial y = x**3 on the 

interval 0 <= x<= 1. A cubic spline can represent this function exactly. 

To achieve that we need to specify values and first derivatives at 

endpoints of the interval. Note that y' = 3 * x**2 and thus y'(0) = 0 and 

y'(1) = 3. 

 

>>> cs = CubicSpline([0, 1], [0, 1], bc_type=((1, 0), (1, 3))) 

>>> x = np.linspace(0, 1) 

>>> np.allclose(x**3, cs(x)) 

True 

 

References 

---------- 

.. [1] `Cubic Spline Interpolation 

<https://en.wikiversity.org/wiki/Cubic_Spline_Interpolation>`_ 

on Wikiversity. 

.. [2] Carl de Boor, "A Practical Guide to Splines", Springer-Verlag, 1978. 

""" 

def __init__(self, x, y, axis=0, bc_type='not-a-knot', extrapolate=None): 

x, y = map(np.asarray, (x, y)) 

 

if np.issubdtype(x.dtype, np.complexfloating): 

raise ValueError("`x` must contain real values.") 

 

if np.issubdtype(y.dtype, np.complexfloating): 

dtype = complex 

else: 

dtype = float 

y = y.astype(dtype, copy=False) 

 

axis = axis % y.ndim 

if x.ndim != 1: 

raise ValueError("`x` must be 1-dimensional.") 

if x.shape[0] < 2: 

raise ValueError("`x` must contain at least 2 elements.") 

if x.shape[0] != y.shape[axis]: 

raise ValueError("The length of `y` along `axis`={0} doesn't " 

"match the length of `x`".format(axis)) 

 

if not np.all(np.isfinite(x)): 

raise ValueError("`x` must contain only finite values.") 

if not np.all(np.isfinite(y)): 

raise ValueError("`y` must contain only finite values.") 

 

dx = np.diff(x) 

if np.any(dx <= 0): 

raise ValueError("`x` must be strictly increasing sequence.") 

 

n = x.shape[0] 

y = np.rollaxis(y, axis) 

 

bc, y = self._validate_bc(bc_type, y, y.shape[1:], axis) 

 

if extrapolate is None: 

if bc[0] == 'periodic': 

extrapolate = 'periodic' 

else: 

extrapolate = True 

 

dxr = dx.reshape([dx.shape[0]] + [1] * (y.ndim - 1)) 

slope = np.diff(y, axis=0) / dxr 

 

# If bc is 'not-a-knot' this change is just a convention. 

# If bc is 'periodic' then we already checked that y[0] == y[-1], 

# and the spline is just a constant, we handle this case in the same 

# way by setting the first derivatives to slope, which is 0. 

if n == 2: 

if bc[0] in ['not-a-knot', 'periodic']: 

bc[0] = (1, slope[0]) 

if bc[1] in ['not-a-knot', 'periodic']: 

bc[1] = (1, slope[0]) 

 

# This is a very special case, when both conditions are 'not-a-knot' 

# and n == 3. In this case 'not-a-knot' can't be handled regularly 

# as the both conditions are identical. We handle this case by 

# constructing a parabola passing through given points. 

if n == 3 and bc[0] == 'not-a-knot' and bc[1] == 'not-a-knot': 

A = np.zeros((3, 3)) # This is a standard matrix. 

b = np.empty((3,) + y.shape[1:], dtype=y.dtype) 

 

A[0, 0] = 1 

A[0, 1] = 1 

A[1, 0] = dx[1] 

A[1, 1] = 2 * (dx[0] + dx[1]) 

A[1, 2] = dx[0] 

A[2, 1] = 1 

A[2, 2] = 1 

 

b[0] = 2 * slope[0] 

b[1] = 3 * (dxr[0] * slope[1] + dxr[1] * slope[0]) 

b[2] = 2 * slope[1] 

 

s = solve(A, b, overwrite_a=True, overwrite_b=True, 

check_finite=False) 

else: 

# Find derivative values at each x[i] by solving a tridiagonal 

# system. 

A = np.zeros((3, n)) # This is a banded matrix representation. 

b = np.empty((n,) + y.shape[1:], dtype=y.dtype) 

 

# Filling the system for i=1..n-2 

# (x[i-1] - x[i]) * s[i-1] +\ 

# 2 * ((x[i] - x[i-1]) + (x[i+1] - x[i])) * s[i] +\ 

# (x[i] - x[i-1]) * s[i+1] =\ 

# 3 * ((x[i+1] - x[i])*(y[i] - y[i-1])/(x[i] - x[i-1]) +\ 

# (x[i] - x[i-1])*(y[i+1] - y[i])/(x[i+1] - x[i])) 

 

A[1, 1:-1] = 2 * (dx[:-1] + dx[1:]) # The diagonal 

A[0, 2:] = dx[:-1] # The upper diagonal 

A[-1, :-2] = dx[1:] # The lower diagonal 

 

b[1:-1] = 3 * (dxr[1:] * slope[:-1] + dxr[:-1] * slope[1:]) 

 

bc_start, bc_end = bc 

 

if bc_start == 'periodic': 

# Due to the periodicity, and because y[-1] = y[0], the linear 

# system has (n-1) unknowns/equations instead of n: 

A = A[:, 0:-1] 

A[1, 0] = 2 * (dx[-1] + dx[0]) 

A[0, 1] = dx[-1] 

 

b = b[:-1] 

 

# Also, due to the periodicity, the system is not tri-diagonal. 

# We need to compute a "condensed" matrix of shape (n-2, n-2). 

# See http://www.cfm.brown.edu/people/gk/chap6/node14.html for 

# more explanations. 

# The condensed matrix is obtained by removing the last column 

# and last row of the (n-1, n-1) system matrix. The removed 

# values are saved in scalar variables with the (n-1, n-1) 

# system matrix indices forming their names: 

a_m1_0 = dx[-2] # lower left corner value: A[-1, 0] 

a_m1_m2 = dx[-1] 

a_m1_m1 = 2 * (dx[-1] + dx[-2]) 

a_m2_m1 = dx[-2] 

a_0_m1 = dx[0] 

 

b[0] = 3 * (dxr[0] * slope[-1] + dxr[-1] * slope[0]) 

b[-1] = 3 * (dxr[-1] * slope[-2] + dxr[-2] * slope[-1]) 

 

Ac = A[:, :-1] 

b1 = b[:-1] 

b2 = np.zeros_like(b1) 

b2[0] = -a_0_m1 

b2[-1] = -a_m2_m1 

 

# s1 and s2 are the solutions of (n-2, n-2) system 

s1 = solve_banded((1, 1), Ac, b1, overwrite_ab=False, 

overwrite_b=False, check_finite=False) 

 

s2 = solve_banded((1, 1), Ac, b2, overwrite_ab=False, 

overwrite_b=False, check_finite=False) 

 

# computing the s[n-2] solution: 

s_m1 = ((b[-1] - a_m1_0 * s1[0] - a_m1_m2 * s1[-1]) / 

(a_m1_m1 + a_m1_0 * s2[0] + a_m1_m2 * s2[-1])) 

 

# s is the solution of the (n, n) system: 

s = np.empty((n,) + y.shape[1:], dtype=y.dtype) 

s[:-2] = s1 + s_m1 * s2 

s[-2] = s_m1 

s[-1] = s[0] 

else: 

if bc_start == 'not-a-knot': 

A[1, 0] = dx[1] 

A[0, 1] = x[2] - x[0] 

d = x[2] - x[0] 

b[0] = ((dxr[0] + 2*d) * dxr[1] * slope[0] + 

dxr[0]**2 * slope[1]) / d 

elif bc_start[0] == 1: 

A[1, 0] = 1 

A[0, 1] = 0 

b[0] = bc_start[1] 

elif bc_start[0] == 2: 

A[1, 0] = 2 * dx[0] 

A[0, 1] = dx[0] 

b[0] = -0.5 * bc_start[1] * dx[0]**2 + 3 * (y[1] - y[0]) 

 

if bc_end == 'not-a-knot': 

A[1, -1] = dx[-2] 

A[-1, -2] = x[-1] - x[-3] 

d = x[-1] - x[-3] 

b[-1] = ((dxr[-1]**2*slope[-2] + 

(2*d + dxr[-1])*dxr[-2]*slope[-1]) / d) 

elif bc_end[0] == 1: 

A[1, -1] = 1 

A[-1, -2] = 0 

b[-1] = bc_end[1] 

elif bc_end[0] == 2: 

A[1, -1] = 2 * dx[-1] 

A[-1, -2] = dx[-1] 

b[-1] = 0.5 * bc_end[1] * dx[-1]**2 + 3 * (y[-1] - y[-2]) 

 

s = solve_banded((1, 1), A, b, overwrite_ab=True, 

overwrite_b=True, check_finite=False) 

 

# Compute coefficients in PPoly form. 

t = (s[:-1] + s[1:] - 2 * slope) / dxr 

c = np.empty((4, n - 1) + y.shape[1:], dtype=t.dtype) 

c[0] = t / dxr 

c[1] = (slope - s[:-1]) / dxr - t 

c[2] = s[:-1] 

c[3] = y[:-1] 

 

super(CubicSpline, self).__init__(c, x, extrapolate=extrapolate) 

self.axis = axis 

 

@staticmethod 

def _validate_bc(bc_type, y, expected_deriv_shape, axis): 

"""Validate and prepare boundary conditions. 

 

Returns 

------- 

validated_bc : 2-tuple 

Boundary conditions for a curve start and end. 

y : ndarray 

y casted to complex dtype if one of the boundary conditions has 

complex dtype. 

""" 

if isinstance(bc_type, string_types): 

if bc_type == 'periodic': 

if not np.allclose(y[0], y[-1], rtol=1e-15, atol=1e-15): 

raise ValueError( 

"The first and last `y` point along axis {} must " 

"be identical (within machine precision) when " 

"bc_type='periodic'.".format(axis)) 

 

bc_type = (bc_type, bc_type) 

 

else: 

if len(bc_type) != 2: 

raise ValueError("`bc_type` must contain 2 elements to " 

"specify start and end conditions.") 

 

if 'periodic' in bc_type: 

raise ValueError("'periodic' `bc_type` is defined for both " 

"curve ends and cannot be used with other " 

"boundary conditions.") 

 

validated_bc = [] 

for bc in bc_type: 

if isinstance(bc, string_types): 

if bc == 'clamped': 

validated_bc.append((1, np.zeros(expected_deriv_shape))) 

elif bc == 'natural': 

validated_bc.append((2, np.zeros(expected_deriv_shape))) 

elif bc in ['not-a-knot', 'periodic']: 

validated_bc.append(bc) 

else: 

raise ValueError("bc_type={} is not allowed.".format(bc)) 

else: 

try: 

deriv_order, deriv_value = bc 

except Exception: 

raise ValueError("A specified derivative value must be " 

"given in the form (order, value).") 

 

if deriv_order not in [1, 2]: 

raise ValueError("The specified derivative order must " 

"be 1 or 2.") 

 

deriv_value = np.asarray(deriv_value) 

if deriv_value.shape != expected_deriv_shape: 

raise ValueError( 

"`deriv_value` shape {} is not the expected one {}." 

.format(deriv_value.shape, expected_deriv_shape)) 

 

if np.issubdtype(deriv_value.dtype, np.complexfloating): 

y = y.astype(complex, copy=False) 

 

validated_bc.append((deriv_order, deriv_value)) 

 

return validated_bc, y