1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

""" 

fitpack (dierckx in netlib) --- A Python-C wrapper to FITPACK (by P. Dierckx). 

FITPACK is a collection of FORTRAN programs for curve and surface 

fitting with splines and tensor product splines. 

 

See 

http://www.cs.kuleuven.ac.be/cwis/research/nalag/research/topics/fitpack.html 

or 

http://www.netlib.org/dierckx/index.html 

 

Copyright 2002 Pearu Peterson all rights reserved, 

Pearu Peterson <pearu@cens.ioc.ee> 

Permission to use, modify, and distribute this software is given under the 

terms of the SciPy (BSD style) license. See LICENSE.txt that came with 

this distribution for specifics. 

 

NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. 

 

TODO: Make interfaces to the following fitpack functions: 

For univariate splines: cocosp, concon, fourco, insert 

For bivariate splines: profil, regrid, parsur, surev 

""" 

from __future__ import division, print_function, absolute_import 

 

 

__all__ = ['splrep', 'splprep', 'splev', 'splint', 'sproot', 'spalde', 

'bisplrep', 'bisplev', 'insert', 'splder', 'splantider'] 

 

import warnings 

import numpy as np 

from . import _fitpack 

from numpy import (atleast_1d, array, ones, zeros, sqrt, ravel, transpose, 

empty, iinfo, intc, asarray) 

 

# Try to replace _fitpack interface with 

# f2py-generated version 

from . import dfitpack 

 

 

def _intc_overflow(x, msg=None): 

"""Cast the value to an intc and raise an OverflowError if the value 

cannot fit. 

""" 

if x > iinfo(intc).max: 

if msg is None: 

msg = '%r cannot fit into an intc' % x 

raise OverflowError(msg) 

return intc(x) 

 

 

_iermess = { 

0: ["The spline has a residual sum of squares fp such that " 

"abs(fp-s)/s<=0.001", None], 

-1: ["The spline is an interpolating spline (fp=0)", None], 

-2: ["The spline is weighted least-squares polynomial of degree k.\n" 

"fp gives the upper bound fp0 for the smoothing factor s", None], 

1: ["The required storage space exceeds the available storage space.\n" 

"Probable causes: data (x,y) size is too small or smoothing parameter" 

"\ns is too small (fp>s).", ValueError], 

2: ["A theoretically impossible result when finding a smoothing spline\n" 

"with fp = s. Probable cause: s too small. (abs(fp-s)/s>0.001)", 

ValueError], 

3: ["The maximal number of iterations (20) allowed for finding smoothing\n" 

"spline with fp=s has been reached. Probable cause: s too small.\n" 

"(abs(fp-s)/s>0.001)", ValueError], 

10: ["Error on input data", ValueError], 

'unknown': ["An error occurred", TypeError] 

} 

 

_iermess2 = { 

0: ["The spline has a residual sum of squares fp such that " 

"abs(fp-s)/s<=0.001", None], 

-1: ["The spline is an interpolating spline (fp=0)", None], 

-2: ["The spline is weighted least-squares polynomial of degree kx and ky." 

"\nfp gives the upper bound fp0 for the smoothing factor s", None], 

-3: ["Warning. The coefficients of the spline have been computed as the\n" 

"minimal norm least-squares solution of a rank deficient system.", 

None], 

1: ["The required storage space exceeds the available storage space.\n" 

"Probable causes: nxest or nyest too small or s is too small. (fp>s)", 

ValueError], 

2: ["A theoretically impossible result when finding a smoothing spline\n" 

"with fp = s. Probable causes: s too small or badly chosen eps.\n" 

"(abs(fp-s)/s>0.001)", ValueError], 

3: ["The maximal number of iterations (20) allowed for finding smoothing\n" 

"spline with fp=s has been reached. Probable cause: s too small.\n" 

"(abs(fp-s)/s>0.001)", ValueError], 

4: ["No more knots can be added because the number of B-spline\n" 

"coefficients already exceeds the number of data points m.\n" 

"Probable causes: either s or m too small. (fp>s)", ValueError], 

5: ["No more knots can be added because the additional knot would\n" 

"coincide with an old one. Probable cause: s too small or too large\n" 

"a weight to an inaccurate data point. (fp>s)", ValueError], 

10: ["Error on input data", ValueError], 

11: ["rwrk2 too small, i.e. there is not enough workspace for computing\n" 

"the minimal least-squares solution of a rank deficient system of\n" 

"linear equations.", ValueError], 

'unknown': ["An error occurred", TypeError] 

} 

 

_parcur_cache = {'t': array([], float), 'wrk': array([], float), 

'iwrk': array([], intc), 'u': array([], float), 

'ub': 0, 'ue': 1} 

 

 

def splprep(x, w=None, u=None, ub=None, ue=None, k=3, task=0, s=None, t=None, 

full_output=0, nest=None, per=0, quiet=1): 

""" 

Find the B-spline representation of an N-dimensional curve. 

 

Given a list of N rank-1 arrays, `x`, which represent a curve in 

N-dimensional space parametrized by `u`, find a smooth approximating 

spline curve g(`u`). Uses the FORTRAN routine parcur from FITPACK. 

 

Parameters 

---------- 

x : array_like 

A list of sample vector arrays representing the curve. 

w : array_like, optional 

Strictly positive rank-1 array of weights the same length as `x[0]`. 

The weights are used in computing the weighted least-squares spline 

fit. If the errors in the `x` values have standard-deviation given by 

the vector d, then `w` should be 1/d. Default is ``ones(len(x[0]))``. 

u : array_like, optional 

An array of parameter values. If not given, these values are 

calculated automatically as ``M = len(x[0])``, where 

 

v[0] = 0 

 

v[i] = v[i-1] + distance(`x[i]`, `x[i-1]`) 

 

u[i] = v[i] / v[M-1] 

 

ub, ue : int, optional 

The end-points of the parameters interval. Defaults to 

u[0] and u[-1]. 

k : int, optional 

Degree of the spline. Cubic splines are recommended. 

Even values of `k` should be avoided especially with a small s-value. 

``1 <= k <= 5``, default is 3. 

task : int, optional 

If task==0 (default), find t and c for a given smoothing factor, s. 

If task==1, find t and c for another value of the smoothing factor, s. 

There must have been a previous call with task=0 or task=1 

for the same set of data. 

If task=-1 find the weighted least square spline for a given set of 

knots, t. 

s : float, optional 

A smoothing condition. The amount of smoothness is determined by 

satisfying the conditions: ``sum((w * (y - g))**2,axis=0) <= s``, 

where g(x) is the smoothed interpolation of (x,y). The user can 

use `s` to control the trade-off between closeness and smoothness 

of fit. Larger `s` means more smoothing while smaller values of `s` 

indicate less smoothing. Recommended values of `s` depend on the 

weights, w. If the weights represent the inverse of the 

standard-deviation of y, then a good `s` value should be found in 

the range ``(m-sqrt(2*m),m+sqrt(2*m))``, where m is the number of 

data points in x, y, and w. 

t : int, optional 

The knots needed for task=-1. 

full_output : int, optional 

If non-zero, then return optional outputs. 

nest : int, optional 

An over-estimate of the total number of knots of the spline to 

help in determining the storage space. By default nest=m/2. 

Always large enough is nest=m+k+1. 

per : int, optional 

If non-zero, data points are considered periodic with period 

``x[m-1] - x[0]`` and a smooth periodic spline approximation is 

returned. Values of ``y[m-1]`` and ``w[m-1]`` are not used. 

quiet : int, optional 

Non-zero to suppress messages. 

This parameter is deprecated; use standard Python warning filters 

instead. 

 

Returns 

------- 

tck : tuple 

A tuple (t,c,k) containing the vector of knots, the B-spline 

coefficients, and the degree of the spline. 

u : array 

An array of the values of the parameter. 

fp : float 

The weighted sum of squared residuals of the spline approximation. 

ier : int 

An integer flag about splrep success. Success is indicated 

if ier<=0. If ier in [1,2,3] an error occurred but was not raised. 

Otherwise an error is raised. 

msg : str 

A message corresponding to the integer flag, ier. 

 

See Also 

-------- 

splrep, splev, sproot, spalde, splint, 

bisplrep, bisplev 

UnivariateSpline, BivariateSpline 

 

Notes 

----- 

See `splev` for evaluation of the spline and its derivatives. 

The number of dimensions N must be smaller than 11. 

 

References 

---------- 

.. [1] P. Dierckx, "Algorithms for smoothing data with periodic and 

parametric splines, Computer Graphics and Image Processing", 

20 (1982) 171-184. 

.. [2] P. Dierckx, "Algorithms for smoothing data with periodic and 

parametric splines", report tw55, Dept. Computer Science, 

K.U.Leuven, 1981. 

.. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs on 

Numerical Analysis, Oxford University Press, 1993. 

 

""" 

if task <= 0: 

_parcur_cache = {'t': array([], float), 'wrk': array([], float), 

'iwrk': array([], intc), 'u': array([], float), 

'ub': 0, 'ue': 1} 

x = atleast_1d(x) 

idim, m = x.shape 

if per: 

for i in range(idim): 

if x[i][0] != x[i][-1]: 

if quiet < 2: 

warnings.warn(RuntimeWarning('Setting x[%d][%d]=x[%d][0]' % 

(i, m, i))) 

x[i][-1] = x[i][0] 

if not 0 < idim < 11: 

raise TypeError('0 < idim < 11 must hold') 

if w is None: 

w = ones(m, float) 

else: 

w = atleast_1d(w) 

ipar = (u is not None) 

if ipar: 

_parcur_cache['u'] = u 

if ub is None: 

_parcur_cache['ub'] = u[0] 

else: 

_parcur_cache['ub'] = ub 

if ue is None: 

_parcur_cache['ue'] = u[-1] 

else: 

_parcur_cache['ue'] = ue 

else: 

_parcur_cache['u'] = zeros(m, float) 

if not (1 <= k <= 5): 

raise TypeError('1 <= k= %d <=5 must hold' % k) 

if not (-1 <= task <= 1): 

raise TypeError('task must be -1, 0 or 1') 

if (not len(w) == m) or (ipar == 1 and (not len(u) == m)): 

raise TypeError('Mismatch of input dimensions') 

if s is None: 

s = m - sqrt(2*m) 

if t is None and task == -1: 

raise TypeError('Knots must be given for task=-1') 

if t is not None: 

_parcur_cache['t'] = atleast_1d(t) 

n = len(_parcur_cache['t']) 

if task == -1 and n < 2*k + 2: 

raise TypeError('There must be at least 2*k+2 knots for task=-1') 

if m <= k: 

raise TypeError('m > k must hold') 

if nest is None: 

nest = m + 2*k 

 

if (task >= 0 and s == 0) or (nest < 0): 

if per: 

nest = m + 2*k 

else: 

nest = m + k + 1 

nest = max(nest, 2*k + 3) 

u = _parcur_cache['u'] 

ub = _parcur_cache['ub'] 

ue = _parcur_cache['ue'] 

t = _parcur_cache['t'] 

wrk = _parcur_cache['wrk'] 

iwrk = _parcur_cache['iwrk'] 

t, c, o = _fitpack._parcur(ravel(transpose(x)), w, u, ub, ue, k, 

task, ipar, s, t, nest, wrk, iwrk, per) 

_parcur_cache['u'] = o['u'] 

_parcur_cache['ub'] = o['ub'] 

_parcur_cache['ue'] = o['ue'] 

_parcur_cache['t'] = t 

_parcur_cache['wrk'] = o['wrk'] 

_parcur_cache['iwrk'] = o['iwrk'] 

ier = o['ier'] 

fp = o['fp'] 

n = len(t) 

u = o['u'] 

c.shape = idim, n - k - 1 

tcku = [t, list(c), k], u 

if ier <= 0 and not quiet: 

warnings.warn(RuntimeWarning(_iermess[ier][0] + 

"\tk=%d n=%d m=%d fp=%f s=%f" % 

(k, len(t), m, fp, s))) 

if ier > 0 and not full_output: 

if ier in [1, 2, 3]: 

warnings.warn(RuntimeWarning(_iermess[ier][0])) 

else: 

try: 

raise _iermess[ier][1](_iermess[ier][0]) 

except KeyError: 

raise _iermess['unknown'][1](_iermess['unknown'][0]) 

if full_output: 

try: 

return tcku, fp, ier, _iermess[ier][0] 

except KeyError: 

return tcku, fp, ier, _iermess['unknown'][0] 

else: 

return tcku 

 

 

_curfit_cache = {'t': array([], float), 'wrk': array([], float), 

'iwrk': array([], intc)} 

 

 

def splrep(x, y, w=None, xb=None, xe=None, k=3, task=0, s=None, t=None, 

full_output=0, per=0, quiet=1): 

""" 

Find the B-spline representation of 1-D curve. 

 

Given the set of data points ``(x[i], y[i])`` determine a smooth spline 

approximation of degree k on the interval ``xb <= x <= xe``. 

 

Parameters 

---------- 

x, y : array_like 

The data points defining a curve y = f(x). 

w : array_like, optional 

Strictly positive rank-1 array of weights the same length as x and y. 

The weights are used in computing the weighted least-squares spline 

fit. If the errors in the y values have standard-deviation given by the 

vector d, then w should be 1/d. Default is ones(len(x)). 

xb, xe : float, optional 

The interval to fit. If None, these default to x[0] and x[-1] 

respectively. 

k : int, optional 

The order of the spline fit. It is recommended to use cubic splines. 

Even order splines should be avoided especially with small s values. 

1 <= k <= 5 

task : {1, 0, -1}, optional 

If task==0 find t and c for a given smoothing factor, s. 

 

If task==1 find t and c for another value of the smoothing factor, s. 

There must have been a previous call with task=0 or task=1 for the same 

set of data (t will be stored an used internally) 

 

If task=-1 find the weighted least square spline for a given set of 

knots, t. These should be interior knots as knots on the ends will be 

added automatically. 

s : float, optional 

A smoothing condition. The amount of smoothness is determined by 

satisfying the conditions: sum((w * (y - g))**2,axis=0) <= s where g(x) 

is the smoothed interpolation of (x,y). The user can use s to control 

the tradeoff between closeness and smoothness of fit. Larger s means 

more smoothing while smaller values of s indicate less smoothing. 

Recommended values of s depend on the weights, w. If the weights 

represent the inverse of the standard-deviation of y, then a good s 

value should be found in the range (m-sqrt(2*m),m+sqrt(2*m)) where m is 

the number of datapoints in x, y, and w. default : s=m-sqrt(2*m) if 

weights are supplied. s = 0.0 (interpolating) if no weights are 

supplied. 

t : array_like, optional 

The knots needed for task=-1. If given then task is automatically set 

to -1. 

full_output : bool, optional 

If non-zero, then return optional outputs. 

per : bool, optional 

If non-zero, data points are considered periodic with period x[m-1] - 

x[0] and a smooth periodic spline approximation is returned. Values of 

y[m-1] and w[m-1] are not used. 

quiet : bool, optional 

Non-zero to suppress messages. 

This parameter is deprecated; use standard Python warning filters 

instead. 

 

Returns 

------- 

tck : tuple 

(t,c,k) a tuple containing the vector of knots, the B-spline 

coefficients, and the degree of the spline. 

fp : array, optional 

The weighted sum of squared residuals of the spline approximation. 

ier : int, optional 

An integer flag about splrep success. Success is indicated if ier<=0. 

If ier in [1,2,3] an error occurred but was not raised. Otherwise an 

error is raised. 

msg : str, optional 

A message corresponding to the integer flag, ier. 

 

Notes 

----- 

See splev for evaluation of the spline and its derivatives. 

 

The user is responsible for assuring that the values of *x* are unique. 

Otherwise, *splrep* will not return sensible results. 

 

See Also 

-------- 

UnivariateSpline, BivariateSpline 

splprep, splev, sproot, spalde, splint 

bisplrep, bisplev 

 

Notes 

----- 

See splev for evaluation of the spline and its derivatives. Uses the 

FORTRAN routine curfit from FITPACK. 

 

If provided, knots `t` must satisfy the Schoenberg-Whitney conditions, 

i.e., there must be a subset of data points ``x[j]`` such that 

``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``. 

 

References 

---------- 

Based on algorithms described in [1]_, [2]_, [3]_, and [4]_: 

 

.. [1] P. Dierckx, "An algorithm for smoothing, differentiation and 

integration of experimental data using spline functions", 

J.Comp.Appl.Maths 1 (1975) 165-184. 

.. [2] P. Dierckx, "A fast algorithm for smoothing data on a rectangular 

grid while using spline functions", SIAM J.Numer.Anal. 19 (1982) 

1286-1304. 

.. [3] P. Dierckx, "An improved algorithm for curve fitting with spline 

functions", report tw54, Dept. Computer Science,K.U. Leuven, 1981. 

.. [4] P. Dierckx, "Curve and surface fitting with splines", Monographs on 

Numerical Analysis, Oxford University Press, 1993. 

 

Examples 

-------- 

 

>>> import matplotlib.pyplot as plt 

>>> from scipy.interpolate import splev, splrep 

>>> x = np.linspace(0, 10, 10) 

>>> y = np.sin(x) 

>>> tck = splrep(x, y) 

>>> x2 = np.linspace(0, 10, 200) 

>>> y2 = splev(x2, tck) 

>>> plt.plot(x, y, 'o', x2, y2) 

>>> plt.show() 

 

""" 

if task <= 0: 

_curfit_cache = {} 

x, y = map(atleast_1d, [x, y]) 

m = len(x) 

if w is None: 

w = ones(m, float) 

if s is None: 

s = 0.0 

else: 

w = atleast_1d(w) 

if s is None: 

s = m - sqrt(2*m) 

if not len(w) == m: 

raise TypeError('len(w)=%d is not equal to m=%d' % (len(w), m)) 

if (m != len(y)) or (m != len(w)): 

raise TypeError('Lengths of the first three arguments (x,y,w) must ' 

'be equal') 

if not (1 <= k <= 5): 

raise TypeError('Given degree of the spline (k=%d) is not supported. ' 

'(1<=k<=5)' % k) 

if m <= k: 

raise TypeError('m > k must hold') 

if xb is None: 

xb = x[0] 

if xe is None: 

xe = x[-1] 

if not (-1 <= task <= 1): 

raise TypeError('task must be -1, 0 or 1') 

if t is not None: 

task = -1 

if task == -1: 

if t is None: 

raise TypeError('Knots must be given for task=-1') 

numknots = len(t) 

_curfit_cache['t'] = empty((numknots + 2*k + 2,), float) 

_curfit_cache['t'][k+1:-k-1] = t 

nest = len(_curfit_cache['t']) 

elif task == 0: 

if per: 

nest = max(m + 2*k, 2*k + 3) 

else: 

nest = max(m + k + 1, 2*k + 3) 

t = empty((nest,), float) 

_curfit_cache['t'] = t 

if task <= 0: 

if per: 

_curfit_cache['wrk'] = empty((m*(k + 1) + nest*(8 + 5*k),), float) 

else: 

_curfit_cache['wrk'] = empty((m*(k + 1) + nest*(7 + 3*k),), float) 

_curfit_cache['iwrk'] = empty((nest,), intc) 

try: 

t = _curfit_cache['t'] 

wrk = _curfit_cache['wrk'] 

iwrk = _curfit_cache['iwrk'] 

except KeyError: 

raise TypeError("must call with task=1 only after" 

" call with task=0,-1") 

if not per: 

n, c, fp, ier = dfitpack.curfit(task, x, y, w, t, wrk, iwrk, 

xb, xe, k, s) 

else: 

n, c, fp, ier = dfitpack.percur(task, x, y, w, t, wrk, iwrk, k, s) 

tck = (t[:n], c[:n], k) 

if ier <= 0 and not quiet: 

_mess = (_iermess[ier][0] + "\tk=%d n=%d m=%d fp=%f s=%f" % 

(k, len(t), m, fp, s)) 

warnings.warn(RuntimeWarning(_mess)) 

if ier > 0 and not full_output: 

if ier in [1, 2, 3]: 

warnings.warn(RuntimeWarning(_iermess[ier][0])) 

else: 

try: 

raise _iermess[ier][1](_iermess[ier][0]) 

except KeyError: 

raise _iermess['unknown'][1](_iermess['unknown'][0]) 

if full_output: 

try: 

return tck, fp, ier, _iermess[ier][0] 

except KeyError: 

return tck, fp, ier, _iermess['unknown'][0] 

else: 

return tck 

 

 

def splev(x, tck, der=0, ext=0): 

""" 

Evaluate a B-spline or its derivatives. 

 

Given the knots and coefficients of a B-spline representation, evaluate 

the value of the smoothing polynomial and its derivatives. This is a 

wrapper around the FORTRAN routines splev and splder of FITPACK. 

 

Parameters 

---------- 

x : array_like 

An array of points at which to return the value of the smoothed 

spline or its derivatives. If `tck` was returned from `splprep`, 

then the parameter values, u should be given. 

tck : tuple 

A sequence of length 3 returned by `splrep` or `splprep` containing 

the knots, coefficients, and degree of the spline. 

der : int, optional 

The order of derivative of the spline to compute (must be less than 

or equal to k). 

ext : int, optional 

Controls the value returned for elements of ``x`` not in the 

interval defined by the knot sequence. 

 

* if ext=0, return the extrapolated value. 

* if ext=1, return 0 

* if ext=2, raise a ValueError 

* if ext=3, return the boundary value. 

 

The default value is 0. 

 

Returns 

------- 

y : ndarray or list of ndarrays 

An array of values representing the spline function evaluated at 

the points in ``x``. If `tck` was returned from `splprep`, then this 

is a list of arrays representing the curve in N-dimensional space. 

 

See Also 

-------- 

splprep, splrep, sproot, spalde, splint 

bisplrep, bisplev 

 

References 

---------- 

.. [1] C. de Boor, "On calculating with b-splines", J. Approximation 

Theory, 6, p.50-62, 1972. 

.. [2] M.G. Cox, "The numerical evaluation of b-splines", J. Inst. Maths 

Applics, 10, p.134-149, 1972. 

.. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs 

on Numerical Analysis, Oxford University Press, 1993. 

 

""" 

t, c, k = tck 

try: 

c[0][0] 

parametric = True 

except: 

parametric = False 

if parametric: 

return list(map(lambda c, x=x, t=t, k=k, der=der: 

splev(x, [t, c, k], der, ext), c)) 

else: 

if not (0 <= der <= k): 

raise ValueError("0<=der=%d<=k=%d must hold" % (der, k)) 

if ext not in (0, 1, 2, 3): 

raise ValueError("ext = %s not in (0, 1, 2, 3) " % ext) 

 

x = asarray(x) 

shape = x.shape 

x = atleast_1d(x).ravel() 

y, ier = _fitpack._spl_(x, der, t, c, k, ext) 

 

if ier == 10: 

raise ValueError("Invalid input data") 

if ier == 1: 

raise ValueError("Found x value not in the domain") 

if ier: 

raise TypeError("An error occurred") 

 

return y.reshape(shape) 

 

 

def splint(a, b, tck, full_output=0): 

""" 

Evaluate the definite integral of a B-spline. 

 

Given the knots and coefficients of a B-spline, evaluate the definite 

integral of the smoothing polynomial between two given points. 

 

Parameters 

---------- 

a, b : float 

The end-points of the integration interval. 

tck : tuple 

A tuple (t,c,k) containing the vector of knots, the B-spline 

coefficients, and the degree of the spline (see `splev`). 

full_output : int, optional 

Non-zero to return optional output. 

 

Returns 

------- 

integral : float 

The resulting integral. 

wrk : ndarray 

An array containing the integrals of the normalized B-splines 

defined on the set of knots. 

 

Notes 

----- 

splint silently assumes that the spline function is zero outside the data 

interval (a, b). 

 

See Also 

-------- 

splprep, splrep, sproot, spalde, splev 

bisplrep, bisplev 

UnivariateSpline, BivariateSpline 

 

References 

---------- 

.. [1] P.W. Gaffney, The calculation of indefinite integrals of b-splines", 

J. Inst. Maths Applics, 17, p.37-41, 1976. 

.. [2] P. Dierckx, "Curve and surface fitting with splines", Monographs 

on Numerical Analysis, Oxford University Press, 1993. 

 

""" 

t, c, k = tck 

try: 

c[0][0] 

parametric = True 

except: 

parametric = False 

if parametric: 

return list(map(lambda c, a=a, b=b, t=t, k=k: 

splint(a, b, [t, c, k]), c)) 

else: 

aint, wrk = _fitpack._splint(t, c, k, a, b) 

if full_output: 

return aint, wrk 

else: 

return aint 

 

 

def sproot(tck, mest=10): 

""" 

Find the roots of a cubic B-spline. 

 

Given the knots (>=8) and coefficients of a cubic B-spline return the 

roots of the spline. 

 

Parameters 

---------- 

tck : tuple 

A tuple (t,c,k) containing the vector of knots, 

the B-spline coefficients, and the degree of the spline. 

The number of knots must be >= 8, and the degree must be 3. 

The knots must be a montonically increasing sequence. 

mest : int, optional 

An estimate of the number of zeros (Default is 10). 

 

Returns 

------- 

zeros : ndarray 

An array giving the roots of the spline. 

 

See also 

-------- 

splprep, splrep, splint, spalde, splev 

bisplrep, bisplev 

UnivariateSpline, BivariateSpline 

 

 

References 

---------- 

.. [1] C. de Boor, "On calculating with b-splines", J. Approximation 

Theory, 6, p.50-62, 1972. 

.. [2] M.G. Cox, "The numerical evaluation of b-splines", J. Inst. Maths 

Applics, 10, p.134-149, 1972. 

.. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs 

on Numerical Analysis, Oxford University Press, 1993. 

 

""" 

t, c, k = tck 

if k != 3: 

raise ValueError("sproot works only for cubic (k=3) splines") 

try: 

c[0][0] 

parametric = True 

except: 

parametric = False 

if parametric: 

return list(map(lambda c, t=t, k=k, mest=mest: 

sproot([t, c, k], mest), c)) 

else: 

if len(t) < 8: 

raise TypeError("The number of knots %d>=8" % len(t)) 

z, ier = _fitpack._sproot(t, c, k, mest) 

if ier == 10: 

raise TypeError("Invalid input data. " 

"t1<=..<=t4<t5<..<tn-3<=..<=tn must hold.") 

if ier == 0: 

return z 

if ier == 1: 

warnings.warn(RuntimeWarning("The number of zeros exceeds mest")) 

return z 

raise TypeError("Unknown error") 

 

 

def spalde(x, tck): 

""" 

Evaluate all derivatives of a B-spline. 

 

Given the knots and coefficients of a cubic B-spline compute all 

derivatives up to order k at a point (or set of points). 

 

Parameters 

---------- 

x : array_like 

A point or a set of points at which to evaluate the derivatives. 

Note that ``t(k) <= x <= t(n-k+1)`` must hold for each `x`. 

tck : tuple 

A tuple (t,c,k) containing the vector of knots, 

the B-spline coefficients, and the degree of the spline. 

 

Returns 

------- 

results : {ndarray, list of ndarrays} 

An array (or a list of arrays) containing all derivatives 

up to order k inclusive for each point `x`. 

 

See Also 

-------- 

splprep, splrep, splint, sproot, splev, bisplrep, bisplev, 

UnivariateSpline, BivariateSpline 

 

References 

---------- 

.. [1] de Boor C : On calculating with b-splines, J. Approximation Theory 

6 (1972) 50-62. 

.. [2] Cox M.G. : The numerical evaluation of b-splines, J. Inst. Maths 

applics 10 (1972) 134-149. 

.. [3] Dierckx P. : Curve and surface fitting with splines, Monographs on 

Numerical Analysis, Oxford University Press, 1993. 

 

""" 

t, c, k = tck 

try: 

c[0][0] 

parametric = True 

except: 

parametric = False 

if parametric: 

return list(map(lambda c, x=x, t=t, k=k: 

spalde(x, [t, c, k]), c)) 

else: 

x = atleast_1d(x) 

if len(x) > 1: 

return list(map(lambda x, tck=tck: spalde(x, tck), x)) 

d, ier = _fitpack._spalde(t, c, k, x[0]) 

if ier == 0: 

return d 

if ier == 10: 

raise TypeError("Invalid input data. t(k)<=x<=t(n-k+1) must hold.") 

raise TypeError("Unknown error") 

 

# def _curfit(x,y,w=None,xb=None,xe=None,k=3,task=0,s=None,t=None, 

# full_output=0,nest=None,per=0,quiet=1): 

 

 

_surfit_cache = {'tx': array([], float), 'ty': array([], float), 

'wrk': array([], float), 'iwrk': array([], intc)} 

 

 

def bisplrep(x, y, z, w=None, xb=None, xe=None, yb=None, ye=None, 

kx=3, ky=3, task=0, s=None, eps=1e-16, tx=None, ty=None, 

full_output=0, nxest=None, nyest=None, quiet=1): 

""" 

Find a bivariate B-spline representation of a surface. 

 

Given a set of data points (x[i], y[i], z[i]) representing a surface 

z=f(x,y), compute a B-spline representation of the surface. Based on 

the routine SURFIT from FITPACK. 

 

Parameters 

---------- 

x, y, z : ndarray 

Rank-1 arrays of data points. 

w : ndarray, optional 

Rank-1 array of weights. By default ``w=np.ones(len(x))``. 

xb, xe : float, optional 

End points of approximation interval in `x`. 

By default ``xb = x.min(), xe=x.max()``. 

yb, ye : float, optional 

End points of approximation interval in `y`. 

By default ``yb=y.min(), ye = y.max()``. 

kx, ky : int, optional 

The degrees of the spline (1 <= kx, ky <= 5). 

Third order (kx=ky=3) is recommended. 

task : int, optional 

If task=0, find knots in x and y and coefficients for a given 

smoothing factor, s. 

If task=1, find knots and coefficients for another value of the 

smoothing factor, s. bisplrep must have been previously called 

with task=0 or task=1. 

If task=-1, find coefficients for a given set of knots tx, ty. 

s : float, optional 

A non-negative smoothing factor. If weights correspond 

to the inverse of the standard-deviation of the errors in z, 

then a good s-value should be found in the range 

``(m-sqrt(2*m),m+sqrt(2*m))`` where m=len(x). 

eps : float, optional 

A threshold for determining the effective rank of an 

over-determined linear system of equations (0 < eps < 1). 

`eps` is not likely to need changing. 

tx, ty : ndarray, optional 

Rank-1 arrays of the knots of the spline for task=-1 

full_output : int, optional 

Non-zero to return optional outputs. 

nxest, nyest : int, optional 

Over-estimates of the total number of knots. If None then 

``nxest = max(kx+sqrt(m/2),2*kx+3)``, 

``nyest = max(ky+sqrt(m/2),2*ky+3)``. 

quiet : int, optional 

Non-zero to suppress printing of messages. 

This parameter is deprecated; use standard Python warning filters 

instead. 

 

Returns 

------- 

tck : array_like 

A list [tx, ty, c, kx, ky] containing the knots (tx, ty) and 

coefficients (c) of the bivariate B-spline representation of the 

surface along with the degree of the spline. 

fp : ndarray 

The weighted sum of squared residuals of the spline approximation. 

ier : int 

An integer flag about splrep success. Success is indicated if 

ier<=0. If ier in [1,2,3] an error occurred but was not raised. 

Otherwise an error is raised. 

msg : str 

A message corresponding to the integer flag, ier. 

 

See Also 

-------- 

splprep, splrep, splint, sproot, splev 

UnivariateSpline, BivariateSpline 

 

Notes 

----- 

See `bisplev` to evaluate the value of the B-spline given its tck 

representation. 

 

References 

---------- 

.. [1] Dierckx P.:An algorithm for surface fitting with spline functions 

Ima J. Numer. Anal. 1 (1981) 267-283. 

.. [2] Dierckx P.:An algorithm for surface fitting with spline functions 

report tw50, Dept. Computer Science,K.U.Leuven, 1980. 

.. [3] Dierckx P.:Curve and surface fitting with splines, Monographs on 

Numerical Analysis, Oxford University Press, 1993. 

 

""" 

x, y, z = map(ravel, [x, y, z]) # ensure 1-d arrays. 

m = len(x) 

if not (m == len(y) == len(z)): 

raise TypeError('len(x)==len(y)==len(z) must hold.') 

if w is None: 

w = ones(m, float) 

else: 

w = atleast_1d(w) 

if not len(w) == m: 

raise TypeError('len(w)=%d is not equal to m=%d' % (len(w), m)) 

if xb is None: 

xb = x.min() 

if xe is None: 

xe = x.max() 

if yb is None: 

yb = y.min() 

if ye is None: 

ye = y.max() 

if not (-1 <= task <= 1): 

raise TypeError('task must be -1, 0 or 1') 

if s is None: 

s = m - sqrt(2*m) 

if tx is None and task == -1: 

raise TypeError('Knots_x must be given for task=-1') 

if tx is not None: 

_surfit_cache['tx'] = atleast_1d(tx) 

nx = len(_surfit_cache['tx']) 

if ty is None and task == -1: 

raise TypeError('Knots_y must be given for task=-1') 

if ty is not None: 

_surfit_cache['ty'] = atleast_1d(ty) 

ny = len(_surfit_cache['ty']) 

if task == -1 and nx < 2*kx+2: 

raise TypeError('There must be at least 2*kx+2 knots_x for task=-1') 

if task == -1 and ny < 2*ky+2: 

raise TypeError('There must be at least 2*ky+2 knots_x for task=-1') 

if not ((1 <= kx <= 5) and (1 <= ky <= 5)): 

raise TypeError('Given degree of the spline (kx,ky=%d,%d) is not ' 

'supported. (1<=k<=5)' % (kx, ky)) 

if m < (kx + 1)*(ky + 1): 

raise TypeError('m >= (kx+1)(ky+1) must hold') 

if nxest is None: 

nxest = int(kx + sqrt(m/2)) 

if nyest is None: 

nyest = int(ky + sqrt(m/2)) 

nxest, nyest = max(nxest, 2*kx + 3), max(nyest, 2*ky + 3) 

if task >= 0 and s == 0: 

nxest = int(kx + sqrt(3*m)) 

nyest = int(ky + sqrt(3*m)) 

if task == -1: 

_surfit_cache['tx'] = atleast_1d(tx) 

_surfit_cache['ty'] = atleast_1d(ty) 

tx, ty = _surfit_cache['tx'], _surfit_cache['ty'] 

wrk = _surfit_cache['wrk'] 

u = nxest - kx - 1 

v = nyest - ky - 1 

km = max(kx, ky) + 1 

ne = max(nxest, nyest) 

bx, by = kx*v + ky + 1, ky*u + kx + 1 

b1, b2 = bx, bx + v - ky 

if bx > by: 

b1, b2 = by, by + u - kx 

msg = "Too many data points to interpolate" 

lwrk1 = _intc_overflow(u*v*(2 + b1 + b2) + 

2*(u + v + km*(m + ne) + ne - kx - ky) + b2 + 1, 

msg=msg) 

lwrk2 = _intc_overflow(u*v*(b2 + 1) + b2, msg=msg) 

tx, ty, c, o = _fitpack._surfit(x, y, z, w, xb, xe, yb, ye, kx, ky, 

task, s, eps, tx, ty, nxest, nyest, 

wrk, lwrk1, lwrk2) 

_curfit_cache['tx'] = tx 

_curfit_cache['ty'] = ty 

_curfit_cache['wrk'] = o['wrk'] 

ier, fp = o['ier'], o['fp'] 

tck = [tx, ty, c, kx, ky] 

 

ierm = min(11, max(-3, ier)) 

if ierm <= 0 and not quiet: 

_mess = (_iermess2[ierm][0] + 

"\tkx,ky=%d,%d nx,ny=%d,%d m=%d fp=%f s=%f" % 

(kx, ky, len(tx), len(ty), m, fp, s)) 

warnings.warn(RuntimeWarning(_mess)) 

if ierm > 0 and not full_output: 

if ier in [1, 2, 3, 4, 5]: 

_mess = ("\n\tkx,ky=%d,%d nx,ny=%d,%d m=%d fp=%f s=%f" % 

(kx, ky, len(tx), len(ty), m, fp, s)) 

warnings.warn(RuntimeWarning(_iermess2[ierm][0] + _mess)) 

else: 

try: 

raise _iermess2[ierm][1](_iermess2[ierm][0]) 

except KeyError: 

raise _iermess2['unknown'][1](_iermess2['unknown'][0]) 

if full_output: 

try: 

return tck, fp, ier, _iermess2[ierm][0] 

except KeyError: 

return tck, fp, ier, _iermess2['unknown'][0] 

else: 

return tck 

 

 

def bisplev(x, y, tck, dx=0, dy=0): 

""" 

Evaluate a bivariate B-spline and its derivatives. 

 

Return a rank-2 array of spline function values (or spline derivative 

values) at points given by the cross-product of the rank-1 arrays `x` and 

`y`. In special cases, return an array or just a float if either `x` or 

`y` or both are floats. Based on BISPEV from FITPACK. 

 

Parameters 

---------- 

x, y : ndarray 

Rank-1 arrays specifying the domain over which to evaluate the 

spline or its derivative. 

tck : tuple 

A sequence of length 5 returned by `bisplrep` containing the knot 

locations, the coefficients, and the degree of the spline: 

[tx, ty, c, kx, ky]. 

dx, dy : int, optional 

The orders of the partial derivatives in `x` and `y` respectively. 

 

Returns 

------- 

vals : ndarray 

The B-spline or its derivative evaluated over the set formed by 

the cross-product of `x` and `y`. 

 

See Also 

-------- 

splprep, splrep, splint, sproot, splev 

UnivariateSpline, BivariateSpline 

 

Notes 

----- 

See `bisplrep` to generate the `tck` representation. 

 

References 

---------- 

.. [1] Dierckx P. : An algorithm for surface fitting 

with spline functions 

Ima J. Numer. Anal. 1 (1981) 267-283. 

.. [2] Dierckx P. : An algorithm for surface fitting 

with spline functions 

report tw50, Dept. Computer Science,K.U.Leuven, 1980. 

.. [3] Dierckx P. : Curve and surface fitting with splines, 

Monographs on Numerical Analysis, Oxford University Press, 1993. 

 

""" 

tx, ty, c, kx, ky = tck 

if not (0 <= dx < kx): 

raise ValueError("0 <= dx = %d < kx = %d must hold" % (dx, kx)) 

if not (0 <= dy < ky): 

raise ValueError("0 <= dy = %d < ky = %d must hold" % (dy, ky)) 

x, y = map(atleast_1d, [x, y]) 

if (len(x.shape) != 1) or (len(y.shape) != 1): 

raise ValueError("First two entries should be rank-1 arrays.") 

z, ier = _fitpack._bispev(tx, ty, c, kx, ky, x, y, dx, dy) 

if ier == 10: 

raise ValueError("Invalid input data") 

if ier: 

raise TypeError("An error occurred") 

z.shape = len(x), len(y) 

if len(z) > 1: 

return z 

if len(z[0]) > 1: 

return z[0] 

return z[0][0] 

 

 

def dblint(xa, xb, ya, yb, tck): 

"""Evaluate the integral of a spline over area [xa,xb] x [ya,yb]. 

 

Parameters 

---------- 

xa, xb : float 

The end-points of the x integration interval. 

ya, yb : float 

The end-points of the y integration interval. 

tck : list [tx, ty, c, kx, ky] 

A sequence of length 5 returned by bisplrep containing the knot 

locations tx, ty, the coefficients c, and the degrees kx, ky 

of the spline. 

 

Returns 

------- 

integ : float 

The value of the resulting integral. 

""" 

tx, ty, c, kx, ky = tck 

return dfitpack.dblint(tx, ty, c, kx, ky, xa, xb, ya, yb) 

 

 

def insert(x, tck, m=1, per=0): 

""" 

Insert knots into a B-spline. 

 

Given the knots and coefficients of a B-spline representation, create a 

new B-spline with a knot inserted `m` times at point `x`. 

This is a wrapper around the FORTRAN routine insert of FITPACK. 

 

Parameters 

---------- 

x (u) : array_like 

A 1-D point at which to insert a new knot(s). If `tck` was returned 

from ``splprep``, then the parameter values, u should be given. 

tck : tuple 

A tuple (t,c,k) returned by ``splrep`` or ``splprep`` containing 

the vector of knots, the B-spline coefficients, 

and the degree of the spline. 

m : int, optional 

The number of times to insert the given knot (its multiplicity). 

Default is 1. 

per : int, optional 

If non-zero, the input spline is considered periodic. 

 

Returns 

------- 

tck : tuple 

A tuple (t,c,k) containing the vector of knots, the B-spline 

coefficients, and the degree of the new spline. 

``t(k+1) <= x <= t(n-k)``, where k is the degree of the spline. 

In case of a periodic spline (``per != 0``) there must be 

either at least k interior knots t(j) satisfying ``t(k+1)<t(j)<=x`` 

or at least k interior knots t(j) satisfying ``x<=t(j)<t(n-k)``. 

 

Notes 

----- 

Based on algorithms from [1]_ and [2]_. 

 

References 

---------- 

.. [1] W. Boehm, "Inserting new knots into b-spline curves.", 

Computer Aided Design, 12, p.199-201, 1980. 

.. [2] P. Dierckx, "Curve and surface fitting with splines, Monographs on 

Numerical Analysis", Oxford University Press, 1993. 

 

""" 

t, c, k = tck 

try: 

c[0][0] 

parametric = True 

except: 

parametric = False 

if parametric: 

cc = [] 

for c_vals in c: 

tt, cc_val, kk = insert(x, [t, c_vals, k], m) 

cc.append(cc_val) 

return (tt, cc, kk) 

else: 

tt, cc, ier = _fitpack._insert(per, t, c, k, x, m) 

if ier == 10: 

raise ValueError("Invalid input data") 

if ier: 

raise TypeError("An error occurred") 

return (tt, cc, k) 

 

 

def splder(tck, n=1): 

""" 

Compute the spline representation of the derivative of a given spline 

 

Parameters 

---------- 

tck : tuple of (t, c, k) 

Spline whose derivative to compute 

n : int, optional 

Order of derivative to evaluate. Default: 1 

 

Returns 

------- 

tck_der : tuple of (t2, c2, k2) 

Spline of order k2=k-n representing the derivative 

of the input spline. 

 

Notes 

----- 

 

.. versionadded:: 0.13.0 

 

See Also 

-------- 

splantider, splev, spalde 

 

Examples 

-------- 

This can be used for finding maxima of a curve: 

 

>>> from scipy.interpolate import splrep, splder, sproot 

>>> x = np.linspace(0, 10, 70) 

>>> y = np.sin(x) 

>>> spl = splrep(x, y, k=4) 

 

Now, differentiate the spline and find the zeros of the 

derivative. (NB: `sproot` only works for order 3 splines, so we 

fit an order 4 spline): 

 

>>> dspl = splder(spl) 

>>> sproot(dspl) / np.pi 

array([ 0.50000001, 1.5 , 2.49999998]) 

 

This agrees well with roots :math:`\\pi/2 + n\\pi` of 

:math:`\\cos(x) = \\sin'(x)`. 

 

""" 

if n < 0: 

return splantider(tck, -n) 

 

t, c, k = tck 

 

if n > k: 

raise ValueError(("Order of derivative (n = %r) must be <= " 

"order of spline (k = %r)") % (n, tck[2])) 

 

# Extra axes for the trailing dims of the `c` array: 

sh = (slice(None),) + ((None,)*len(c.shape[1:])) 

 

with np.errstate(invalid='raise', divide='raise'): 

try: 

for j in range(n): 

# See e.g. Schumaker, Spline Functions: Basic Theory, Chapter 5 

 

# Compute the denominator in the differentiation formula. 

# (and append traling dims, if necessary) 

dt = t[k+1:-1] - t[1:-k-1] 

dt = dt[sh] 

# Compute the new coefficients 

c = (c[1:-1-k] - c[:-2-k]) * k / dt 

# Pad coefficient array to same size as knots (FITPACK 

# convention) 

c = np.r_[c, np.zeros((k,) + c.shape[1:])] 

# Adjust knots 

t = t[1:-1] 

k -= 1 

except FloatingPointError: 

raise ValueError(("The spline has internal repeated knots " 

"and is not differentiable %d times") % n) 

 

return t, c, k 

 

 

def splantider(tck, n=1): 

""" 

Compute the spline for the antiderivative (integral) of a given spline. 

 

Parameters 

---------- 

tck : tuple of (t, c, k) 

Spline whose antiderivative to compute 

n : int, optional 

Order of antiderivative to evaluate. Default: 1 

 

Returns 

------- 

tck_ader : tuple of (t2, c2, k2) 

Spline of order k2=k+n representing the antiderivative of the input 

spline. 

 

See Also 

-------- 

splder, splev, spalde 

 

Notes 

----- 

The `splder` function is the inverse operation of this function. 

Namely, ``splder(splantider(tck))`` is identical to `tck`, modulo 

rounding error. 

 

.. versionadded:: 0.13.0 

 

Examples 

-------- 

>>> from scipy.interpolate import splrep, splder, splantider, splev 

>>> x = np.linspace(0, np.pi/2, 70) 

>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2) 

>>> spl = splrep(x, y) 

 

The derivative is the inverse operation of the antiderivative, 

although some floating point error accumulates: 

 

>>> splev(1.7, spl), splev(1.7, splder(splantider(spl))) 

(array(2.1565429877197317), array(2.1565429877201865)) 

 

Antiderivative can be used to evaluate definite integrals: 

 

>>> ispl = splantider(spl) 

>>> splev(np.pi/2, ispl) - splev(0, ispl) 

2.2572053588768486 

 

This is indeed an approximation to the complete elliptic integral 

:math:`K(m) = \\int_0^{\\pi/2} [1 - m\\sin^2 x]^{-1/2} dx`: 

 

>>> from scipy.special import ellipk 

>>> ellipk(0.8) 

2.2572053268208538 

 

""" 

if n < 0: 

return splder(tck, -n) 

 

t, c, k = tck 

 

# Extra axes for the trailing dims of the `c` array: 

sh = (slice(None),) + (None,)*len(c.shape[1:]) 

 

for j in range(n): 

# This is the inverse set of operations to splder. 

 

# Compute the multiplier in the antiderivative formula. 

dt = t[k+1:] - t[:-k-1] 

dt = dt[sh] 

# Compute the new coefficients 

c = np.cumsum(c[:-k-1] * dt, axis=0) / (k + 1) 

c = np.r_[np.zeros((1,) + c.shape[1:]), 

c, 

[c[-1]] * (k+2)] 

# New knots 

t = np.r_[t[0], t, t[-1]] 

k += 1 

 

return t, c, k