1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

from __future__ import print_function, division, absolute_import 

 

__all__ = ['splrep', 'splprep', 'splev', 'splint', 'sproot', 'spalde', 

'bisplrep', 'bisplev', 'insert', 'splder', 'splantider'] 

 

import warnings 

 

import numpy as np 

 

from ._fitpack_impl import bisplrep, bisplev, dblint 

from . import _fitpack_impl as _impl 

from ._bsplines import BSpline 

 

 

def splprep(x, w=None, u=None, ub=None, ue=None, k=3, task=0, s=None, t=None, 

full_output=0, nest=None, per=0, quiet=1): 

""" 

Find the B-spline representation of an N-dimensional curve. 

 

Given a list of N rank-1 arrays, `x`, which represent a curve in 

N-dimensional space parametrized by `u`, find a smooth approximating 

spline curve g(`u`). Uses the FORTRAN routine parcur from FITPACK. 

 

Parameters 

---------- 

x : array_like 

A list of sample vector arrays representing the curve. 

w : array_like, optional 

Strictly positive rank-1 array of weights the same length as `x[0]`. 

The weights are used in computing the weighted least-squares spline 

fit. If the errors in the `x` values have standard-deviation given by 

the vector d, then `w` should be 1/d. Default is ``ones(len(x[0]))``. 

u : array_like, optional 

An array of parameter values. If not given, these values are 

calculated automatically as ``M = len(x[0])``, where 

 

v[0] = 0 

 

v[i] = v[i-1] + distance(`x[i]`, `x[i-1]`) 

 

u[i] = v[i] / v[M-1] 

 

ub, ue : int, optional 

The end-points of the parameters interval. Defaults to 

u[0] and u[-1]. 

k : int, optional 

Degree of the spline. Cubic splines are recommended. 

Even values of `k` should be avoided especially with a small s-value. 

``1 <= k <= 5``, default is 3. 

task : int, optional 

If task==0 (default), find t and c for a given smoothing factor, s. 

If task==1, find t and c for another value of the smoothing factor, s. 

There must have been a previous call with task=0 or task=1 

for the same set of data. 

If task=-1 find the weighted least square spline for a given set of 

knots, t. 

s : float, optional 

A smoothing condition. The amount of smoothness is determined by 

satisfying the conditions: ``sum((w * (y - g))**2,axis=0) <= s``, 

where g(x) is the smoothed interpolation of (x,y). The user can 

use `s` to control the trade-off between closeness and smoothness 

of fit. Larger `s` means more smoothing while smaller values of `s` 

indicate less smoothing. Recommended values of `s` depend on the 

weights, w. If the weights represent the inverse of the 

standard-deviation of y, then a good `s` value should be found in 

the range ``(m-sqrt(2*m),m+sqrt(2*m))``, where m is the number of 

data points in x, y, and w. 

t : int, optional 

The knots needed for task=-1. 

full_output : int, optional 

If non-zero, then return optional outputs. 

nest : int, optional 

An over-estimate of the total number of knots of the spline to 

help in determining the storage space. By default nest=m/2. 

Always large enough is nest=m+k+1. 

per : int, optional 

If non-zero, data points are considered periodic with period 

``x[m-1] - x[0]`` and a smooth periodic spline approximation is 

returned. Values of ``y[m-1]`` and ``w[m-1]`` are not used. 

quiet : int, optional 

Non-zero to suppress messages. 

This parameter is deprecated; use standard Python warning filters 

instead. 

 

Returns 

------- 

tck : tuple 

(t,c,k) a tuple containing the vector of knots, the B-spline 

coefficients, and the degree of the spline. 

u : array 

An array of the values of the parameter. 

fp : float 

The weighted sum of squared residuals of the spline approximation. 

ier : int 

An integer flag about splrep success. Success is indicated 

if ier<=0. If ier in [1,2,3] an error occurred but was not raised. 

Otherwise an error is raised. 

msg : str 

A message corresponding to the integer flag, ier. 

 

See Also 

-------- 

splrep, splev, sproot, spalde, splint, 

bisplrep, bisplev 

UnivariateSpline, BivariateSpline 

BSpline 

make_interp_spline 

 

Notes 

----- 

See `splev` for evaluation of the spline and its derivatives. 

The number of dimensions N must be smaller than 11. 

 

The number of coefficients in the `c` array is ``k+1`` less then the number 

of knots, ``len(t)``. This is in contrast with `splrep`, which zero-pads 

the array of coefficients to have the same length as the array of knots. 

These additional coefficients are ignored by evaluation routines, `splev` 

and `BSpline`. 

 

References 

---------- 

.. [1] P. Dierckx, "Algorithms for smoothing data with periodic and 

parametric splines, Computer Graphics and Image Processing", 

20 (1982) 171-184. 

.. [2] P. Dierckx, "Algorithms for smoothing data with periodic and 

parametric splines", report tw55, Dept. Computer Science, 

K.U.Leuven, 1981. 

.. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs on 

Numerical Analysis, Oxford University Press, 1993. 

 

Examples 

-------- 

Generate a discretization of a limacon curve in the polar coordinates: 

 

>>> phi = np.linspace(0, 2.*np.pi, 40) 

>>> r = 0.5 + np.cos(phi) # polar coords 

>>> x, y = r * np.cos(phi), r * np.sin(phi) # convert to cartesian 

 

And interpolate: 

 

>>> from scipy.interpolate import splprep, splev 

>>> tck, u = splprep([x, y], s=0) 

>>> new_points = splev(u, tck) 

 

Notice that (i) we force interpolation by using `s=0`, 

(ii) the parameterization, ``u``, is generated automatically. 

Now plot the result: 

 

>>> import matplotlib.pyplot as plt 

>>> fig, ax = plt.subplots() 

>>> ax.plot(x, y, 'ro') 

>>> ax.plot(new_points[0], new_points[1], 'r-') 

>>> plt.show() 

 

""" 

res = _impl.splprep(x, w, u, ub, ue, k, task, s, t, full_output, nest, per, 

quiet) 

return res 

 

 

def splrep(x, y, w=None, xb=None, xe=None, k=3, task=0, s=None, t=None, 

full_output=0, per=0, quiet=1): 

""" 

Find the B-spline representation of 1-D curve. 

 

Given the set of data points ``(x[i], y[i])`` determine a smooth spline 

approximation of degree k on the interval ``xb <= x <= xe``. 

 

Parameters 

---------- 

x, y : array_like 

The data points defining a curve y = f(x). 

w : array_like, optional 

Strictly positive rank-1 array of weights the same length as x and y. 

The weights are used in computing the weighted least-squares spline 

fit. If the errors in the y values have standard-deviation given by the 

vector d, then w should be 1/d. Default is ones(len(x)). 

xb, xe : float, optional 

The interval to fit. If None, these default to x[0] and x[-1] 

respectively. 

k : int, optional 

The degree of the spline fit. It is recommended to use cubic splines. 

Even values of k should be avoided especially with small s values. 

1 <= k <= 5 

task : {1, 0, -1}, optional 

If task==0 find t and c for a given smoothing factor, s. 

 

If task==1 find t and c for another value of the smoothing factor, s. 

There must have been a previous call with task=0 or task=1 for the same 

set of data (t will be stored an used internally) 

 

If task=-1 find the weighted least square spline for a given set of 

knots, t. These should be interior knots as knots on the ends will be 

added automatically. 

s : float, optional 

A smoothing condition. The amount of smoothness is determined by 

satisfying the conditions: sum((w * (y - g))**2,axis=0) <= s where g(x) 

is the smoothed interpolation of (x,y). The user can use s to control 

the tradeoff between closeness and smoothness of fit. Larger s means 

more smoothing while smaller values of s indicate less smoothing. 

Recommended values of s depend on the weights, w. If the weights 

represent the inverse of the standard-deviation of y, then a good s 

value should be found in the range (m-sqrt(2*m),m+sqrt(2*m)) where m is 

the number of datapoints in x, y, and w. default : s=m-sqrt(2*m) if 

weights are supplied. s = 0.0 (interpolating) if no weights are 

supplied. 

t : array_like, optional 

The knots needed for task=-1. If given then task is automatically set 

to -1. 

full_output : bool, optional 

If non-zero, then return optional outputs. 

per : bool, optional 

If non-zero, data points are considered periodic with period x[m-1] - 

x[0] and a smooth periodic spline approximation is returned. Values of 

y[m-1] and w[m-1] are not used. 

quiet : bool, optional 

Non-zero to suppress messages. 

This parameter is deprecated; use standard Python warning filters 

instead. 

 

Returns 

------- 

tck : tuple 

A tuple (t,c,k) containing the vector of knots, the B-spline 

coefficients, and the degree of the spline. 

fp : array, optional 

The weighted sum of squared residuals of the spline approximation. 

ier : int, optional 

An integer flag about splrep success. Success is indicated if ier<=0. 

If ier in [1,2,3] an error occurred but was not raised. Otherwise an 

error is raised. 

msg : str, optional 

A message corresponding to the integer flag, ier. 

 

See Also 

-------- 

UnivariateSpline, BivariateSpline 

splprep, splev, sproot, spalde, splint 

bisplrep, bisplev 

BSpline 

make_interp_spline 

 

Notes 

----- 

See `splev` for evaluation of the spline and its derivatives. Uses the 

FORTRAN routine ``curfit`` from FITPACK. 

 

The user is responsible for assuring that the values of `x` are unique. 

Otherwise, `splrep` will not return sensible results. 

 

If provided, knots `t` must satisfy the Schoenberg-Whitney conditions, 

i.e., there must be a subset of data points ``x[j]`` such that 

``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``. 

 

This routine zero-pads the coefficients array ``c`` to have the same length 

as the array of knots ``t`` (the trailing ``k + 1`` coefficients are ignored 

by the evaluation routines, `splev` and `BSpline`.) This is in contrast with 

`splprep`, which does not zero-pad the coefficients. 

 

References 

---------- 

Based on algorithms described in [1]_, [2]_, [3]_, and [4]_: 

 

.. [1] P. Dierckx, "An algorithm for smoothing, differentiation and 

integration of experimental data using spline functions", 

J.Comp.Appl.Maths 1 (1975) 165-184. 

.. [2] P. Dierckx, "A fast algorithm for smoothing data on a rectangular 

grid while using spline functions", SIAM J.Numer.Anal. 19 (1982) 

1286-1304. 

.. [3] P. Dierckx, "An improved algorithm for curve fitting with spline 

functions", report tw54, Dept. Computer Science,K.U. Leuven, 1981. 

.. [4] P. Dierckx, "Curve and surface fitting with splines", Monographs on 

Numerical Analysis, Oxford University Press, 1993. 

 

Examples 

-------- 

 

>>> import matplotlib.pyplot as plt 

>>> from scipy.interpolate import splev, splrep 

>>> x = np.linspace(0, 10, 10) 

>>> y = np.sin(x) 

>>> spl = splrep(x, y) 

>>> x2 = np.linspace(0, 10, 200) 

>>> y2 = splev(x2, spl) 

>>> plt.plot(x, y, 'o', x2, y2) 

>>> plt.show() 

 

""" 

res = _impl.splrep(x, y, w, xb, xe, k, task, s, t, full_output, per, quiet) 

return res 

 

 

def splev(x, tck, der=0, ext=0): 

""" 

Evaluate a B-spline or its derivatives. 

 

Given the knots and coefficients of a B-spline representation, evaluate 

the value of the smoothing polynomial and its derivatives. This is a 

wrapper around the FORTRAN routines splev and splder of FITPACK. 

 

Parameters 

---------- 

x : array_like 

An array of points at which to return the value of the smoothed 

spline or its derivatives. If `tck` was returned from `splprep`, 

then the parameter values, u should be given. 

tck : 3-tuple or a BSpline object 

If a tuple, then it should be a sequence of length 3 returned by 

`splrep` or `splprep` containing the knots, coefficients, and degree 

of the spline. (Also see Notes.) 

der : int, optional 

The order of derivative of the spline to compute (must be less than 

or equal to k). 

ext : int, optional 

Controls the value returned for elements of ``x`` not in the 

interval defined by the knot sequence. 

 

* if ext=0, return the extrapolated value. 

* if ext=1, return 0 

* if ext=2, raise a ValueError 

* if ext=3, return the boundary value. 

 

The default value is 0. 

 

Returns 

------- 

y : ndarray or list of ndarrays 

An array of values representing the spline function evaluated at 

the points in `x`. If `tck` was returned from `splprep`, then this 

is a list of arrays representing the curve in N-dimensional space. 

 

Notes 

----- 

Manipulating the tck-tuples directly is not recommended. In new code, 

prefer using `BSpline` objects. 

 

See Also 

-------- 

splprep, splrep, sproot, spalde, splint 

bisplrep, bisplev 

BSpline 

 

References 

---------- 

.. [1] C. de Boor, "On calculating with b-splines", J. Approximation 

Theory, 6, p.50-62, 1972. 

.. [2] M. G. Cox, "The numerical evaluation of b-splines", J. Inst. Maths 

Applics, 10, p.134-149, 1972. 

.. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs 

on Numerical Analysis, Oxford University Press, 1993. 

 

""" 

if isinstance(tck, BSpline): 

if tck.c.ndim > 1: 

mesg = ("Calling splev() with BSpline objects with c.ndim > 1 is " 

"not recommended. Use BSpline.__call__(x) instead.") 

warnings.warn(mesg, DeprecationWarning) 

 

# remap the out-of-bounds behavior 

try: 

extrapolate = {0: True, }[ext] 

except KeyError: 

raise ValueError("Extrapolation mode %s is not supported " 

"by BSpline." % ext) 

 

return tck(x, der, extrapolate=extrapolate) 

else: 

return _impl.splev(x, tck, der, ext) 

 

 

def splint(a, b, tck, full_output=0): 

""" 

Evaluate the definite integral of a B-spline between two given points. 

 

Parameters 

---------- 

a, b : float 

The end-points of the integration interval. 

tck : tuple or a BSpline instance 

If a tuple, then it should be a sequence of length 3, containing the 

vector of knots, the B-spline coefficients, and the degree of the 

spline (see `splev`). 

full_output : int, optional 

Non-zero to return optional output. 

 

Returns 

------- 

integral : float 

The resulting integral. 

wrk : ndarray 

An array containing the integrals of the normalized B-splines 

defined on the set of knots. 

(Only returned if `full_output` is non-zero) 

 

Notes 

----- 

`splint` silently assumes that the spline function is zero outside the data 

interval (`a`, `b`). 

 

Manipulating the tck-tuples directly is not recommended. In new code, 

prefer using the `BSpline` objects. 

 

See Also 

-------- 

splprep, splrep, sproot, spalde, splev 

bisplrep, bisplev 

BSpline 

 

References 

---------- 

.. [1] P.W. Gaffney, The calculation of indefinite integrals of b-splines", 

J. Inst. Maths Applics, 17, p.37-41, 1976. 

.. [2] P. Dierckx, "Curve and surface fitting with splines", Monographs 

on Numerical Analysis, Oxford University Press, 1993. 

 

""" 

if isinstance(tck, BSpline): 

if tck.c.ndim > 1: 

mesg = ("Calling splint() with BSpline objects with c.ndim > 1 is " 

"not recommended. Use BSpline.integrate() instead.") 

warnings.warn(mesg, DeprecationWarning) 

 

if full_output != 0: 

mesg = ("full_output = %s is not supported. Proceeding as if " 

"full_output = 0" % full_output) 

 

return tck.integrate(a, b, extrapolate=False) 

else: 

return _impl.splint(a, b, tck, full_output) 

 

 

def sproot(tck, mest=10): 

""" 

Find the roots of a cubic B-spline. 

 

Given the knots (>=8) and coefficients of a cubic B-spline return the 

roots of the spline. 

 

Parameters 

---------- 

tck : tuple or a BSpline object 

If a tuple, then it should be a sequence of length 3, containing the 

vector of knots, the B-spline coefficients, and the degree of the 

spline. 

The number of knots must be >= 8, and the degree must be 3. 

The knots must be a montonically increasing sequence. 

mest : int, optional 

An estimate of the number of zeros (Default is 10). 

 

Returns 

------- 

zeros : ndarray 

An array giving the roots of the spline. 

 

Notes 

----- 

Manipulating the tck-tuples directly is not recommended. In new code, 

prefer using the `BSpline` objects. 

 

See also 

-------- 

splprep, splrep, splint, spalde, splev 

bisplrep, bisplev 

BSpline 

 

 

References 

---------- 

.. [1] C. de Boor, "On calculating with b-splines", J. Approximation 

Theory, 6, p.50-62, 1972. 

.. [2] M. G. Cox, "The numerical evaluation of b-splines", J. Inst. Maths 

Applics, 10, p.134-149, 1972. 

.. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs 

on Numerical Analysis, Oxford University Press, 1993. 

 

""" 

if isinstance(tck, BSpline): 

if tck.c.ndim > 1: 

mesg = ("Calling sproot() with BSpline objects with c.ndim > 1 is " 

"not recommended.") 

warnings.warn(mesg, DeprecationWarning) 

 

t, c, k = tck.tck 

 

# _impl.sproot expects the interpolation axis to be last, so roll it. 

# NB: This transpose is a no-op if c is 1D. 

sh = tuple(range(c.ndim)) 

c = c.transpose(sh[1:] + (0,)) 

return _impl.sproot((t, c, k), mest) 

else: 

return _impl.sproot(tck, mest) 

 

 

def spalde(x, tck): 

""" 

Evaluate all derivatives of a B-spline. 

 

Given the knots and coefficients of a cubic B-spline compute all 

derivatives up to order k at a point (or set of points). 

 

Parameters 

---------- 

x : array_like 

A point or a set of points at which to evaluate the derivatives. 

Note that ``t(k) <= x <= t(n-k+1)`` must hold for each `x`. 

tck : tuple 

A tuple ``(t, c, k)``, containing the vector of knots, the B-spline 

coefficients, and the degree of the spline (see `splev`). 

 

Returns 

------- 

results : {ndarray, list of ndarrays} 

An array (or a list of arrays) containing all derivatives 

up to order k inclusive for each point `x`. 

 

See Also 

-------- 

splprep, splrep, splint, sproot, splev, bisplrep, bisplev, 

BSpline 

 

References 

---------- 

.. [1] C. de Boor: On calculating with b-splines, J. Approximation Theory 

6 (1972) 50-62. 

.. [2] M. G. Cox : The numerical evaluation of b-splines, J. Inst. Maths 

applics 10 (1972) 134-149. 

.. [3] P. Dierckx : Curve and surface fitting with splines, Monographs on 

Numerical Analysis, Oxford University Press, 1993. 

 

""" 

if isinstance(tck, BSpline): 

raise TypeError("spalde does not accept BSpline instances.") 

else: 

return _impl.spalde(x, tck) 

 

 

def insert(x, tck, m=1, per=0): 

""" 

Insert knots into a B-spline. 

 

Given the knots and coefficients of a B-spline representation, create a 

new B-spline with a knot inserted `m` times at point `x`. 

This is a wrapper around the FORTRAN routine insert of FITPACK. 

 

Parameters 

---------- 

x (u) : array_like 

A 1-D point at which to insert a new knot(s). If `tck` was returned 

from ``splprep``, then the parameter values, u should be given. 

tck : a `BSpline` instance or a tuple 

If tuple, then it is expected to be a tuple (t,c,k) containing 

the vector of knots, the B-spline coefficients, and the degree of 

the spline. 

m : int, optional 

The number of times to insert the given knot (its multiplicity). 

Default is 1. 

per : int, optional 

If non-zero, the input spline is considered periodic. 

 

Returns 

------- 

BSpline instance or a tuple 

A new B-spline with knots t, coefficients c, and degree k. 

``t(k+1) <= x <= t(n-k)``, where k is the degree of the spline. 

In case of a periodic spline (``per != 0``) there must be 

either at least k interior knots t(j) satisfying ``t(k+1)<t(j)<=x`` 

or at least k interior knots t(j) satisfying ``x<=t(j)<t(n-k)``. 

A tuple is returned iff the input argument `tck` is a tuple, otherwise 

a BSpline object is constructed and returned. 

 

Notes 

----- 

Based on algorithms from [1]_ and [2]_. 

 

Manipulating the tck-tuples directly is not recommended. In new code, 

prefer using the `BSpline` objects. 

 

References 

---------- 

.. [1] W. Boehm, "Inserting new knots into b-spline curves.", 

Computer Aided Design, 12, p.199-201, 1980. 

.. [2] P. Dierckx, "Curve and surface fitting with splines, Monographs on 

Numerical Analysis", Oxford University Press, 1993. 

 

""" 

if isinstance(tck, BSpline): 

 

t, c, k = tck.tck 

 

# FITPACK expects the interpolation axis to be last, so roll it over 

# NB: if c array is 1D, transposes are no-ops 

sh = tuple(range(c.ndim)) 

c = c.transpose(sh[1:] + (0,)) 

t_, c_, k_ = _impl.insert(x, (t, c, k), m, per) 

 

# and roll the last axis back 

c_ = np.asarray(c_) 

c_ = c_.transpose((sh[-1],) + sh[:-1]) 

return BSpline(t_, c_, k_) 

else: 

return _impl.insert(x, tck, m, per) 

 

 

def splder(tck, n=1): 

""" 

Compute the spline representation of the derivative of a given spline 

 

Parameters 

---------- 

tck : BSpline instance or a tuple of (t, c, k) 

Spline whose derivative to compute 

n : int, optional 

Order of derivative to evaluate. Default: 1 

 

Returns 

------- 

`BSpline` instance or tuple 

Spline of order k2=k-n representing the derivative 

of the input spline. 

A tuple is returned iff the input argument `tck` is a tuple, otherwise 

a BSpline object is constructed and returned. 

 

Notes 

----- 

 

.. versionadded:: 0.13.0 

 

See Also 

-------- 

splantider, splev, spalde 

BSpline 

 

Examples 

-------- 

This can be used for finding maxima of a curve: 

 

>>> from scipy.interpolate import splrep, splder, sproot 

>>> x = np.linspace(0, 10, 70) 

>>> y = np.sin(x) 

>>> spl = splrep(x, y, k=4) 

 

Now, differentiate the spline and find the zeros of the 

derivative. (NB: `sproot` only works for order 3 splines, so we 

fit an order 4 spline): 

 

>>> dspl = splder(spl) 

>>> sproot(dspl) / np.pi 

array([ 0.50000001, 1.5 , 2.49999998]) 

 

This agrees well with roots :math:`\\pi/2 + n\\pi` of 

:math:`\\cos(x) = \\sin'(x)`. 

 

""" 

if isinstance(tck, BSpline): 

return tck.derivative(n) 

else: 

return _impl.splder(tck, n) 

 

 

def splantider(tck, n=1): 

""" 

Compute the spline for the antiderivative (integral) of a given spline. 

 

Parameters 

---------- 

tck : BSpline instance or a tuple of (t, c, k) 

Spline whose antiderivative to compute 

n : int, optional 

Order of antiderivative to evaluate. Default: 1 

 

Returns 

------- 

BSpline instance or a tuple of (t2, c2, k2) 

Spline of order k2=k+n representing the antiderivative of the input 

spline. 

A tuple is returned iff the input argument `tck` is a tuple, otherwise 

a BSpline object is constructed and returned. 

 

See Also 

-------- 

splder, splev, spalde 

BSpline 

 

Notes 

----- 

The `splder` function is the inverse operation of this function. 

Namely, ``splder(splantider(tck))`` is identical to `tck`, modulo 

rounding error. 

 

.. versionadded:: 0.13.0 

 

Examples 

-------- 

>>> from scipy.interpolate import splrep, splder, splantider, splev 

>>> x = np.linspace(0, np.pi/2, 70) 

>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2) 

>>> spl = splrep(x, y) 

 

The derivative is the inverse operation of the antiderivative, 

although some floating point error accumulates: 

 

>>> splev(1.7, spl), splev(1.7, splder(splantider(spl))) 

(array(2.1565429877197317), array(2.1565429877201865)) 

 

Antiderivative can be used to evaluate definite integrals: 

 

>>> ispl = splantider(spl) 

>>> splev(np.pi/2, ispl) - splev(0, ispl) 

2.2572053588768486 

 

This is indeed an approximation to the complete elliptic integral 

:math:`K(m) = \\int_0^{\\pi/2} [1 - m\\sin^2 x]^{-1/2} dx`: 

 

>>> from scipy.special import ellipk 

>>> ellipk(0.8) 

2.2572053268208538 

 

""" 

if isinstance(tck, BSpline): 

return tck.antiderivative(n) 

else: 

return _impl.splantider(tck, n)