1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

""" Classes for interpolating values. 

""" 

from __future__ import division, print_function, absolute_import 

 

 

__all__ = ['interp1d', 'interp2d', 'spline', 'spleval', 'splmake', 'spltopp', 

'lagrange', 'PPoly', 'BPoly', 'NdPPoly', 

'RegularGridInterpolator', 'interpn'] 

 

 

import itertools 

import warnings 

import functools 

import operator 

 

import numpy as np 

from numpy import (array, transpose, searchsorted, atleast_1d, atleast_2d, 

dot, ravel, poly1d, asarray, intp) 

 

import scipy.linalg 

import scipy.special as spec 

from scipy.special import comb 

 

from scipy._lib.six import xrange, integer_types, string_types 

 

from . import fitpack 

from . import dfitpack 

from . import _fitpack 

from .polyint import _Interpolator1D 

from . import _ppoly 

from .fitpack2 import RectBivariateSpline 

from .interpnd import _ndim_coords_from_arrays 

from ._bsplines import make_interp_spline, BSpline 

 

 

def prod(x): 

"""Product of a list of numbers; ~40x faster vs np.prod for Python tuples""" 

if len(x) == 0: 

return 1 

return functools.reduce(operator.mul, x) 

 

 

def lagrange(x, w): 

r""" 

Return a Lagrange interpolating polynomial. 

 

Given two 1-D arrays `x` and `w,` returns the Lagrange interpolating 

polynomial through the points ``(x, w)``. 

 

Warning: This implementation is numerically unstable. Do not expect to 

be able to use more than about 20 points even if they are chosen optimally. 

 

Parameters 

---------- 

x : array_like 

`x` represents the x-coordinates of a set of datapoints. 

w : array_like 

`w` represents the y-coordinates of a set of datapoints, i.e. f(`x`). 

 

Returns 

------- 

lagrange : `numpy.poly1d` instance 

The Lagrange interpolating polynomial. 

 

Examples 

-------- 

Interpolate :math:`f(x) = x^3` by 3 points. 

 

>>> from scipy.interpolate import lagrange 

>>> x = np.array([0, 1, 2]) 

>>> y = x**3 

>>> poly = lagrange(x, y) 

 

Since there are only 3 points, Lagrange polynomial has degree 2. Explicitly, 

it is given by 

 

.. math:: 

 

\begin{aligned} 

L(x) &= 1\times \frac{x (x - 2)}{-1} + 8\times \frac{x (x-1)}{2} \\ 

&= x (-2 + 3x) 

\end{aligned} 

 

>>> from numpy.polynomial.polynomial import Polynomial 

>>> Polynomial(poly).coef 

array([ 3., -2., 0.]) 

 

""" 

 

M = len(x) 

p = poly1d(0.0) 

for j in xrange(M): 

pt = poly1d(w[j]) 

for k in xrange(M): 

if k == j: 

continue 

fac = x[j]-x[k] 

pt *= poly1d([1.0, -x[k]])/fac 

p += pt 

return p 

 

 

# !! Need to find argument for keeping initialize. If it isn't 

# !! found, get rid of it! 

 

 

class interp2d(object): 

""" 

interp2d(x, y, z, kind='linear', copy=True, bounds_error=False, 

fill_value=nan) 

 

Interpolate over a 2-D grid. 

 

`x`, `y` and `z` are arrays of values used to approximate some function 

f: ``z = f(x, y)``. This class returns a function whose call method uses 

spline interpolation to find the value of new points. 

 

If `x` and `y` represent a regular grid, consider using 

RectBivariateSpline. 

 

Note that calling `interp2d` with NaNs present in input values results in 

undefined behaviour. 

 

Methods 

------- 

__call__ 

 

Parameters 

---------- 

x, y : array_like 

Arrays defining the data point coordinates. 

 

If the points lie on a regular grid, `x` can specify the column 

coordinates and `y` the row coordinates, for example:: 

 

>>> x = [0,1,2]; y = [0,3]; z = [[1,2,3], [4,5,6]] 

 

Otherwise, `x` and `y` must specify the full coordinates for each 

point, for example:: 

 

>>> x = [0,1,2,0,1,2]; y = [0,0,0,3,3,3]; z = [1,2,3,4,5,6] 

 

If `x` and `y` are multi-dimensional, they are flattened before use. 

z : array_like 

The values of the function to interpolate at the data points. If 

`z` is a multi-dimensional array, it is flattened before use. The 

length of a flattened `z` array is either 

len(`x`)*len(`y`) if `x` and `y` specify the column and row coordinates 

or ``len(z) == len(x) == len(y)`` if `x` and `y` specify coordinates 

for each point. 

kind : {'linear', 'cubic', 'quintic'}, optional 

The kind of spline interpolation to use. Default is 'linear'. 

copy : bool, optional 

If True, the class makes internal copies of x, y and z. 

If False, references may be used. The default is to copy. 

bounds_error : bool, optional 

If True, when interpolated values are requested outside of the 

domain of the input data (x,y), a ValueError is raised. 

If False, then `fill_value` is used. 

fill_value : number, optional 

If provided, the value to use for points outside of the 

interpolation domain. If omitted (None), values outside 

the domain are extrapolated. 

 

See Also 

-------- 

RectBivariateSpline : 

Much faster 2D interpolation if your input data is on a grid 

bisplrep, bisplev : 

Spline interpolation based on FITPACK 

BivariateSpline : a more recent wrapper of the FITPACK routines 

interp1d : one dimension version of this function 

 

Notes 

----- 

The minimum number of data points required along the interpolation 

axis is ``(k+1)**2``, with k=1 for linear, k=3 for cubic and k=5 for 

quintic interpolation. 

 

The interpolator is constructed by `bisplrep`, with a smoothing factor 

of 0. If more control over smoothing is needed, `bisplrep` should be 

used directly. 

 

Examples 

-------- 

Construct a 2-D grid and interpolate on it: 

 

>>> from scipy import interpolate 

>>> x = np.arange(-5.01, 5.01, 0.25) 

>>> y = np.arange(-5.01, 5.01, 0.25) 

>>> xx, yy = np.meshgrid(x, y) 

>>> z = np.sin(xx**2+yy**2) 

>>> f = interpolate.interp2d(x, y, z, kind='cubic') 

 

Now use the obtained interpolation function and plot the result: 

 

>>> import matplotlib.pyplot as plt 

>>> xnew = np.arange(-5.01, 5.01, 1e-2) 

>>> ynew = np.arange(-5.01, 5.01, 1e-2) 

>>> znew = f(xnew, ynew) 

>>> plt.plot(x, z[0, :], 'ro-', xnew, znew[0, :], 'b-') 

>>> plt.show() 

""" 

 

def __init__(self, x, y, z, kind='linear', copy=True, bounds_error=False, 

fill_value=None): 

x = ravel(x) 

y = ravel(y) 

z = asarray(z) 

 

rectangular_grid = (z.size == len(x) * len(y)) 

if rectangular_grid: 

if z.ndim == 2: 

if z.shape != (len(y), len(x)): 

raise ValueError("When on a regular grid with x.size = m " 

"and y.size = n, if z.ndim == 2, then z " 

"must have shape (n, m)") 

if not np.all(x[1:] >= x[:-1]): 

j = np.argsort(x) 

x = x[j] 

z = z[:, j] 

if not np.all(y[1:] >= y[:-1]): 

j = np.argsort(y) 

y = y[j] 

z = z[j, :] 

z = ravel(z.T) 

else: 

z = ravel(z) 

if len(x) != len(y): 

raise ValueError( 

"x and y must have equal lengths for non rectangular grid") 

if len(z) != len(x): 

raise ValueError( 

"Invalid length for input z for non rectangular grid") 

 

try: 

kx = ky = {'linear': 1, 

'cubic': 3, 

'quintic': 5}[kind] 

except KeyError: 

raise ValueError("Unsupported interpolation type.") 

 

if not rectangular_grid: 

# TODO: surfit is really not meant for interpolation! 

self.tck = fitpack.bisplrep(x, y, z, kx=kx, ky=ky, s=0.0) 

else: 

nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth( 

x, y, z, None, None, None, None, 

kx=kx, ky=ky, s=0.0) 

self.tck = (tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)], 

kx, ky) 

 

self.bounds_error = bounds_error 

self.fill_value = fill_value 

self.x, self.y, self.z = [array(a, copy=copy) for a in (x, y, z)] 

 

self.x_min, self.x_max = np.amin(x), np.amax(x) 

self.y_min, self.y_max = np.amin(y), np.amax(y) 

 

def __call__(self, x, y, dx=0, dy=0, assume_sorted=False): 

"""Interpolate the function. 

 

Parameters 

---------- 

x : 1D array 

x-coordinates of the mesh on which to interpolate. 

y : 1D array 

y-coordinates of the mesh on which to interpolate. 

dx : int >= 0, < kx 

Order of partial derivatives in x. 

dy : int >= 0, < ky 

Order of partial derivatives in y. 

assume_sorted : bool, optional 

If False, values of `x` and `y` can be in any order and they are 

sorted first. 

If True, `x` and `y` have to be arrays of monotonically 

increasing values. 

 

Returns 

------- 

z : 2D array with shape (len(y), len(x)) 

The interpolated values. 

""" 

 

x = atleast_1d(x) 

y = atleast_1d(y) 

 

if x.ndim != 1 or y.ndim != 1: 

raise ValueError("x and y should both be 1-D arrays") 

 

if not assume_sorted: 

x = np.sort(x) 

y = np.sort(y) 

 

if self.bounds_error or self.fill_value is not None: 

out_of_bounds_x = (x < self.x_min) | (x > self.x_max) 

out_of_bounds_y = (y < self.y_min) | (y > self.y_max) 

 

any_out_of_bounds_x = np.any(out_of_bounds_x) 

any_out_of_bounds_y = np.any(out_of_bounds_y) 

 

if self.bounds_error and (any_out_of_bounds_x or any_out_of_bounds_y): 

raise ValueError("Values out of range; x must be in %r, y in %r" 

% ((self.x_min, self.x_max), 

(self.y_min, self.y_max))) 

 

z = fitpack.bisplev(x, y, self.tck, dx, dy) 

z = atleast_2d(z) 

z = transpose(z) 

 

if self.fill_value is not None: 

if any_out_of_bounds_x: 

z[:, out_of_bounds_x] = self.fill_value 

if any_out_of_bounds_y: 

z[out_of_bounds_y, :] = self.fill_value 

 

if len(z) == 1: 

z = z[0] 

return array(z) 

 

 

def _check_broadcast_up_to(arr_from, shape_to, name): 

"""Helper to check that arr_from broadcasts up to shape_to""" 

shape_from = arr_from.shape 

if len(shape_to) >= len(shape_from): 

for t, f in zip(shape_to[::-1], shape_from[::-1]): 

if f != 1 and f != t: 

break 

else: # all checks pass, do the upcasting that we need later 

if arr_from.size != 1 and arr_from.shape != shape_to: 

arr_from = np.ones(shape_to, arr_from.dtype) * arr_from 

return arr_from.ravel() 

# at least one check failed 

raise ValueError('%s argument must be able to broadcast up ' 

'to shape %s but had shape %s' 

% (name, shape_to, shape_from)) 

 

 

def _do_extrapolate(fill_value): 

"""Helper to check if fill_value == "extrapolate" without warnings""" 

return (isinstance(fill_value, string_types) and 

fill_value == 'extrapolate') 

 

 

class interp1d(_Interpolator1D): 

""" 

Interpolate a 1-D function. 

 

`x` and `y` are arrays of values used to approximate some function f: 

``y = f(x)``. This class returns a function whose call method uses 

interpolation to find the value of new points. 

 

Note that calling `interp1d` with NaNs present in input values results in 

undefined behaviour. 

 

Parameters 

---------- 

x : (N,) array_like 

A 1-D array of real values. 

y : (...,N,...) array_like 

A N-D array of real values. The length of `y` along the interpolation 

axis must be equal to the length of `x`. 

kind : str or int, optional 

Specifies the kind of interpolation as a string 

('linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 

'previous', 'next', where 'zero', 'slinear', 'quadratic' and 'cubic' 

refer to a spline interpolation of zeroth, first, second or third 

order; 'previous' and 'next' simply return the previous or next value 

of the point) or as an integer specifying the order of the spline 

interpolator to use. 

Default is 'linear'. 

axis : int, optional 

Specifies the axis of `y` along which to interpolate. 

Interpolation defaults to the last axis of `y`. 

copy : bool, optional 

If True, the class makes internal copies of x and y. 

If False, references to `x` and `y` are used. The default is to copy. 

bounds_error : bool, optional 

If True, a ValueError is raised any time interpolation is attempted on 

a value outside of the range of x (where extrapolation is 

necessary). If False, out of bounds values are assigned `fill_value`. 

By default, an error is raised unless `fill_value="extrapolate"`. 

fill_value : array-like or (array-like, array_like) or "extrapolate", optional 

- if a ndarray (or float), this value will be used to fill in for 

requested points outside of the data range. If not provided, then 

the default is NaN. The array-like must broadcast properly to the 

dimensions of the non-interpolation axes. 

- If a two-element tuple, then the first element is used as a 

fill value for ``x_new < x[0]`` and the second element is used for 

``x_new > x[-1]``. Anything that is not a 2-element tuple (e.g., 

list or ndarray, regardless of shape) is taken to be a single 

array-like argument meant to be used for both bounds as 

``below, above = fill_value, fill_value``. 

 

.. versionadded:: 0.17.0 

- If "extrapolate", then points outside the data range will be 

extrapolated. 

 

.. versionadded:: 0.17.0 

assume_sorted : bool, optional 

If False, values of `x` can be in any order and they are sorted first. 

If True, `x` has to be an array of monotonically increasing values. 

 

Methods 

------- 

__call__ 

 

See Also 

-------- 

splrep, splev 

Spline interpolation/smoothing based on FITPACK. 

UnivariateSpline : An object-oriented wrapper of the FITPACK routines. 

interp2d : 2-D interpolation 

 

Examples 

-------- 

>>> import matplotlib.pyplot as plt 

>>> from scipy import interpolate 

>>> x = np.arange(0, 10) 

>>> y = np.exp(-x/3.0) 

>>> f = interpolate.interp1d(x, y) 

 

>>> xnew = np.arange(0, 9, 0.1) 

>>> ynew = f(xnew) # use interpolation function returned by `interp1d` 

>>> plt.plot(x, y, 'o', xnew, ynew, '-') 

>>> plt.show() 

""" 

 

def __init__(self, x, y, kind='linear', axis=-1, 

copy=True, bounds_error=None, fill_value=np.nan, 

assume_sorted=False): 

""" Initialize a 1D linear interpolation class.""" 

_Interpolator1D.__init__(self, x, y, axis=axis) 

 

self.bounds_error = bounds_error # used by fill_value setter 

self.copy = copy 

 

if kind in ['zero', 'slinear', 'quadratic', 'cubic']: 

order = {'zero': 0, 'slinear': 1, 

'quadratic': 2, 'cubic': 3}[kind] 

kind = 'spline' 

elif isinstance(kind, int): 

order = kind 

kind = 'spline' 

elif kind not in ('linear', 'nearest', 'previous', 'next'): 

raise NotImplementedError("%s is unsupported: Use fitpack " 

"routines for other types." % kind) 

x = array(x, copy=self.copy) 

y = array(y, copy=self.copy) 

 

if not assume_sorted: 

ind = np.argsort(x) 

x = x[ind] 

y = np.take(y, ind, axis=axis) 

 

if x.ndim != 1: 

raise ValueError("the x array must have exactly one dimension.") 

if y.ndim == 0: 

raise ValueError("the y array must have at least one dimension.") 

 

# Force-cast y to a floating-point type, if it's not yet one 

if not issubclass(y.dtype.type, np.inexact): 

y = y.astype(np.float_) 

 

# Backward compatibility 

self.axis = axis % y.ndim 

 

# Interpolation goes internally along the first axis 

self.y = y 

self._y = self._reshape_yi(self.y) 

self.x = x 

del y, x # clean up namespace to prevent misuse; use attributes 

self._kind = kind 

self.fill_value = fill_value # calls the setter, can modify bounds_err 

 

# Adjust to interpolation kind; store reference to *unbound* 

# interpolation methods, in order to avoid circular references to self 

# stored in the bound instance methods, and therefore delayed garbage 

# collection. See: http://docs.python.org/2/reference/datamodel.html 

if kind in ('linear', 'nearest', 'previous', 'next'): 

# Make a "view" of the y array that is rotated to the interpolation 

# axis. 

minval = 2 

if kind == 'nearest': 

# Do division before addition to prevent possible integer 

# overflow 

self.x_bds = self.x / 2.0 

self.x_bds = self.x_bds[1:] + self.x_bds[:-1] 

 

self._call = self.__class__._call_nearest 

elif kind == 'previous': 

# Side for np.searchsorted and index for clipping 

self._side = 'left' 

self._ind = 0 

# Move x by one floating point value to the left 

self._x_shift = np.nextafter(self.x, -np.inf) 

self._call = self.__class__._call_previousnext 

elif kind == 'next': 

self._side = 'right' 

self._ind = 1 

# Move x by one floating point value to the right 

self._x_shift = np.nextafter(self.x, np.inf) 

self._call = self.__class__._call_previousnext 

else: 

# Check if we can delegate to numpy.interp (2x-10x faster). 

cond = self.x.dtype == np.float_ and self.y.dtype == np.float_ 

cond = cond and self.y.ndim == 1 

cond = cond and not _do_extrapolate(fill_value) 

 

if cond: 

self._call = self.__class__._call_linear_np 

else: 

self._call = self.__class__._call_linear 

else: 

minval = order + 1 

 

rewrite_nan = False 

xx, yy = self.x, self._y 

if order > 1: 

# Quadratic or cubic spline. If input contains even a single 

# nan, then the output is all nans. We cannot just feed data 

# with nans to make_interp_spline because it calls LAPACK. 

# So, we make up a bogus x and y with no nans and use it 

# to get the correct shape of the output, which we then fill 

# with nans. 

# For slinear or zero order spline, we just pass nans through. 

if np.isnan(self.x).any(): 

xx = np.linspace(min(self.x), max(self.x), len(self.x)) 

rewrite_nan = True 

if np.isnan(self._y).any(): 

yy = np.ones_like(self._y) 

rewrite_nan = True 

 

self._spline = make_interp_spline(xx, yy, k=order, 

check_finite=False) 

if rewrite_nan: 

self._call = self.__class__._call_nan_spline 

else: 

self._call = self.__class__._call_spline 

 

if len(self.x) < minval: 

raise ValueError("x and y arrays must have at " 

"least %d entries" % minval) 

 

@property 

def fill_value(self): 

# backwards compat: mimic a public attribute 

return self._fill_value_orig 

 

@fill_value.setter 

def fill_value(self, fill_value): 

# extrapolation only works for nearest neighbor and linear methods 

if _do_extrapolate(fill_value): 

if self.bounds_error: 

raise ValueError("Cannot extrapolate and raise " 

"at the same time.") 

self.bounds_error = False 

self._extrapolate = True 

else: 

broadcast_shape = (self.y.shape[:self.axis] + 

self.y.shape[self.axis + 1:]) 

if len(broadcast_shape) == 0: 

broadcast_shape = (1,) 

# it's either a pair (_below_range, _above_range) or a single value 

# for both above and below range 

if isinstance(fill_value, tuple) and len(fill_value) == 2: 

below_above = [np.asarray(fill_value[0]), 

np.asarray(fill_value[1])] 

names = ('fill_value (below)', 'fill_value (above)') 

for ii in range(2): 

below_above[ii] = _check_broadcast_up_to( 

below_above[ii], broadcast_shape, names[ii]) 

else: 

fill_value = np.asarray(fill_value) 

below_above = [_check_broadcast_up_to( 

fill_value, broadcast_shape, 'fill_value')] * 2 

self._fill_value_below, self._fill_value_above = below_above 

self._extrapolate = False 

if self.bounds_error is None: 

self.bounds_error = True 

# backwards compat: fill_value was a public attr; make it writeable 

self._fill_value_orig = fill_value 

 

def _call_linear_np(self, x_new): 

# Note that out-of-bounds values are taken care of in self._evaluate 

return np.interp(x_new, self.x, self.y) 

 

def _call_linear(self, x_new): 

# 2. Find where in the original data, the values to interpolate 

# would be inserted. 

# Note: If x_new[n] == x[m], then m is returned by searchsorted. 

x_new_indices = searchsorted(self.x, x_new) 

 

# 3. Clip x_new_indices so that they are within the range of 

# self.x indices and at least 1. Removes mis-interpolation 

# of x_new[n] = x[0] 

x_new_indices = x_new_indices.clip(1, len(self.x)-1).astype(int) 

 

# 4. Calculate the slope of regions that each x_new value falls in. 

lo = x_new_indices - 1 

hi = x_new_indices 

 

x_lo = self.x[lo] 

x_hi = self.x[hi] 

y_lo = self._y[lo] 

y_hi = self._y[hi] 

 

# Note that the following two expressions rely on the specifics of the 

# broadcasting semantics. 

slope = (y_hi - y_lo) / (x_hi - x_lo)[:, None] 

 

# 5. Calculate the actual value for each entry in x_new. 

y_new = slope*(x_new - x_lo)[:, None] + y_lo 

 

return y_new 

 

def _call_nearest(self, x_new): 

""" Find nearest neighbour interpolated y_new = f(x_new).""" 

 

# 2. Find where in the averaged data the values to interpolate 

# would be inserted. 

# Note: use side='left' (right) to searchsorted() to define the 

# halfway point to be nearest to the left (right) neighbour 

x_new_indices = searchsorted(self.x_bds, x_new, side='left') 

 

# 3. Clip x_new_indices so that they are within the range of x indices. 

x_new_indices = x_new_indices.clip(0, len(self.x)-1).astype(intp) 

 

# 4. Calculate the actual value for each entry in x_new. 

y_new = self._y[x_new_indices] 

 

return y_new 

 

def _call_previousnext(self, x_new): 

"""Use previous/next neighbour of x_new, y_new = f(x_new).""" 

 

# 1. Get index of left/right value 

x_new_indices = searchsorted(self._x_shift, x_new, side=self._side) 

 

# 2. Clip x_new_indices so that they are within the range of x indices. 

x_new_indices = x_new_indices.clip(1-self._ind, 

len(self.x)-self._ind).astype(intp) 

 

# 3. Calculate the actual value for each entry in x_new. 

y_new = self._y[x_new_indices+self._ind-1] 

 

return y_new 

 

def _call_spline(self, x_new): 

return self._spline(x_new) 

 

def _call_nan_spline(self, x_new): 

out = self._spline(x_new) 

out[...] = np.nan 

return out 

 

def _evaluate(self, x_new): 

# 1. Handle values in x_new that are outside of x. Throw error, 

# or return a list of mask array indicating the outofbounds values. 

# The behavior is set by the bounds_error variable. 

x_new = asarray(x_new) 

y_new = self._call(self, x_new) 

if not self._extrapolate: 

below_bounds, above_bounds = self._check_bounds(x_new) 

if len(y_new) > 0: 

# Note fill_value must be broadcast up to the proper size 

# and flattened to work here 

y_new[below_bounds] = self._fill_value_below 

y_new[above_bounds] = self._fill_value_above 

return y_new 

 

def _check_bounds(self, x_new): 

"""Check the inputs for being in the bounds of the interpolated data. 

 

Parameters 

---------- 

x_new : array 

 

Returns 

------- 

out_of_bounds : bool array 

The mask on x_new of values that are out of the bounds. 

""" 

 

# If self.bounds_error is True, we raise an error if any x_new values 

# fall outside the range of x. Otherwise, we return an array indicating 

# which values are outside the boundary region. 

below_bounds = x_new < self.x[0] 

above_bounds = x_new > self.x[-1] 

 

# !! Could provide more information about which values are out of bounds 

if self.bounds_error and below_bounds.any(): 

raise ValueError("A value in x_new is below the interpolation " 

"range.") 

if self.bounds_error and above_bounds.any(): 

raise ValueError("A value in x_new is above the interpolation " 

"range.") 

 

# !! Should we emit a warning if some values are out of bounds? 

# !! matlab does not. 

return below_bounds, above_bounds 

 

 

class _PPolyBase(object): 

"""Base class for piecewise polynomials.""" 

__slots__ = ('c', 'x', 'extrapolate', 'axis') 

 

def __init__(self, c, x, extrapolate=None, axis=0): 

self.c = np.asarray(c) 

self.x = np.ascontiguousarray(x, dtype=np.float64) 

 

if extrapolate is None: 

extrapolate = True 

elif extrapolate != 'periodic': 

extrapolate = bool(extrapolate) 

self.extrapolate = extrapolate 

 

if self.c.ndim < 2: 

raise ValueError("Coefficients array must be at least " 

"2-dimensional.") 

 

if not (0 <= axis < self.c.ndim - 1): 

raise ValueError("axis=%s must be between 0 and %s" % 

(axis, self.c.ndim-1)) 

 

self.axis = axis 

if axis != 0: 

# roll the interpolation axis to be the first one in self.c 

# More specifically, the target shape for self.c is (k, m, ...), 

# and axis !=0 means that we have c.shape (..., k, m, ...) 

# ^ 

# axis 

# So we roll two of them. 

self.c = np.rollaxis(self.c, axis+1) 

self.c = np.rollaxis(self.c, axis+1) 

 

if self.x.ndim != 1: 

raise ValueError("x must be 1-dimensional") 

if self.x.size < 2: 

raise ValueError("at least 2 breakpoints are needed") 

if self.c.ndim < 2: 

raise ValueError("c must have at least 2 dimensions") 

if self.c.shape[0] == 0: 

raise ValueError("polynomial must be at least of order 0") 

if self.c.shape[1] != self.x.size-1: 

raise ValueError("number of coefficients != len(x)-1") 

dx = np.diff(self.x) 

if not (np.all(dx >= 0) or np.all(dx <= 0)): 

raise ValueError("`x` must be strictly increasing or decreasing.") 

 

dtype = self._get_dtype(self.c.dtype) 

self.c = np.ascontiguousarray(self.c, dtype=dtype) 

 

def _get_dtype(self, dtype): 

if np.issubdtype(dtype, np.complexfloating) \ 

or np.issubdtype(self.c.dtype, np.complexfloating): 

return np.complex_ 

else: 

return np.float_ 

 

@classmethod 

def construct_fast(cls, c, x, extrapolate=None, axis=0): 

""" 

Construct the piecewise polynomial without making checks. 

 

Takes the same parameters as the constructor. Input arguments 

`c` and `x` must be arrays of the correct shape and type. The 

`c` array can only be of dtypes float and complex, and `x` 

array must have dtype float. 

""" 

self = object.__new__(cls) 

self.c = c 

self.x = x 

self.axis = axis 

if extrapolate is None: 

extrapolate = True 

self.extrapolate = extrapolate 

return self 

 

def _ensure_c_contiguous(self): 

""" 

c and x may be modified by the user. The Cython code expects 

that they are C contiguous. 

""" 

if not self.x.flags.c_contiguous: 

self.x = self.x.copy() 

if not self.c.flags.c_contiguous: 

self.c = self.c.copy() 

 

def extend(self, c, x, right=None): 

""" 

Add additional breakpoints and coefficients to the polynomial. 

 

Parameters 

---------- 

c : ndarray, size (k, m, ...) 

Additional coefficients for polynomials in intervals. Note that 

the first additional interval will be formed using one of the 

`self.x` end points. 

x : ndarray, size (m,) 

Additional breakpoints. Must be sorted in the same order as 

`self.x` and either to the right or to the left of the current 

breakpoints. 

right 

Deprecated argument. Has no effect. 

 

.. deprecated:: 0.19 

""" 

if right is not None: 

warnings.warn("`right` is deprecated and will be removed.") 

 

c = np.asarray(c) 

x = np.asarray(x) 

 

if c.ndim < 2: 

raise ValueError("invalid dimensions for c") 

if x.ndim != 1: 

raise ValueError("invalid dimensions for x") 

if x.shape[0] != c.shape[1]: 

raise ValueError("x and c have incompatible sizes") 

if c.shape[2:] != self.c.shape[2:] or c.ndim != self.c.ndim: 

raise ValueError("c and self.c have incompatible shapes") 

 

if c.size == 0: 

return 

 

dx = np.diff(x) 

if not (np.all(dx >= 0) or np.all(dx <= 0)): 

raise ValueError("`x` is not sorted.") 

 

if self.x[-1] >= self.x[0]: 

if not x[-1] >= x[0]: 

raise ValueError("`x` is in the different order " 

"than `self.x`.") 

 

if x[0] >= self.x[-1]: 

action = 'append' 

elif x[-1] <= self.x[0]: 

action = 'prepend' 

else: 

raise ValueError("`x` is neither on the left or on the right " 

"from `self.x`.") 

else: 

if not x[-1] <= x[0]: 

raise ValueError("`x` is in the different order " 

"than `self.x`.") 

 

if x[0] <= self.x[-1]: 

action = 'append' 

elif x[-1] >= self.x[0]: 

action = 'prepend' 

else: 

raise ValueError("`x` is neither on the left or on the right " 

"from `self.x`.") 

 

dtype = self._get_dtype(c.dtype) 

 

k2 = max(c.shape[0], self.c.shape[0]) 

c2 = np.zeros((k2, self.c.shape[1] + c.shape[1]) + self.c.shape[2:], 

dtype=dtype) 

 

if action == 'append': 

c2[k2-self.c.shape[0]:, :self.c.shape[1]] = self.c 

c2[k2-c.shape[0]:, self.c.shape[1]:] = c 

self.x = np.r_[self.x, x] 

elif action == 'prepend': 

c2[k2-self.c.shape[0]:, :c.shape[1]] = c 

c2[k2-c.shape[0]:, c.shape[1]:] = self.c 

self.x = np.r_[x, self.x] 

 

self.c = c2 

 

def __call__(self, x, nu=0, extrapolate=None): 

""" 

Evaluate the piecewise polynomial or its derivative. 

 

Parameters 

---------- 

x : array_like 

Points to evaluate the interpolant at. 

nu : int, optional 

Order of derivative to evaluate. Must be non-negative. 

extrapolate : {bool, 'periodic', None}, optional 

If bool, determines whether to extrapolate to out-of-bounds points 

based on first and last intervals, or to return NaNs. 

If 'periodic', periodic extrapolation is used. 

If None (default), use `self.extrapolate`. 

 

Returns 

------- 

y : array_like 

Interpolated values. Shape is determined by replacing 

the interpolation axis in the original array with the shape of x. 

 

Notes 

----- 

Derivatives are evaluated piecewise for each polynomial 

segment, even if the polynomial is not differentiable at the 

breakpoints. The polynomial intervals are considered half-open, 

``[a, b)``, except for the last interval which is closed 

``[a, b]``. 

""" 

if extrapolate is None: 

extrapolate = self.extrapolate 

x = np.asarray(x) 

x_shape, x_ndim = x.shape, x.ndim 

x = np.ascontiguousarray(x.ravel(), dtype=np.float_) 

 

# With periodic extrapolation we map x to the segment 

# [self.x[0], self.x[-1]]. 

if extrapolate == 'periodic': 

x = self.x[0] + (x - self.x[0]) % (self.x[-1] - self.x[0]) 

extrapolate = False 

 

out = np.empty((len(x), prod(self.c.shape[2:])), dtype=self.c.dtype) 

self._ensure_c_contiguous() 

self._evaluate(x, nu, extrapolate, out) 

out = out.reshape(x_shape + self.c.shape[2:]) 

if self.axis != 0: 

# transpose to move the calculated values to the interpolation axis 

l = list(range(out.ndim)) 

l = l[x_ndim:x_ndim+self.axis] + l[:x_ndim] + l[x_ndim+self.axis:] 

out = out.transpose(l) 

return out 

 

 

class PPoly(_PPolyBase): 

""" 

Piecewise polynomial in terms of coefficients and breakpoints 

 

The polynomial between ``x[i]`` and ``x[i + 1]`` is written in the 

local power basis:: 

 

S = sum(c[m, i] * (xp - x[i])**(k-m) for m in range(k+1)) 

 

where ``k`` is the degree of the polynomial. 

 

Parameters 

---------- 

c : ndarray, shape (k, m, ...) 

Polynomial coefficients, order `k` and `m` intervals 

x : ndarray, shape (m+1,) 

Polynomial breakpoints. Must be sorted in either increasing or 

decreasing order. 

extrapolate : bool or 'periodic', optional 

If bool, determines whether to extrapolate to out-of-bounds points 

based on first and last intervals, or to return NaNs. If 'periodic', 

periodic extrapolation is used. Default is True. 

axis : int, optional 

Interpolation axis. Default is zero. 

 

Attributes 

---------- 

x : ndarray 

Breakpoints. 

c : ndarray 

Coefficients of the polynomials. They are reshaped 

to a 3-dimensional array with the last dimension representing 

the trailing dimensions of the original coefficient array. 

axis : int 

Interpolation axis. 

 

Methods 

------- 

__call__ 

derivative 

antiderivative 

integrate 

solve 

roots 

extend 

from_spline 

from_bernstein_basis 

construct_fast 

 

See also 

-------- 

BPoly : piecewise polynomials in the Bernstein basis 

 

Notes 

----- 

High-order polynomials in the power basis can be numerically 

unstable. Precision problems can start to appear for orders 

larger than 20-30. 

""" 

def _evaluate(self, x, nu, extrapolate, out): 

_ppoly.evaluate(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), 

self.x, x, nu, bool(extrapolate), out) 

 

def derivative(self, nu=1): 

""" 

Construct a new piecewise polynomial representing the derivative. 

 

Parameters 

---------- 

nu : int, optional 

Order of derivative to evaluate. Default is 1, i.e. compute the 

first derivative. If negative, the antiderivative is returned. 

 

Returns 

------- 

pp : PPoly 

Piecewise polynomial of order k2 = k - n representing the derivative 

of this polynomial. 

 

Notes 

----- 

Derivatives are evaluated piecewise for each polynomial 

segment, even if the polynomial is not differentiable at the 

breakpoints. The polynomial intervals are considered half-open, 

``[a, b)``, except for the last interval which is closed 

``[a, b]``. 

""" 

if nu < 0: 

return self.antiderivative(-nu) 

 

# reduce order 

if nu == 0: 

c2 = self.c.copy() 

else: 

c2 = self.c[:-nu, :].copy() 

 

if c2.shape[0] == 0: 

# derivative of order 0 is zero 

c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) 

 

# multiply by the correct rising factorials 

factor = spec.poch(np.arange(c2.shape[0], 0, -1), nu) 

c2 *= factor[(slice(None),) + (None,)*(c2.ndim-1)] 

 

# construct a compatible polynomial 

return self.construct_fast(c2, self.x, self.extrapolate, self.axis) 

 

def antiderivative(self, nu=1): 

""" 

Construct a new piecewise polynomial representing the antiderivative. 

 

Antiderivative is also the indefinite integral of the function, 

and derivative is its inverse operation. 

 

Parameters 

---------- 

nu : int, optional 

Order of antiderivative to evaluate. Default is 1, i.e. compute 

the first integral. If negative, the derivative is returned. 

 

Returns 

------- 

pp : PPoly 

Piecewise polynomial of order k2 = k + n representing 

the antiderivative of this polynomial. 

 

Notes 

----- 

The antiderivative returned by this function is continuous and 

continuously differentiable to order n-1, up to floating point 

rounding error. 

 

If antiderivative is computed and ``self.extrapolate='periodic'``, 

it will be set to False for the returned instance. This is done because 

the antiderivative is no longer periodic and its correct evaluation 

outside of the initially given x interval is difficult. 

""" 

if nu <= 0: 

return self.derivative(-nu) 

 

c = np.zeros((self.c.shape[0] + nu, self.c.shape[1]) + self.c.shape[2:], 

dtype=self.c.dtype) 

c[:-nu] = self.c 

 

# divide by the correct rising factorials 

factor = spec.poch(np.arange(self.c.shape[0], 0, -1), nu) 

c[:-nu] /= factor[(slice(None),) + (None,)*(c.ndim-1)] 

 

# fix continuity of added degrees of freedom 

self._ensure_c_contiguous() 

_ppoly.fix_continuity(c.reshape(c.shape[0], c.shape[1], -1), 

self.x, nu - 1) 

 

if self.extrapolate == 'periodic': 

extrapolate = False 

else: 

extrapolate = self.extrapolate 

 

# construct a compatible polynomial 

return self.construct_fast(c, self.x, extrapolate, self.axis) 

 

def integrate(self, a, b, extrapolate=None): 

""" 

Compute a definite integral over a piecewise polynomial. 

 

Parameters 

---------- 

a : float 

Lower integration bound 

b : float 

Upper integration bound 

extrapolate : {bool, 'periodic', None}, optional 

If bool, determines whether to extrapolate to out-of-bounds points 

based on first and last intervals, or to return NaNs. 

If 'periodic', periodic extrapolation is used. 

If None (default), use `self.extrapolate`. 

 

Returns 

------- 

ig : array_like 

Definite integral of the piecewise polynomial over [a, b] 

""" 

if extrapolate is None: 

extrapolate = self.extrapolate 

 

# Swap integration bounds if needed 

sign = 1 

if b < a: 

a, b = b, a 

sign = -1 

 

range_int = np.empty((prod(self.c.shape[2:]),), dtype=self.c.dtype) 

self._ensure_c_contiguous() 

 

# Compute the integral. 

if extrapolate == 'periodic': 

# Split the integral into the part over period (can be several 

# of them) and the remaining part. 

 

xs, xe = self.x[0], self.x[-1] 

period = xe - xs 

interval = b - a 

n_periods, left = divmod(interval, period) 

 

if n_periods > 0: 

_ppoly.integrate( 

self.c.reshape(self.c.shape[0], self.c.shape[1], -1), 

self.x, xs, xe, False, out=range_int) 

range_int *= n_periods 

else: 

range_int.fill(0) 

 

# Map a to [xs, xe], b is always a + left. 

a = xs + (a - xs) % period 

b = a + left 

 

# If b <= xe then we need to integrate over [a, b], otherwise 

# over [a, xe] and from xs to what is remained. 

remainder_int = np.empty_like(range_int) 

if b <= xe: 

_ppoly.integrate( 

self.c.reshape(self.c.shape[0], self.c.shape[1], -1), 

self.x, a, b, False, out=remainder_int) 

range_int += remainder_int 

else: 

_ppoly.integrate( 

self.c.reshape(self.c.shape[0], self.c.shape[1], -1), 

self.x, a, xe, False, out=remainder_int) 

range_int += remainder_int 

 

_ppoly.integrate( 

self.c.reshape(self.c.shape[0], self.c.shape[1], -1), 

self.x, xs, xs + left + a - xe, False, out=remainder_int) 

range_int += remainder_int 

else: 

_ppoly.integrate( 

self.c.reshape(self.c.shape[0], self.c.shape[1], -1), 

self.x, a, b, bool(extrapolate), out=range_int) 

 

# Return 

range_int *= sign 

return range_int.reshape(self.c.shape[2:]) 

 

def solve(self, y=0., discontinuity=True, extrapolate=None): 

""" 

Find real solutions of the the equation ``pp(x) == y``. 

 

Parameters 

---------- 

y : float, optional 

Right-hand side. Default is zero. 

discontinuity : bool, optional 

Whether to report sign changes across discontinuities at 

breakpoints as roots. 

extrapolate : {bool, 'periodic', None}, optional 

If bool, determines whether to return roots from the polynomial 

extrapolated based on first and last intervals, 'periodic' works 

the same as False. If None (default), use `self.extrapolate`. 

 

Returns 

------- 

roots : ndarray 

Roots of the polynomial(s). 

 

If the PPoly object describes multiple polynomials, the 

return value is an object array whose each element is an 

ndarray containing the roots. 

 

Notes 

----- 

This routine works only on real-valued polynomials. 

 

If the piecewise polynomial contains sections that are 

identically zero, the root list will contain the start point 

of the corresponding interval, followed by a ``nan`` value. 

 

If the polynomial is discontinuous across a breakpoint, and 

there is a sign change across the breakpoint, this is reported 

if the `discont` parameter is True. 

 

Examples 

-------- 

 

Finding roots of ``[x**2 - 1, (x - 1)**2]`` defined on intervals 

``[-2, 1], [1, 2]``: 

 

>>> from scipy.interpolate import PPoly 

>>> pp = PPoly(np.array([[1, -4, 3], [1, 0, 0]]).T, [-2, 1, 2]) 

>>> pp.roots() 

array([-1., 1.]) 

""" 

if extrapolate is None: 

extrapolate = self.extrapolate 

 

self._ensure_c_contiguous() 

 

if np.issubdtype(self.c.dtype, np.complexfloating): 

raise ValueError("Root finding is only for " 

"real-valued polynomials") 

 

y = float(y) 

r = _ppoly.real_roots(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), 

self.x, y, bool(discontinuity), 

bool(extrapolate)) 

if self.c.ndim == 2: 

return r[0] 

else: 

r2 = np.empty(prod(self.c.shape[2:]), dtype=object) 

# this for-loop is equivalent to ``r2[...] = r``, but that's broken 

# in numpy 1.6.0 

for ii, root in enumerate(r): 

r2[ii] = root 

 

return r2.reshape(self.c.shape[2:]) 

 

def roots(self, discontinuity=True, extrapolate=None): 

""" 

Find real roots of the the piecewise polynomial. 

 

Parameters 

---------- 

discontinuity : bool, optional 

Whether to report sign changes across discontinuities at 

breakpoints as roots. 

extrapolate : {bool, 'periodic', None}, optional 

If bool, determines whether to return roots from the polynomial 

extrapolated based on first and last intervals, 'periodic' works 

the same as False. If None (default), use `self.extrapolate`. 

 

Returns 

------- 

roots : ndarray 

Roots of the polynomial(s). 

 

If the PPoly object describes multiple polynomials, the 

return value is an object array whose each element is an 

ndarray containing the roots. 

 

See Also 

-------- 

PPoly.solve 

""" 

return self.solve(0, discontinuity, extrapolate) 

 

@classmethod 

def from_spline(cls, tck, extrapolate=None): 

""" 

Construct a piecewise polynomial from a spline 

 

Parameters 

---------- 

tck 

A spline, as returned by `splrep` or a BSpline object. 

extrapolate : bool or 'periodic', optional 

If bool, determines whether to extrapolate to out-of-bounds points 

based on first and last intervals, or to return NaNs. 

If 'periodic', periodic extrapolation is used. Default is True. 

""" 

if isinstance(tck, BSpline): 

t, c, k = tck.tck 

if extrapolate is None: 

extrapolate = tck.extrapolate 

else: 

t, c, k = tck 

 

cvals = np.empty((k + 1, len(t)-1), dtype=c.dtype) 

for m in xrange(k, -1, -1): 

y = fitpack.splev(t[:-1], tck, der=m) 

cvals[k - m, :] = y/spec.gamma(m+1) 

 

return cls.construct_fast(cvals, t, extrapolate) 

 

@classmethod 

def from_bernstein_basis(cls, bp, extrapolate=None): 

""" 

Construct a piecewise polynomial in the power basis 

from a polynomial in Bernstein basis. 

 

Parameters 

---------- 

bp : BPoly 

A Bernstein basis polynomial, as created by BPoly 

extrapolate : bool or 'periodic', optional 

If bool, determines whether to extrapolate to out-of-bounds points 

based on first and last intervals, or to return NaNs. 

If 'periodic', periodic extrapolation is used. Default is True. 

""" 

dx = np.diff(bp.x) 

k = bp.c.shape[0] - 1 # polynomial order 

 

rest = (None,)*(bp.c.ndim-2) 

 

c = np.zeros_like(bp.c) 

for a in range(k+1): 

factor = (-1)**a * comb(k, a) * bp.c[a] 

for s in range(a, k+1): 

val = comb(k-a, s-a) * (-1)**s 

c[k-s] += factor * val / dx[(slice(None),)+rest]**s 

 

if extrapolate is None: 

extrapolate = bp.extrapolate 

 

return cls.construct_fast(c, bp.x, extrapolate, bp.axis) 

 

 

class BPoly(_PPolyBase): 

"""Piecewise polynomial in terms of coefficients and breakpoints. 

 

The polynomial between ``x[i]`` and ``x[i + 1]`` is written in the 

Bernstein polynomial basis:: 

 

S = sum(c[a, i] * b(a, k; x) for a in range(k+1)), 

 

where ``k`` is the degree of the polynomial, and:: 

 

b(a, k; x) = binom(k, a) * t**a * (1 - t)**(k - a), 

 

with ``t = (x - x[i]) / (x[i+1] - x[i])`` and ``binom`` is the binomial 

coefficient. 

 

Parameters 

---------- 

c : ndarray, shape (k, m, ...) 

Polynomial coefficients, order `k` and `m` intervals 

x : ndarray, shape (m+1,) 

Polynomial breakpoints. Must be sorted in either increasing or 

decreasing order. 

extrapolate : bool, optional 

If bool, determines whether to extrapolate to out-of-bounds points 

based on first and last intervals, or to return NaNs. If 'periodic', 

periodic extrapolation is used. Default is True. 

axis : int, optional 

Interpolation axis. Default is zero. 

 

Attributes 

---------- 

x : ndarray 

Breakpoints. 

c : ndarray 

Coefficients of the polynomials. They are reshaped 

to a 3-dimensional array with the last dimension representing 

the trailing dimensions of the original coefficient array. 

axis : int 

Interpolation axis. 

 

Methods 

------- 

__call__ 

extend 

derivative 

antiderivative 

integrate 

construct_fast 

from_power_basis 

from_derivatives 

 

See also 

-------- 

PPoly : piecewise polynomials in the power basis 

 

Notes 

----- 

Properties of Bernstein polynomials are well documented in the literature. 

Here's a non-exhaustive list: 

 

.. [1] http://en.wikipedia.org/wiki/Bernstein_polynomial 

 

.. [2] Kenneth I. Joy, Bernstein polynomials, 

http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf 

 

.. [3] E. H. Doha, A. H. Bhrawy, and M. A. Saker, Boundary Value Problems, 

vol 2011, article ID 829546, :doi:`10.1155/2011/829543`. 

 

Examples 

-------- 

>>> from scipy.interpolate import BPoly 

>>> x = [0, 1] 

>>> c = [[1], [2], [3]] 

>>> bp = BPoly(c, x) 

 

This creates a 2nd order polynomial 

 

.. math:: 

 

B(x) = 1 \\times b_{0, 2}(x) + 2 \\times b_{1, 2}(x) + 3 \\times b_{2, 2}(x) \\\\ 

= 1 \\times (1-x)^2 + 2 \\times 2 x (1 - x) + 3 \\times x^2 

 

""" 

 

def _evaluate(self, x, nu, extrapolate, out): 

_ppoly.evaluate_bernstein( 

self.c.reshape(self.c.shape[0], self.c.shape[1], -1), 

self.x, x, nu, bool(extrapolate), out) 

 

def derivative(self, nu=1): 

""" 

Construct a new piecewise polynomial representing the derivative. 

 

Parameters 

---------- 

nu : int, optional 

Order of derivative to evaluate. Default is 1, i.e. compute the 

first derivative. If negative, the antiderivative is returned. 

 

Returns 

------- 

bp : BPoly 

Piecewise polynomial of order k - nu representing the derivative of 

this polynomial. 

 

""" 

if nu < 0: 

return self.antiderivative(-nu) 

 

if nu > 1: 

bp = self 

for k in range(nu): 

bp = bp.derivative() 

return bp 

 

# reduce order 

if nu == 0: 

c2 = self.c.copy() 

else: 

# For a polynomial 

# B(x) = \sum_{a=0}^{k} c_a b_{a, k}(x), 

# we use the fact that 

# b'_{a, k} = k ( b_{a-1, k-1} - b_{a, k-1} ), 

# which leads to 

# B'(x) = \sum_{a=0}^{k-1} (c_{a+1} - c_a) b_{a, k-1} 

# 

# finally, for an interval [y, y + dy] with dy != 1, 

# we need to correct for an extra power of dy 

 

rest = (None,)*(self.c.ndim-2) 

 

k = self.c.shape[0] - 1 

dx = np.diff(self.x)[(None, slice(None))+rest] 

c2 = k * np.diff(self.c, axis=0) / dx 

 

if c2.shape[0] == 0: 

# derivative of order 0 is zero 

c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) 

 

# construct a compatible polynomial 

return self.construct_fast(c2, self.x, self.extrapolate, self.axis) 

 

def antiderivative(self, nu=1): 

""" 

Construct a new piecewise polynomial representing the antiderivative. 

 

Parameters 

---------- 

nu : int, optional 

Order of antiderivative to evaluate. Default is 1, i.e. compute 

the first integral. If negative, the derivative is returned. 

 

Returns 

------- 

bp : BPoly 

Piecewise polynomial of order k + nu representing the 

antiderivative of this polynomial. 

 

Notes 

----- 

If antiderivative is computed and ``self.extrapolate='periodic'``, 

it will be set to False for the returned instance. This is done because 

the antiderivative is no longer periodic and its correct evaluation 

outside of the initially given x interval is difficult. 

""" 

if nu <= 0: 

return self.derivative(-nu) 

 

if nu > 1: 

bp = self 

for k in range(nu): 

bp = bp.antiderivative() 

return bp 

 

# Construct the indefinite integrals on individual intervals 

c, x = self.c, self.x 

k = c.shape[0] 

c2 = np.zeros((k+1,) + c.shape[1:], dtype=c.dtype) 

 

c2[1:, ...] = np.cumsum(c, axis=0) / k 

delta = x[1:] - x[:-1] 

c2 *= delta[(None, slice(None)) + (None,)*(c.ndim-2)] 

 

# Now fix continuity: on the very first interval, take the integration 

# constant to be zero; on an interval [x_j, x_{j+1}) with j>0, 

# the integration constant is then equal to the jump of the `bp` at x_j. 

# The latter is given by the coefficient of B_{n+1, n+1} 

# *on the previous interval* (other B. polynomials are zero at the 

# breakpoint). Finally, use the fact that BPs form a partition of unity. 

c2[:,1:] += np.cumsum(c2[k, :], axis=0)[:-1] 

 

if self.extrapolate == 'periodic': 

extrapolate = False 

else: 

extrapolate = self.extrapolate 

 

return self.construct_fast(c2, x, extrapolate, axis=self.axis) 

 

def integrate(self, a, b, extrapolate=None): 

""" 

Compute a definite integral over a piecewise polynomial. 

 

Parameters 

---------- 

a : float 

Lower integration bound 

b : float 

Upper integration bound 

extrapolate : {bool, 'periodic', None}, optional 

Whether to extrapolate to out-of-bounds points based on first 

and last intervals, or to return NaNs. If 'periodic', periodic 

extrapolation is used. If None (default), use `self.extrapolate`. 

 

Returns 

------- 

array_like 

Definite integral of the piecewise polynomial over [a, b] 

 

""" 

# XXX: can probably use instead the fact that 

# \int_0^{1} B_{j, n}(x) \dx = 1/(n+1) 

ib = self.antiderivative() 

if extrapolate is None: 

extrapolate = self.extrapolate 

 

# ib.extrapolate shouldn't be 'periodic', it is converted to 

# False for 'periodic. in antiderivative() call. 

if extrapolate != 'periodic': 

ib.extrapolate = extrapolate 

 

if extrapolate == 'periodic': 

# Split the integral into the part over period (can be several 

# of them) and the remaining part. 

 

# For simplicity and clarity convert to a <= b case. 

if a <= b: 

sign = 1 

else: 

a, b = b, a 

sign = -1 

 

xs, xe = self.x[0], self.x[-1] 

period = xe - xs 

interval = b - a 

n_periods, left = divmod(interval, period) 

res = n_periods * (ib(xe) - ib(xs)) 

 

# Map a and b to [xs, xe]. 

a = xs + (a - xs) % period 

b = a + left 

 

# If b <= xe then we need to integrate over [a, b], otherwise 

# over [a, xe] and from xs to what is remained. 

if b <= xe: 

res += ib(b) - ib(a) 

else: 

res += ib(xe) - ib(a) + ib(xs + left + a - xe) - ib(xs) 

 

return sign * res 

else: 

return ib(b) - ib(a) 

 

def extend(self, c, x, right=None): 

k = max(self.c.shape[0], c.shape[0]) 

self.c = self._raise_degree(self.c, k - self.c.shape[0]) 

c = self._raise_degree(c, k - c.shape[0]) 

return _PPolyBase.extend(self, c, x, right) 

extend.__doc__ = _PPolyBase.extend.__doc__ 

 

@classmethod 

def from_power_basis(cls, pp, extrapolate=None): 

""" 

Construct a piecewise polynomial in Bernstein basis 

from a power basis polynomial. 

 

Parameters 

---------- 

pp : PPoly 

A piecewise polynomial in the power basis 

extrapolate : bool or 'periodic', optional 

If bool, determines whether to extrapolate to out-of-bounds points 

based on first and last intervals, or to return NaNs. 

If 'periodic', periodic extrapolation is used. Default is True. 

""" 

dx = np.diff(pp.x) 

k = pp.c.shape[0] - 1 # polynomial order 

 

rest = (None,)*(pp.c.ndim-2) 

 

c = np.zeros_like(pp.c) 

for a in range(k+1): 

factor = pp.c[a] / comb(k, k-a) * dx[(slice(None),)+rest]**(k-a) 

for j in range(k-a, k+1): 

c[j] += factor * comb(j, k-a) 

 

if extrapolate is None: 

extrapolate = pp.extrapolate 

 

return cls.construct_fast(c, pp.x, extrapolate, pp.axis) 

 

@classmethod 

def from_derivatives(cls, xi, yi, orders=None, extrapolate=None): 

"""Construct a piecewise polynomial in the Bernstein basis, 

compatible with the specified values and derivatives at breakpoints. 

 

Parameters 

---------- 

xi : array_like 

sorted 1D array of x-coordinates 

yi : array_like or list of array_likes 

``yi[i][j]`` is the ``j``-th derivative known at ``xi[i]`` 

orders : None or int or array_like of ints. Default: None. 

Specifies the degree of local polynomials. If not None, some 

derivatives are ignored. 

extrapolate : bool or 'periodic', optional 

If bool, determines whether to extrapolate to out-of-bounds points 

based on first and last intervals, or to return NaNs. 

If 'periodic', periodic extrapolation is used. Default is True. 

 

Notes 

----- 

If ``k`` derivatives are specified at a breakpoint ``x``, the 

constructed polynomial is exactly ``k`` times continuously 

differentiable at ``x``, unless the ``order`` is provided explicitly. 

In the latter case, the smoothness of the polynomial at 

the breakpoint is controlled by the ``order``. 

 

Deduces the number of derivatives to match at each end 

from ``order`` and the number of derivatives available. If 

possible it uses the same number of derivatives from 

each end; if the number is odd it tries to take the 

extra one from y2. In any case if not enough derivatives 

are available at one end or another it draws enough to 

make up the total from the other end. 

 

If the order is too high and not enough derivatives are available, 

an exception is raised. 

 

Examples 

-------- 

 

>>> from scipy.interpolate import BPoly 

>>> BPoly.from_derivatives([0, 1], [[1, 2], [3, 4]]) 

 

Creates a polynomial `f(x)` of degree 3, defined on `[0, 1]` 

such that `f(0) = 1, df/dx(0) = 2, f(1) = 3, df/dx(1) = 4` 

 

>>> BPoly.from_derivatives([0, 1, 2], [[0, 1], [0], [2]]) 

 

Creates a piecewise polynomial `f(x)`, such that 

`f(0) = f(1) = 0`, `f(2) = 2`, and `df/dx(0) = 1`. 

Based on the number of derivatives provided, the order of the 

local polynomials is 2 on `[0, 1]` and 1 on `[1, 2]`. 

Notice that no restriction is imposed on the derivatives at 

`x = 1` and `x = 2`. 

 

Indeed, the explicit form of the polynomial is:: 

 

f(x) = | x * (1 - x), 0 <= x < 1 

| 2 * (x - 1), 1 <= x <= 2 

 

So that f'(1-0) = -1 and f'(1+0) = 2 

 

""" 

xi = np.asarray(xi) 

if len(xi) != len(yi): 

raise ValueError("xi and yi need to have the same length") 

if np.any(xi[1:] - xi[:1] <= 0): 

raise ValueError("x coordinates are not in increasing order") 

 

# number of intervals 

m = len(xi) - 1 

 

# global poly order is k-1, local orders are <=k and can vary 

try: 

k = max(len(yi[i]) + len(yi[i+1]) for i in range(m)) 

except TypeError: 

raise ValueError("Using a 1D array for y? Please .reshape(-1, 1).") 

 

if orders is None: 

orders = [None] * m 

else: 

if isinstance(orders, (integer_types, np.integer)): 

orders = [orders] * m 

k = max(k, max(orders)) 

 

if any(o <= 0 for o in orders): 

raise ValueError("Orders must be positive.") 

 

c = [] 

for i in range(m): 

y1, y2 = yi[i], yi[i+1] 

if orders[i] is None: 

n1, n2 = len(y1), len(y2) 

else: 

n = orders[i]+1 

n1 = min(n//2, len(y1)) 

n2 = min(n - n1, len(y2)) 

n1 = min(n - n2, len(y2)) 

if n1+n2 != n: 

mesg = ("Point %g has %d derivatives, point %g" 

" has %d derivatives, but order %d requested" % ( 

xi[i], len(y1), xi[i+1], len(y2), orders[i])) 

raise ValueError(mesg) 

 

if not (n1 <= len(y1) and n2 <= len(y2)): 

raise ValueError("`order` input incompatible with" 

" length y1 or y2.") 

 

b = BPoly._construct_from_derivatives(xi[i], xi[i+1], 

y1[:n1], y2[:n2]) 

if len(b) < k: 

b = BPoly._raise_degree(b, k - len(b)) 

c.append(b) 

 

c = np.asarray(c) 

return cls(c.swapaxes(0, 1), xi, extrapolate) 

 

@staticmethod 

def _construct_from_derivatives(xa, xb, ya, yb): 

r"""Compute the coefficients of a polynomial in the Bernstein basis 

given the values and derivatives at the edges. 

 

Return the coefficients of a polynomial in the Bernstein basis 

defined on `[xa, xb]` and having the values and derivatives at the 

endpoints ``xa`` and ``xb`` as specified by ``ya`` and ``yb``. 

The polynomial constructed is of the minimal possible degree, i.e., 

if the lengths of ``ya`` and ``yb`` are ``na`` and ``nb``, the degree 

of the polynomial is ``na + nb - 1``. 

 

Parameters 

---------- 

xa : float 

Left-hand end point of the interval 

xb : float 

Right-hand end point of the interval 

ya : array_like 

Derivatives at ``xa``. ``ya[0]`` is the value of the function, and 

``ya[i]`` for ``i > 0`` is the value of the ``i``-th derivative. 

yb : array_like 

Derivatives at ``xb``. 

 

Returns 

------- 

array 

coefficient array of a polynomial having specified derivatives 

 

Notes 

----- 

This uses several facts from life of Bernstein basis functions. 

First of all, 

 

.. math:: b'_{a, n} = n (b_{a-1, n-1} - b_{a, n-1}) 

 

If B(x) is a linear combination of the form 

 

.. math:: B(x) = \sum_{a=0}^{n} c_a b_{a, n}, 

 

then :math: B'(x) = n \sum_{a=0}^{n-1} (c_{a+1} - c_{a}) b_{a, n-1}. 

Iterating the latter one, one finds for the q-th derivative 

 

.. math:: B^{q}(x) = n!/(n-q)! \sum_{a=0}^{n-q} Q_a b_{a, n-q}, 

 

with 

 

.. math:: Q_a = \sum_{j=0}^{q} (-)^{j+q} comb(q, j) c_{j+a} 

 

This way, only `a=0` contributes to :math: `B^{q}(x = xa)`, and 

`c_q` are found one by one by iterating `q = 0, ..., na`. 

 

At `x = xb` it's the same with `a = n - q`. 

 

""" 

ya, yb = np.asarray(ya), np.asarray(yb) 

if ya.shape[1:] != yb.shape[1:]: 

raise ValueError('ya and yb have incompatible dimensions.') 

 

dta, dtb = ya.dtype, yb.dtype 

if (np.issubdtype(dta, np.complexfloating) or 

np.issubdtype(dtb, np.complexfloating)): 

dt = np.complex_ 

else: 

dt = np.float_ 

 

na, nb = len(ya), len(yb) 

n = na + nb 

 

c = np.empty((na+nb,) + ya.shape[1:], dtype=dt) 

 

# compute coefficients of a polynomial degree na+nb-1 

# walk left-to-right 

for q in range(0, na): 

c[q] = ya[q] / spec.poch(n - q, q) * (xb - xa)**q 

for j in range(0, q): 

c[q] -= (-1)**(j+q) * comb(q, j) * c[j] 

 

# now walk right-to-left 

for q in range(0, nb): 

c[-q-1] = yb[q] / spec.poch(n - q, q) * (-1)**q * (xb - xa)**q 

for j in range(0, q): 

c[-q-1] -= (-1)**(j+1) * comb(q, j+1) * c[-q+j] 

 

return c 

 

@staticmethod 

def _raise_degree(c, d): 

r"""Raise a degree of a polynomial in the Bernstein basis. 

 

Given the coefficients of a polynomial degree `k`, return (the 

coefficients of) the equivalent polynomial of degree `k+d`. 

 

Parameters 

---------- 

c : array_like 

coefficient array, 1D 

d : integer 

 

Returns 

------- 

array 

coefficient array, 1D array of length `c.shape[0] + d` 

 

Notes 

----- 

This uses the fact that a Bernstein polynomial `b_{a, k}` can be 

identically represented as a linear combination of polynomials of 

a higher degree `k+d`: 

 

.. math:: b_{a, k} = comb(k, a) \sum_{j=0}^{d} b_{a+j, k+d} \ 

comb(d, j) / comb(k+d, a+j) 

 

""" 

if d == 0: 

return c 

 

k = c.shape[0] - 1 

out = np.zeros((c.shape[0] + d,) + c.shape[1:], dtype=c.dtype) 

 

for a in range(c.shape[0]): 

f = c[a] * comb(k, a) 

for j in range(d+1): 

out[a+j] += f * comb(d, j) / comb(k+d, a+j) 

return out 

 

 

class NdPPoly(object): 

""" 

Piecewise tensor product polynomial 

 

The value at point `xp = (x', y', z', ...)` is evaluated by first 

computing the interval indices `i` such that:: 

 

x[0][i[0]] <= x' < x[0][i[0]+1] 

x[1][i[1]] <= y' < x[1][i[1]+1] 

... 

 

and then computing:: 

 

S = sum(c[k0-m0-1,...,kn-mn-1,i[0],...,i[n]] 

* (xp[0] - x[0][i[0]])**m0 

* ... 

* (xp[n] - x[n][i[n]])**mn 

for m0 in range(k[0]+1) 

... 

for mn in range(k[n]+1)) 

 

where ``k[j]`` is the degree of the polynomial in dimension j. This 

representation is the piecewise multivariate power basis. 

 

Parameters 

---------- 

c : ndarray, shape (k0, ..., kn, m0, ..., mn, ...) 

Polynomial coefficients, with polynomial order `kj` and 

`mj+1` intervals for each dimension `j`. 

x : ndim-tuple of ndarrays, shapes (mj+1,) 

Polynomial breakpoints for each dimension. These must be 

sorted in increasing order. 

extrapolate : bool, optional 

Whether to extrapolate to out-of-bounds points based on first 

and last intervals, or to return NaNs. Default: True. 

 

Attributes 

---------- 

x : tuple of ndarrays 

Breakpoints. 

c : ndarray 

Coefficients of the polynomials. 

 

Methods 

------- 

__call__ 

construct_fast 

 

See also 

-------- 

PPoly : piecewise polynomials in 1D 

 

Notes 

----- 

High-order polynomials in the power basis can be numerically 

unstable. 

 

""" 

 

def __init__(self, c, x, extrapolate=None): 

self.x = tuple(np.ascontiguousarray(v, dtype=np.float64) for v in x) 

self.c = np.asarray(c) 

if extrapolate is None: 

extrapolate = True 

self.extrapolate = bool(extrapolate) 

 

ndim = len(self.x) 

if any(v.ndim != 1 for v in self.x): 

raise ValueError("x arrays must all be 1-dimensional") 

if any(v.size < 2 for v in self.x): 

raise ValueError("x arrays must all contain at least 2 points") 

if c.ndim < 2*ndim: 

raise ValueError("c must have at least 2*len(x) dimensions") 

if any(np.any(v[1:] - v[:-1] < 0) for v in self.x): 

raise ValueError("x-coordinates are not in increasing order") 

if any(a != b.size - 1 for a, b in zip(c.shape[ndim:2*ndim], self.x)): 

raise ValueError("x and c do not agree on the number of intervals") 

 

dtype = self._get_dtype(self.c.dtype) 

self.c = np.ascontiguousarray(self.c, dtype=dtype) 

 

@classmethod 

def construct_fast(cls, c, x, extrapolate=None): 

""" 

Construct the piecewise polynomial without making checks. 

 

Takes the same parameters as the constructor. Input arguments 

`c` and `x` must be arrays of the correct shape and type. The 

`c` array can only be of dtypes float and complex, and `x` 

array must have dtype float. 

 

""" 

self = object.__new__(cls) 

self.c = c 

self.x = x 

if extrapolate is None: 

extrapolate = True 

self.extrapolate = extrapolate 

return self 

 

def _get_dtype(self, dtype): 

if np.issubdtype(dtype, np.complexfloating) \ 

or np.issubdtype(self.c.dtype, np.complexfloating): 

return np.complex_ 

else: 

return np.float_ 

 

def _ensure_c_contiguous(self): 

if not self.c.flags.c_contiguous: 

self.c = self.c.copy() 

if not isinstance(self.x, tuple): 

self.x = tuple(self.x) 

 

def __call__(self, x, nu=None, extrapolate=None): 

""" 

Evaluate the piecewise polynomial or its derivative 

 

Parameters 

---------- 

x : array-like 

Points to evaluate the interpolant at. 

nu : tuple, optional 

Orders of derivatives to evaluate. Each must be non-negative. 

extrapolate : bool, optional 

Whether to extrapolate to out-of-bounds points based on first 

and last intervals, or to return NaNs. 

 

Returns 

------- 

y : array-like 

Interpolated values. Shape is determined by replacing 

the interpolation axis in the original array with the shape of x. 

 

Notes 

----- 

Derivatives are evaluated piecewise for each polynomial 

segment, even if the polynomial is not differentiable at the 

breakpoints. The polynomial intervals are considered half-open, 

``[a, b)``, except for the last interval which is closed 

``[a, b]``. 

 

""" 

if extrapolate is None: 

extrapolate = self.extrapolate 

else: 

extrapolate = bool(extrapolate) 

 

ndim = len(self.x) 

 

x = _ndim_coords_from_arrays(x) 

x_shape = x.shape 

x = np.ascontiguousarray(x.reshape(-1, x.shape[-1]), dtype=np.float_) 

 

if nu is None: 

nu = np.zeros((ndim,), dtype=np.intc) 

else: 

nu = np.asarray(nu, dtype=np.intc) 

if nu.ndim != 1 or nu.shape[0] != ndim: 

raise ValueError("invalid number of derivative orders nu") 

 

dim1 = prod(self.c.shape[:ndim]) 

dim2 = prod(self.c.shape[ndim:2*ndim]) 

dim3 = prod(self.c.shape[2*ndim:]) 

ks = np.array(self.c.shape[:ndim], dtype=np.intc) 

 

out = np.empty((x.shape[0], dim3), dtype=self.c.dtype) 

self._ensure_c_contiguous() 

 

_ppoly.evaluate_nd(self.c.reshape(dim1, dim2, dim3), 

self.x, 

ks, 

x, 

nu, 

bool(extrapolate), 

out) 

 

return out.reshape(x_shape[:-1] + self.c.shape[2*ndim:]) 

 

def _derivative_inplace(self, nu, axis): 

""" 

Compute 1D derivative along a selected dimension in-place 

May result to non-contiguous c array. 

""" 

if nu < 0: 

return self._antiderivative_inplace(-nu, axis) 

 

ndim = len(self.x) 

axis = axis % ndim 

 

# reduce order 

if nu == 0: 

# noop 

return 

else: 

sl = [slice(None)]*ndim 

sl[axis] = slice(None, -nu, None) 

c2 = self.c[sl] 

 

if c2.shape[axis] == 0: 

# derivative of order 0 is zero 

shp = list(c2.shape) 

shp[axis] = 1 

c2 = np.zeros(shp, dtype=c2.dtype) 

 

# multiply by the correct rising factorials 

factor = spec.poch(np.arange(c2.shape[axis], 0, -1), nu) 

sl = [None]*c2.ndim 

sl[axis] = slice(None) 

c2 *= factor[sl] 

 

self.c = c2 

 

def _antiderivative_inplace(self, nu, axis): 

""" 

Compute 1D antiderivative along a selected dimension 

May result to non-contiguous c array. 

""" 

if nu <= 0: 

return self._derivative_inplace(-nu, axis) 

 

ndim = len(self.x) 

axis = axis % ndim 

 

perm = list(range(ndim)) 

perm[0], perm[axis] = perm[axis], perm[0] 

perm = perm + list(range(ndim, self.c.ndim)) 

 

c = self.c.transpose(perm) 

 

c2 = np.zeros((c.shape[0] + nu,) + c.shape[1:], 

dtype=c.dtype) 

c2[:-nu] = c 

 

# divide by the correct rising factorials 

factor = spec.poch(np.arange(c.shape[0], 0, -1), nu) 

c2[:-nu] /= factor[(slice(None),) + (None,)*(c.ndim-1)] 

 

# fix continuity of added degrees of freedom 

perm2 = list(range(c2.ndim)) 

perm2[1], perm2[ndim+axis] = perm2[ndim+axis], perm2[1] 

 

c2 = c2.transpose(perm2) 

c2 = c2.copy() 

_ppoly.fix_continuity(c2.reshape(c2.shape[0], c2.shape[1], -1), 

self.x[axis], nu-1) 

 

c2 = c2.transpose(perm2) 

c2 = c2.transpose(perm) 

 

# Done 

self.c = c2 

 

def derivative(self, nu): 

""" 

Construct a new piecewise polynomial representing the derivative. 

 

Parameters 

---------- 

nu : ndim-tuple of int 

Order of derivatives to evaluate for each dimension. 

If negative, the antiderivative is returned. 

 

Returns 

------- 

pp : NdPPoly 

Piecewise polynomial of orders (k[0] - nu[0], ..., k[n] - nu[n]) 

representing the derivative of this polynomial. 

 

Notes 

----- 

Derivatives are evaluated piecewise for each polynomial 

segment, even if the polynomial is not differentiable at the 

breakpoints. The polynomial intervals in each dimension are 

considered half-open, ``[a, b)``, except for the last interval 

which is closed ``[a, b]``. 

 

""" 

p = self.construct_fast(self.c.copy(), self.x, self.extrapolate) 

 

for axis, n in enumerate(nu): 

p._derivative_inplace(n, axis) 

 

p._ensure_c_contiguous() 

return p 

 

def antiderivative(self, nu): 

""" 

Construct a new piecewise polynomial representing the antiderivative. 

 

Antiderivative is also the indefinite integral of the function, 

and derivative is its inverse operation. 

 

Parameters 

---------- 

nu : ndim-tuple of int 

Order of derivatives to evaluate for each dimension. 

If negative, the derivative is returned. 

 

Returns 

------- 

pp : PPoly 

Piecewise polynomial of order k2 = k + n representing 

the antiderivative of this polynomial. 

 

Notes 

----- 

The antiderivative returned by this function is continuous and 

continuously differentiable to order n-1, up to floating point 

rounding error. 

 

""" 

p = self.construct_fast(self.c.copy(), self.x, self.extrapolate) 

 

for axis, n in enumerate(nu): 

p._antiderivative_inplace(n, axis) 

 

p._ensure_c_contiguous() 

return p 

 

def integrate_1d(self, a, b, axis, extrapolate=None): 

r""" 

Compute NdPPoly representation for one dimensional definite integral 

 

The result is a piecewise polynomial representing the integral: 

 

.. math:: 

 

p(y, z, ...) = \int_a^b dx\, p(x, y, z, ...) 

 

where the dimension integrated over is specified with the 

`axis` parameter. 

 

Parameters 

---------- 

a, b : float 

Lower and upper bound for integration. 

axis : int 

Dimension over which to compute the 1D integrals 

extrapolate : bool, optional 

Whether to extrapolate to out-of-bounds points based on first 

and last intervals, or to return NaNs. 

 

Returns 

------- 

ig : NdPPoly or array-like 

Definite integral of the piecewise polynomial over [a, b]. 

If the polynomial was 1-dimensional, an array is returned, 

otherwise, an NdPPoly object. 

 

""" 

if extrapolate is None: 

extrapolate = self.extrapolate 

else: 

extrapolate = bool(extrapolate) 

 

ndim = len(self.x) 

axis = int(axis) % ndim 

 

# reuse 1D integration routines 

c = self.c 

swap = list(range(c.ndim)) 

swap.insert(0, swap[axis]) 

del swap[axis + 1] 

swap.insert(1, swap[ndim + axis]) 

del swap[ndim + axis + 1] 

 

c = c.transpose(swap) 

p = PPoly.construct_fast(c.reshape(c.shape[0], c.shape[1], -1), 

self.x[axis], 

extrapolate=extrapolate) 

out = p.integrate(a, b, extrapolate=extrapolate) 

 

# Construct result 

if ndim == 1: 

return out.reshape(c.shape[2:]) 

else: 

c = out.reshape(c.shape[2:]) 

x = self.x[:axis] + self.x[axis+1:] 

return self.construct_fast(c, x, extrapolate=extrapolate) 

 

def integrate(self, ranges, extrapolate=None): 

""" 

Compute a definite integral over a piecewise polynomial. 

 

Parameters 

---------- 

ranges : ndim-tuple of 2-tuples float 

Sequence of lower and upper bounds for each dimension, 

``[(a[0], b[0]), ..., (a[ndim-1], b[ndim-1])]`` 

extrapolate : bool, optional 

Whether to extrapolate to out-of-bounds points based on first 

and last intervals, or to return NaNs. 

 

Returns 

------- 

ig : array_like 

Definite integral of the piecewise polynomial over 

[a[0], b[0]] x ... x [a[ndim-1], b[ndim-1]] 

 

""" 

 

ndim = len(self.x) 

 

if extrapolate is None: 

extrapolate = self.extrapolate 

else: 

extrapolate = bool(extrapolate) 

 

if not hasattr(ranges, '__len__') or len(ranges) != ndim: 

raise ValueError("Range not a sequence of correct length") 

 

self._ensure_c_contiguous() 

 

# Reuse 1D integration routine 

c = self.c 

for n, (a, b) in enumerate(ranges): 

swap = list(range(c.ndim)) 

swap.insert(1, swap[ndim - n]) 

del swap[ndim - n + 1] 

 

c = c.transpose(swap) 

 

p = PPoly.construct_fast(c, self.x[n], extrapolate=extrapolate) 

out = p.integrate(a, b, extrapolate=extrapolate) 

c = out.reshape(c.shape[2:]) 

 

return c 

 

 

class RegularGridInterpolator(object): 

""" 

Interpolation on a regular grid in arbitrary dimensions 

 

The data must be defined on a regular grid; the grid spacing however may be 

uneven. Linear and nearest-neighbour interpolation are supported. After 

setting up the interpolator object, the interpolation method (*linear* or 

*nearest*) may be chosen at each evaluation. 

 

Parameters 

---------- 

points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ) 

The points defining the regular grid in n dimensions. 

 

values : array_like, shape (m1, ..., mn, ...) 

The data on the regular grid in n dimensions. 

 

method : str, optional 

The method of interpolation to perform. Supported are "linear" and 

"nearest". This parameter will become the default for the object's 

``__call__`` method. Default is "linear". 

 

bounds_error : bool, optional 

If True, when interpolated values are requested outside of the 

domain of the input data, a ValueError is raised. 

If False, then `fill_value` is used. 

 

fill_value : number, optional 

If provided, the value to use for points outside of the 

interpolation domain. If None, values outside 

the domain are extrapolated. 

 

Methods 

------- 

__call__ 

 

Notes 

----- 

Contrary to LinearNDInterpolator and NearestNDInterpolator, this class 

avoids expensive triangulation of the input data by taking advantage of the 

regular grid structure. 

 

If any of `points` have a dimension of size 1, linear interpolation will 

return an array of `nan` values. Nearest-neighbor interpolation will work 

as usual in this case. 

 

.. versionadded:: 0.14 

 

Examples 

-------- 

Evaluate a simple example function on the points of a 3D grid: 

 

>>> from scipy.interpolate import RegularGridInterpolator 

>>> def f(x, y, z): 

... return 2 * x**3 + 3 * y**2 - z 

>>> x = np.linspace(1, 4, 11) 

>>> y = np.linspace(4, 7, 22) 

>>> z = np.linspace(7, 9, 33) 

>>> data = f(*np.meshgrid(x, y, z, indexing='ij', sparse=True)) 

 

``data`` is now a 3D array with ``data[i,j,k] = f(x[i], y[j], z[k])``. 

Next, define an interpolating function from this data: 

 

>>> my_interpolating_function = RegularGridInterpolator((x, y, z), data) 

 

Evaluate the interpolating function at the two points 

``(x,y,z) = (2.1, 6.2, 8.3)`` and ``(3.3, 5.2, 7.1)``: 

 

>>> pts = np.array([[2.1, 6.2, 8.3], [3.3, 5.2, 7.1]]) 

>>> my_interpolating_function(pts) 

array([ 125.80469388, 146.30069388]) 

 

which is indeed a close approximation to 

``[f(2.1, 6.2, 8.3), f(3.3, 5.2, 7.1)]``. 

 

See also 

-------- 

NearestNDInterpolator : Nearest neighbour interpolation on unstructured 

data in N dimensions 

 

LinearNDInterpolator : Piecewise linear interpolant on unstructured data 

in N dimensions 

 

References 

---------- 

.. [1] Python package *regulargrid* by Johannes Buchner, see 

https://pypi.python.org/pypi/regulargrid/ 

.. [2] Trilinear interpolation. (2013, January 17). In Wikipedia, The Free 

Encyclopedia. Retrieved 27 Feb 2013 01:28. 

http://en.wikipedia.org/w/index.php?title=Trilinear_interpolation&oldid=533448871 

.. [3] Weiser, Alan, and Sergio E. Zarantonello. "A note on piecewise linear 

and multilinear table interpolation in many dimensions." MATH. 

COMPUT. 50.181 (1988): 189-196. 

http://www.ams.org/journals/mcom/1988-50-181/S0025-5718-1988-0917826-0/S0025-5718-1988-0917826-0.pdf 

 

""" 

# this class is based on code originally programmed by Johannes Buchner, 

# see https://github.com/JohannesBuchner/regulargrid 

 

def __init__(self, points, values, method="linear", bounds_error=True, 

fill_value=np.nan): 

if method not in ["linear", "nearest"]: 

raise ValueError("Method '%s' is not defined" % method) 

self.method = method 

self.bounds_error = bounds_error 

 

if not hasattr(values, 'ndim'): 

# allow reasonable duck-typed values 

values = np.asarray(values) 

 

if len(points) > values.ndim: 

raise ValueError("There are %d point arrays, but values has %d " 

"dimensions" % (len(points), values.ndim)) 

 

if hasattr(values, 'dtype') and hasattr(values, 'astype'): 

if not np.issubdtype(values.dtype, np.inexact): 

values = values.astype(float) 

 

self.fill_value = fill_value 

if fill_value is not None: 

fill_value_dtype = np.asarray(fill_value).dtype 

if (hasattr(values, 'dtype') and not 

np.can_cast(fill_value_dtype, values.dtype, 

casting='same_kind')): 

raise ValueError("fill_value must be either 'None' or " 

"of a type compatible with values") 

 

for i, p in enumerate(points): 

if not np.all(np.diff(p) > 0.): 

raise ValueError("The points in dimension %d must be strictly " 

"ascending" % i) 

if not np.asarray(p).ndim == 1: 

raise ValueError("The points in dimension %d must be " 

"1-dimensional" % i) 

if not values.shape[i] == len(p): 

raise ValueError("There are %d points and %d values in " 

"dimension %d" % (len(p), values.shape[i], i)) 

self.grid = tuple([np.asarray(p) for p in points]) 

self.values = values 

 

def __call__(self, xi, method=None): 

""" 

Interpolation at coordinates 

 

Parameters 

---------- 

xi : ndarray of shape (..., ndim) 

The coordinates to sample the gridded data at 

 

method : str 

The method of interpolation to perform. Supported are "linear" and 

"nearest". 

 

""" 

method = self.method if method is None else method 

if method not in ["linear", "nearest"]: 

raise ValueError("Method '%s' is not defined" % method) 

 

ndim = len(self.grid) 

xi = _ndim_coords_from_arrays(xi, ndim=ndim) 

if xi.shape[-1] != len(self.grid): 

raise ValueError("The requested sample points xi have dimension " 

"%d, but this RegularGridInterpolator has " 

"dimension %d" % (xi.shape[1], ndim)) 

 

xi_shape = xi.shape 

xi = xi.reshape(-1, xi_shape[-1]) 

 

if self.bounds_error: 

for i, p in enumerate(xi.T): 

if not np.logical_and(np.all(self.grid[i][0] <= p), 

np.all(p <= self.grid[i][-1])): 

raise ValueError("One of the requested xi is out of bounds " 

"in dimension %d" % i) 

 

indices, norm_distances, out_of_bounds = self._find_indices(xi.T) 

if method == "linear": 

result = self._evaluate_linear(indices, 

norm_distances, 

out_of_bounds) 

elif method == "nearest": 

result = self._evaluate_nearest(indices, 

norm_distances, 

out_of_bounds) 

if not self.bounds_error and self.fill_value is not None: 

result[out_of_bounds] = self.fill_value 

 

return result.reshape(xi_shape[:-1] + self.values.shape[ndim:]) 

 

def _evaluate_linear(self, indices, norm_distances, out_of_bounds): 

# slice for broadcasting over trailing dimensions in self.values 

vslice = (slice(None),) + (None,)*(self.values.ndim - len(indices)) 

 

# find relevant values 

# each i and i+1 represents a edge 

edges = itertools.product(*[[i, i + 1] for i in indices]) 

values = 0. 

for edge_indices in edges: 

weight = 1. 

for ei, i, yi in zip(edge_indices, indices, norm_distances): 

weight *= np.where(ei == i, 1 - yi, yi) 

values += np.asarray(self.values[edge_indices]) * weight[vslice] 

return values 

 

def _evaluate_nearest(self, indices, norm_distances, out_of_bounds): 

idx_res = [] 

for i, yi in zip(indices, norm_distances): 

idx_res.append(np.where(yi <= .5, i, i + 1)) 

return self.values[idx_res] 

 

def _find_indices(self, xi): 

# find relevant edges between which xi are situated 

indices = [] 

# compute distance to lower edge in unity units 

norm_distances = [] 

# check for out of bounds xi 

out_of_bounds = np.zeros((xi.shape[1]), dtype=bool) 

# iterate through dimensions 

for x, grid in zip(xi, self.grid): 

i = np.searchsorted(grid, x) - 1 

i[i < 0] = 0 

i[i > grid.size - 2] = grid.size - 2 

indices.append(i) 

norm_distances.append((x - grid[i]) / 

(grid[i + 1] - grid[i])) 

if not self.bounds_error: 

out_of_bounds += x < grid[0] 

out_of_bounds += x > grid[-1] 

return indices, norm_distances, out_of_bounds 

 

 

def interpn(points, values, xi, method="linear", bounds_error=True, 

fill_value=np.nan): 

""" 

Multidimensional interpolation on regular grids. 

 

Parameters 

---------- 

points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ) 

The points defining the regular grid in n dimensions. 

 

values : array_like, shape (m1, ..., mn, ...) 

The data on the regular grid in n dimensions. 

 

xi : ndarray of shape (..., ndim) 

The coordinates to sample the gridded data at 

 

method : str, optional 

The method of interpolation to perform. Supported are "linear" and 

"nearest", and "splinef2d". "splinef2d" is only supported for 

2-dimensional data. 

 

bounds_error : bool, optional 

If True, when interpolated values are requested outside of the 

domain of the input data, a ValueError is raised. 

If False, then `fill_value` is used. 

 

fill_value : number, optional 

If provided, the value to use for points outside of the 

interpolation domain. If None, values outside 

the domain are extrapolated. Extrapolation is not supported by method 

"splinef2d". 

 

Returns 

------- 

values_x : ndarray, shape xi.shape[:-1] + values.shape[ndim:] 

Interpolated values at input coordinates. 

 

Notes 

----- 

 

.. versionadded:: 0.14 

 

See also 

-------- 

NearestNDInterpolator : Nearest neighbour interpolation on unstructured 

data in N dimensions 

 

LinearNDInterpolator : Piecewise linear interpolant on unstructured data 

in N dimensions 

 

RegularGridInterpolator : Linear and nearest-neighbor Interpolation on a 

regular grid in arbitrary dimensions 

 

RectBivariateSpline : Bivariate spline approximation over a rectangular mesh 

 

""" 

# sanity check 'method' kwarg 

if method not in ["linear", "nearest", "splinef2d"]: 

raise ValueError("interpn only understands the methods 'linear', " 

"'nearest', and 'splinef2d'. You provided %s." % 

method) 

 

if not hasattr(values, 'ndim'): 

values = np.asarray(values) 

 

ndim = values.ndim 

if ndim > 2 and method == "splinef2d": 

raise ValueError("The method spline2fd can only be used for " 

"2-dimensional input data") 

if not bounds_error and fill_value is None and method == "splinef2d": 

raise ValueError("The method spline2fd does not support extrapolation.") 

 

# sanity check consistency of input dimensions 

if len(points) > ndim: 

raise ValueError("There are %d point arrays, but values has %d " 

"dimensions" % (len(points), ndim)) 

if len(points) != ndim and method == 'splinef2d': 

raise ValueError("The method spline2fd can only be used for " 

"scalar data with one point per coordinate") 

 

# sanity check input grid 

for i, p in enumerate(points): 

if not np.all(np.diff(p) > 0.): 

raise ValueError("The points in dimension %d must be strictly " 

"ascending" % i) 

if not np.asarray(p).ndim == 1: 

raise ValueError("The points in dimension %d must be " 

"1-dimensional" % i) 

if not values.shape[i] == len(p): 

raise ValueError("There are %d points and %d values in " 

"dimension %d" % (len(p), values.shape[i], i)) 

grid = tuple([np.asarray(p) for p in points]) 

 

# sanity check requested xi 

xi = _ndim_coords_from_arrays(xi, ndim=len(grid)) 

if xi.shape[-1] != len(grid): 

raise ValueError("The requested sample points xi have dimension " 

"%d, but this RegularGridInterpolator has " 

"dimension %d" % (xi.shape[1], len(grid))) 

 

for i, p in enumerate(xi.T): 

if bounds_error and not np.logical_and(np.all(grid[i][0] <= p), 

np.all(p <= grid[i][-1])): 

raise ValueError("One of the requested xi is out of bounds " 

"in dimension %d" % i) 

 

# perform interpolation 

if method == "linear": 

interp = RegularGridInterpolator(points, values, method="linear", 

bounds_error=bounds_error, 

fill_value=fill_value) 

return interp(xi) 

elif method == "nearest": 

interp = RegularGridInterpolator(points, values, method="nearest", 

bounds_error=bounds_error, 

fill_value=fill_value) 

return interp(xi) 

elif method == "splinef2d": 

xi_shape = xi.shape 

xi = xi.reshape(-1, xi.shape[-1]) 

 

# RectBivariateSpline doesn't support fill_value; we need to wrap here 

idx_valid = np.all((grid[0][0] <= xi[:, 0], xi[:, 0] <= grid[0][-1], 

grid[1][0] <= xi[:, 1], xi[:, 1] <= grid[1][-1]), 

axis=0) 

result = np.empty_like(xi[:, 0]) 

 

# make a copy of values for RectBivariateSpline 

interp = RectBivariateSpline(points[0], points[1], values[:]) 

result[idx_valid] = interp.ev(xi[idx_valid, 0], xi[idx_valid, 1]) 

result[np.logical_not(idx_valid)] = fill_value 

 

return result.reshape(xi_shape[:-1]) 

 

 

# backward compatibility wrapper 

class _ppform(PPoly): 

""" 

Deprecated piecewise polynomial class. 

 

New code should use the `PPoly` class instead. 

 

""" 

 

def __init__(self, coeffs, breaks, fill=0.0, sort=False): 

warnings.warn("_ppform is deprecated -- use PPoly instead", 

category=DeprecationWarning) 

 

if sort: 

breaks = np.sort(breaks) 

else: 

breaks = np.asarray(breaks) 

 

PPoly.__init__(self, coeffs, breaks) 

 

self.coeffs = self.c 

self.breaks = self.x 

self.K = self.coeffs.shape[0] 

self.fill = fill 

self.a = self.breaks[0] 

self.b = self.breaks[-1] 

 

def __call__(self, x): 

return PPoly.__call__(self, x, 0, False) 

 

def _evaluate(self, x, nu, extrapolate, out): 

PPoly._evaluate(self, x, nu, extrapolate, out) 

out[~((x >= self.a) & (x <= self.b))] = self.fill 

return out 

 

@classmethod 

def fromspline(cls, xk, cvals, order, fill=0.0): 

# Note: this spline representation is incompatible with FITPACK 

N = len(xk)-1 

sivals = np.empty((order+1, N), dtype=float) 

for m in xrange(order, -1, -1): 

fact = spec.gamma(m+1) 

res = _fitpack._bspleval(xk[:-1], xk, cvals, order, m) 

res /= fact 

sivals[order-m, :] = res 

return cls(sivals, xk, fill=fill) 

 

 

# The 3 private functions below can be called by splmake(). 

 

 

def _dot0(a, b): 

"""Similar to numpy.dot, but sum over last axis of a and 1st axis of b""" 

if b.ndim <= 2: 

return dot(a, b) 

else: 

axes = list(range(b.ndim)) 

axes.insert(-1, 0) 

axes.pop(0) 

return dot(a, b.transpose(axes)) 

 

 

def _find_smoothest(xk, yk, order, conds=None, B=None): 

# construct Bmatrix, and Jmatrix 

# e = J*c 

# minimize norm(e,2) given B*c=yk 

# if desired B can be given 

# conds is ignored 

N = len(xk)-1 

K = order 

if B is None: 

B = _fitpack._bsplmat(order, xk) 

J = _fitpack._bspldismat(order, xk) 

u, s, vh = scipy.linalg.svd(B) 

ind = K-1 

V2 = vh[-ind:,:].T 

V1 = vh[:-ind,:].T 

A = dot(J.T,J) 

tmp = dot(V2.T,A) 

Q = dot(tmp,V2) 

p = scipy.linalg.solve(Q, tmp) 

tmp = dot(V2,p) 

tmp = np.eye(N+K) - tmp 

tmp = dot(tmp,V1) 

tmp = dot(tmp,np.diag(1.0/s)) 

tmp = dot(tmp,u.T) 

return _dot0(tmp, yk) 

 

 

# conds is a tuple of an array and a vector 

# giving the left-hand and the right-hand side 

# of the additional equations to add to B 

 

 

def _find_user(xk, yk, order, conds, B): 

lh = conds[0] 

rh = conds[1] 

B = np.concatenate((B, lh), axis=0) 

w = np.concatenate((yk, rh), axis=0) 

M, N = B.shape 

if (M > N): 

raise ValueError("over-specification of conditions") 

elif (M < N): 

return _find_smoothest(xk, yk, order, None, B) 

else: 

return scipy.linalg.solve(B, w) 

 

 

# Remove the 3 private functions above as well when removing splmake 

@np.deprecate(message="splmake is deprecated in scipy 0.19.0, " 

"use make_interp_spline instead.") 

def splmake(xk, yk, order=3, kind='smoothest', conds=None): 

""" 

Return a representation of a spline given data-points at internal knots 

 

Parameters 

---------- 

xk : array_like 

The input array of x values of rank 1 

yk : array_like 

The input array of y values of rank N. `yk` can be an N-d array to 

represent more than one curve, through the same `xk` points. The first 

dimension is assumed to be the interpolating dimension and is the same 

length of `xk`. 

order : int, optional 

Order of the spline 

kind : str, optional 

Can be 'smoothest', 'not_a_knot', 'fixed', 'clamped', 'natural', 

'periodic', 'symmetric', 'user', 'mixed' and it is ignored if order < 2 

conds : optional 

Conds 

 

Returns 

------- 

splmake : tuple 

Return a (`xk`, `cvals`, `k`) representation of a spline given 

data-points where the (internal) knots are at the data-points. 

 

""" 

yk = np.asanyarray(yk) 

 

order = int(order) 

if order < 0: 

raise ValueError("order must not be negative") 

if order == 0: 

return xk, yk[:-1], order 

elif order == 1: 

return xk, yk, order 

 

try: 

func = eval('_find_%s' % kind) 

except: 

raise NotImplementedError 

 

# the constraint matrix 

B = _fitpack._bsplmat(order, xk) 

coefs = func(xk, yk, order, conds, B) 

return xk, coefs, order 

 

 

@np.deprecate(message="spleval is deprecated in scipy 0.19.0, " 

"use BSpline instead.") 

def spleval(xck, xnew, deriv=0): 

""" 

Evaluate a fixed spline represented by the given tuple at the new x-values 

 

The `xj` values are the interior knot points. The approximation 

region is `xj[0]` to `xj[-1]`. If N+1 is the length of `xj`, then `cvals` 

should have length N+k where `k` is the order of the spline. 

 

Parameters 

---------- 

(xj, cvals, k) : tuple 

Parameters that define the fixed spline 

xj : array_like 

Interior knot points 

cvals : array_like 

Curvature 

k : int 

Order of the spline 

xnew : array_like 

Locations to calculate spline 

deriv : int 

Deriv 

 

Returns 

------- 

spleval : ndarray 

If `cvals` represents more than one curve (`cvals.ndim` > 1) and/or 

`xnew` is N-d, then the result is `xnew.shape` + `cvals.shape[1:]` 

providing the interpolation of multiple curves. 

 

Notes 

----- 

Internally, an additional `k`-1 knot points are added on either side of 

the spline. 

 

""" 

(xj, cvals, k) = xck 

oldshape = np.shape(xnew) 

xx = np.ravel(xnew) 

sh = cvals.shape[1:] 

res = np.empty(xx.shape + sh, dtype=cvals.dtype) 

for index in np.ndindex(*sh): 

sl = (slice(None),) + index 

if issubclass(cvals.dtype.type, np.complexfloating): 

res[sl].real = _fitpack._bspleval(xx,xj, cvals.real[sl], k, deriv) 

res[sl].imag = _fitpack._bspleval(xx,xj, cvals.imag[sl], k, deriv) 

else: 

res[sl] = _fitpack._bspleval(xx, xj, cvals[sl], k, deriv) 

res.shape = oldshape + sh 

return res 

 

 

# When `spltopp` gets removed, also remove the _ppform class. 

@np.deprecate(message="spltopp is deprecated in scipy 0.19.0, " 

"use PPoly.from_spline instead.") 

def spltopp(xk, cvals, k): 

"""Return a piece-wise polynomial object from a fixed-spline tuple.""" 

return _ppform.fromspline(xk, cvals, k) 

 

 

@np.deprecate(message="spline is deprecated in scipy 0.19.0, " 

"use Bspline class instead.") 

def spline(xk, yk, xnew, order=3, kind='smoothest', conds=None): 

""" 

Interpolate a curve at new points using a spline fit 

 

Parameters 

---------- 

xk, yk : array_like 

The x and y values that define the curve. 

xnew : array_like 

The x values where spline should estimate the y values. 

order : int 

Default is 3. 

kind : string 

One of {'smoothest'} 

conds : Don't know 

Don't know 

 

Returns 

------- 

spline : ndarray 

An array of y values; the spline evaluated at the positions `xnew`. 

 

""" 

return spleval(splmake(xk, yk, order=order, kind=kind, conds=conds), xnew)