''' Classes for read / write of matlab (TM) 5 files
The matfile specification last found here:
http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/matfile_format.pdf
(as of December 5 2008) '''
''' ================================= Note on functions and mat files =================================
The document above does not give any hints as to the storage of matlab function handles, or anonymous function handles. I had therefore to guess the format of matlab arrays of ``mxFUNCTION_CLASS`` and ``mxOPAQUE_CLASS`` by looking at example mat files.
``mxFUNCTION_CLASS`` stores all types of matlab functions. It seems to contain a struct matrix with a set pattern of fields. For anonymous functions, a sub-fields of one of these fields seems to contain the well-named ``mxOPAQUE_CLASS``. This seems to cotain:
* array flags as for any matlab matrix * 3 int8 strings * a matrix
It seems that, whenever the mat file contains a ``mxOPAQUE_CLASS`` instance, there is also an un-named matrix (name == '') at the end of the mat file. I'll call this the ``__function_workspace__`` matrix.
When I saved two anonymous functions in a mat file, or appended another anonymous function to the mat file, there was still only one ``__function_workspace__`` un-named matrix at the end, but larger than that for a mat file with a single anonymous function, suggesting that the workspaces for the two functions had been merged.
The ``__function_workspace__`` matrix appears to be of double class (``mxCLASS_DOUBLE``), but stored as uint8, the memory for which is in the format of a mini .mat file, without the first 124 bytes of the file header (the description and the subsystem_offset), but with the version U2 bytes, and the S2 endian test bytes. There follow 4 zero bytes, presumably for 8 byte padding, and then a series of ``miMATRIX`` entries, as in a standard mat file. The ``miMATRIX`` entries appear to be series of un-named (name == '') matrices, and may also contain arrays of this same mini-mat format.
I guess that:
* saving an anonymous function back to a mat file will need the associated ``__function_workspace__`` matrix saved as well for the anonymous function to work correctly. * appending to a mat file that has a ``__function_workspace__`` would involve first pulling off this workspace, appending, checking whether there were any more anonymous functions appended, and then somehow merging the relevant workspaces, and saving at the end of the mat file.
The mat files I was playing with are in ``tests/data``:
* sqr.mat * parabola.mat * some_functions.mat
See ``tests/test_mio.py:test_mio_funcs.py`` for a debugging script I was working with.
'''
# Small fragments of current code adapted from matfile.py by Heiko # Henkelmann
arr_to_chars, arr_dtype_number, MatWriteError, MatReadError, MatReadWarning)
# Reader object for matlab 5 format variables
# Constants and helper objects NP_TO_MXTYPES, miCOMPRESSED, miMATRIX, miINT8, miUTF8, miUINT32, mxCELL_CLASS, mxSTRUCT_CLASS, mxOBJECT_CLASS, mxCHAR_CLASS, mxSPARSE_CLASS, mxDOUBLE_CLASS, mclass_info)
''' Reader for Mat 5 mat files Adds the following attribute to base class
uint16_codec - char codec to use for uint16 char arrays (defaults to system default codec)
Uses variable reader that has the following stardard interface (see abstract class in ``miobase``::
__init__(self, file_reader) read_header(self) array_from_header(self)
and added interface::
set_stream(self, stream) read_full_tag(self)
''' mat_stream, byte_order=None, mat_dtype=False, squeeze_me=False, chars_as_strings=True, matlab_compatible=False, struct_as_record=True, verify_compressed_data_integrity=True, uint16_codec=None ): '''Initializer for matlab 5 file format reader
%(matstream_arg)s %(load_args)s %(struct_arg)s uint16_codec : {None, string} Set codec to use for uint16 char arrays (e.g. 'utf-8'). Use system default codec if None ''' super(MatFile5Reader, self).__init__( mat_stream, byte_order, mat_dtype, squeeze_me, chars_as_strings, matlab_compatible, struct_as_record, verify_compressed_data_integrity ) # Set uint16 codec if not uint16_codec: uint16_codec = sys.getdefaultencoding() self.uint16_codec = uint16_codec # placeholders for readers - see initialize_read method self._file_reader = None self._matrix_reader = None
''' Guess byte order. Sets stream pointer to 0 ''' self.mat_stream.seek(126) mi = self.mat_stream.read(2) self.mat_stream.seek(0) return mi == b'IM' and '<' or '>'
''' Read in mat 5 file header ''' hdict = {} hdr_dtype = MDTYPES[self.byte_order]['dtypes']['file_header'] hdr = read_dtype(self.mat_stream, hdr_dtype) hdict['__header__'] = hdr['description'].item().strip(b' \t\n\000') v_major = hdr['version'] >> 8 v_minor = hdr['version'] & 0xFF hdict['__version__'] = '%d.%d' % (v_major, v_minor) return hdict
''' Run when beginning read of variables
Sets up readers from parameters in `self` ''' # reader for top level stream. We need this extra top-level # reader because we use the matrix_reader object to contain # compressed matrices (so they have their own stream) self._file_reader = VarReader5(self) # reader for matrix streams self._matrix_reader = VarReader5(self)
''' Read header, return header, next position
Header has to define at least .name and .is_global
Parameters ---------- None
Returns ------- header : object object that can be passed to self.read_var_array, and that has attributes .name and .is_global next_position : int position in stream of next variable ''' mdtype, byte_count = self._file_reader.read_full_tag() if not byte_count > 0: raise ValueError("Did not read any bytes") next_pos = self.mat_stream.tell() + byte_count if mdtype == miCOMPRESSED: # Make new stream from compressed data stream = ZlibInputStream(self.mat_stream, byte_count) self._matrix_reader.set_stream(stream) check_stream_limit = self.verify_compressed_data_integrity mdtype, byte_count = self._matrix_reader.read_full_tag() else: check_stream_limit = False self._matrix_reader.set_stream(self.mat_stream) if not mdtype == miMATRIX: raise TypeError('Expecting miMATRIX type here, got %d' % mdtype) header = self._matrix_reader.read_header(check_stream_limit) return header, next_pos
''' Read array, given `header`
Parameters ---------- header : header object object with fields defining variable header process : {True, False} bool, optional If True, apply recursive post-processing during loading of array.
Returns ------- arr : array array with post-processing applied or not according to `process`. ''' return self._matrix_reader.array_from_header(header, process)
''' get variables from stream as dictionary
variable_names - optional list of variable names to get
If variable_names is None, then get all variables in file ''' if isinstance(variable_names, string_types): variable_names = [variable_names] elif variable_names is not None: variable_names = list(variable_names)
self.mat_stream.seek(0) # Here we pass all the parameters in self to the reading objects self.initialize_read() mdict = self.read_file_header() mdict['__globals__'] = [] while not self.end_of_stream(): hdr, next_position = self.read_var_header() name = asstr(hdr.name) if name in mdict: warnings.warn('Duplicate variable name "%s" in stream' ' - replacing previous with new\n' 'Consider mio5.varmats_from_mat to split ' 'file into single variable files' % name, MatReadWarning, stacklevel=2) if name == '': # can only be a matlab 7 function workspace name = '__function_workspace__' # We want to keep this raw because mat_dtype processing # will break the format (uint8 as mxDOUBLE_CLASS) process = False else: process = True if variable_names is not None and name not in variable_names: self.mat_stream.seek(next_position) continue try: res = self.read_var_array(hdr, process) except MatReadError as err: warnings.warn( 'Unreadable variable "%s", because "%s"' % (name, err), Warning, stacklevel=2) res = "Read error: %s" % err self.mat_stream.seek(next_position) mdict[name] = res if hdr.is_global: mdict['__globals__'].append(name) if variable_names is not None: variable_names.remove(name) if len(variable_names) == 0: break return mdict
''' list variables from stream ''' self.mat_stream.seek(0) # Here we pass all the parameters in self to the reading objects self.initialize_read() self.read_file_header() vars = [] while not self.end_of_stream(): hdr, next_position = self.read_var_header() name = asstr(hdr.name) if name == '': # can only be a matlab 7 function workspace name = '__function_workspace__'
shape = self._matrix_reader.shape_from_header(hdr) if hdr.is_logical: info = 'logical' else: info = mclass_info.get(hdr.mclass, 'unknown') vars.append((name, shape, info))
self.mat_stream.seek(next_position) return vars
""" Pull variables out of mat 5 file as a sequence of mat file objects
This can be useful with a difficult mat file, containing unreadable variables. This routine pulls the variables out in raw form and puts them, unread, back into a file stream for saving or reading. Another use is the pathological case where there is more than one variable of the same name in the file; this routine returns the duplicates, whereas the standard reader will overwrite duplicates in the returned dictionary.
The file pointer in `file_obj` will be undefined. File pointers for the returned file-like objects are set at 0.
Parameters ---------- file_obj : file-like file object containing mat file
Returns ------- named_mats : list list contains tuples of (name, BytesIO) where BytesIO is a file-like object containing mat file contents as for a single variable. The BytesIO contains a string with the original header and a single var. If ``var_file_obj`` is an individual BytesIO instance, then save as a mat file with something like ``open('test.mat', 'wb').write(var_file_obj.read())``
Examples -------- >>> import scipy.io
BytesIO is from the ``io`` module in python 3, and is ``cStringIO`` for python < 3.
>>> mat_fileobj = BytesIO() >>> scipy.io.savemat(mat_fileobj, {'b': np.arange(10), 'a': 'a string'}) >>> varmats = varmats_from_mat(mat_fileobj) >>> sorted([name for name, str_obj in varmats]) ['a', 'b'] """ rdr = MatFile5Reader(file_obj) file_obj.seek(0) # Raw read of top-level file header hdr_len = MDTYPES[native_code]['dtypes']['file_header'].itemsize raw_hdr = file_obj.read(hdr_len) # Initialize variable reading file_obj.seek(0) rdr.initialize_read() mdict = rdr.read_file_header() next_position = file_obj.tell() named_mats = [] while not rdr.end_of_stream(): start_position = next_position hdr, next_position = rdr.read_var_header() name = asstr(hdr.name) # Read raw variable string file_obj.seek(start_position) byte_count = next_position - start_position var_str = file_obj.read(byte_count) # write to stringio object out_obj = BytesIO() out_obj.write(raw_hdr) out_obj.write(var_str) out_obj.seek(0) named_mats.append((name, out_obj)) return named_mats
""" Class to indicate presence of empty matlab struct on output """
''' Convert input object ``source`` to something we can write
Parameters ---------- source : object
Returns ------- arr : None or ndarray or EmptyStructMarker If `source` cannot be converted to something we can write to a matfile, return None. If `source` is equivalent to an empty dictionary, return ``EmptyStructMarker``. Otherwise return `source` converted to an ndarray with contents for writing to matfile. ''' if isinstance(source, np.ndarray): return source if source is None: return None # Objects that implement mappings is_mapping = (hasattr(source, 'keys') and hasattr(source, 'values') and hasattr(source, 'items')) # Objects that don't implement mappings, but do have dicts if isinstance(source, np.generic): # Numpy scalars are never mappings (pypy issue workaround) pass elif not is_mapping and hasattr(source, '__dict__'): source = dict((key, value) for key, value in source.__dict__.items() if not key.startswith('_')) is_mapping = True if is_mapping: dtype = [] values = [] for field, value in source.items(): if (isinstance(field, string_types) and field[0] not in '_0123456789'): dtype.append((str(field), object)) values.append(value) if dtype: return np.array([tuple(values)], dtype) else: return EmptyStructMarker # Next try and convert to an array narr = np.asanyarray(source) if narr.dtype.type in (object, np.object_) and \ narr.shape == () and narr == source: # No interesting conversion possible return None return narr
# Native byte ordered dtypes for convenience for writers
''' Generic matlab matrix writing class '''
self.file_stream = file_writer.file_stream self.unicode_strings = file_writer.unicode_strings self.long_field_names = file_writer.long_field_names self.oned_as = file_writer.oned_as # These are used for top level writes, and unset after self._var_name = None self._var_is_global = False
self.file_stream.write(arr.tostring(order='F'))
self.file_stream.write(s)
''' write tag and data ''' if mdtype is None: mdtype = NP_TO_MTYPES[arr.dtype.str[1:]] # Array needs to be in native byte order if arr.dtype.byteorder == swapped_code: arr = arr.byteswap().newbyteorder() byte_count = arr.size*arr.itemsize if byte_count <= 4: self.write_smalldata_element(arr, mdtype, byte_count) else: self.write_regular_element(arr, mdtype, byte_count)
# write tag with embedded data tag = np.zeros((), NDT_TAG_SMALL) tag['byte_count_mdtype'] = (byte_count << 16) + mdtype # if arr.tostring is < 4, the element will be zero-padded as needed. tag['data'] = arr.tostring(order='F') self.write_bytes(tag)
# write tag, data tag = np.zeros((), NDT_TAG_FULL) tag['mdtype'] = mdtype tag['byte_count'] = byte_count self.write_bytes(tag) self.write_bytes(arr) # pad to next 64-bit boundary bc_mod_8 = byte_count % 8 if bc_mod_8: self.file_stream.write(b'\x00' * (8-bc_mod_8))
shape, mclass, is_complex=False, is_logical=False, nzmax=0): ''' Write header for given data options shape : sequence array shape mclass - mat5 matrix class is_complex - True if matrix is complex is_logical - True if matrix is logical nzmax - max non zero elements for sparse arrays
We get the name and the global flag from the object, and reset them to defaults after we've used them ''' # get name and is_global from one-shot object store name = self._var_name is_global = self._var_is_global # initialize the top-level matrix tag, store position self._mat_tag_pos = self.file_stream.tell() self.write_bytes(self.mat_tag) # write array flags (complex, global, logical, class, nzmax) af = np.zeros((), NDT_ARRAY_FLAGS) af['data_type'] = miUINT32 af['byte_count'] = 8 flags = is_complex << 3 | is_global << 2 | is_logical << 1 af['flags_class'] = mclass | flags << 8 af['nzmax'] = nzmax self.write_bytes(af) # shape self.write_element(np.array(shape, dtype='i4')) # write name name = np.asarray(name) if name == '': # empty string zero-terminated self.write_smalldata_element(name, miINT8, 0) else: self.write_element(name, miINT8) # reset the one-shot store to defaults self._var_name = '' self._var_is_global = False
curr_pos = self.file_stream.tell() self.file_stream.seek(start_pos) byte_count = curr_pos - start_pos - 8 if byte_count >= 2**32: raise MatWriteError("Matrix too large to save with Matlab " "5 format") self.mat_tag['byte_count'] = byte_count self.write_bytes(self.mat_tag) self.file_stream.seek(curr_pos)
""" Write variable at top level of mat file
Parameters ---------- arr : array_like array-like object to create writer for name : str, optional name as it will appear in matlab workspace default is empty string is_global : {False, True}, optional whether variable will be global on load into matlab """ # these are set before the top-level header write, and unset at # the end of the same write, because they do not apply for lower levels self._var_is_global = is_global self._var_name = name # write the header and data self.write(arr)
''' Write `arr` to stream at top and sub levels
Parameters ---------- arr : array_like array-like object to create writer for ''' # store position, so we can update the matrix tag mat_tag_pos = self.file_stream.tell() # First check if these are sparse if scipy.sparse.issparse(arr): self.write_sparse(arr) self.update_matrix_tag(mat_tag_pos) return # Try to convert things that aren't arrays narr = to_writeable(arr) if narr is None: raise TypeError('Could not convert %s (type %s) to array' % (arr, type(arr))) if isinstance(narr, MatlabObject): self.write_object(narr) elif isinstance(narr, MatlabFunction): raise MatWriteError('Cannot write matlab functions') elif narr is EmptyStructMarker: # empty struct array self.write_empty_struct() elif narr.dtype.fields: # struct array self.write_struct(narr) elif narr.dtype.hasobject: # cell array self.write_cells(narr) elif narr.dtype.kind in ('U', 'S'): if self.unicode_strings: codec = 'UTF8' else: codec = 'ascii' self.write_char(narr, codec) else: self.write_numeric(narr) self.update_matrix_tag(mat_tag_pos)
imagf = arr.dtype.kind == 'c' logif = arr.dtype.kind == 'b' try: mclass = NP_TO_MXTYPES[arr.dtype.str[1:]] except KeyError: # No matching matlab type, probably complex256 / float128 / float96 # Cast data to complex128 / float64. if imagf: arr = arr.astype('c128') elif logif: arr = arr.astype('i1') # Should only contain 0/1 else: arr = arr.astype('f8') mclass = mxDOUBLE_CLASS self.write_header(matdims(arr, self.oned_as), mclass, is_complex=imagf, is_logical=logif) if imagf: self.write_element(arr.real) self.write_element(arr.imag) else: self.write_element(arr)
''' Write string array `arr` with given `codec` ''' if arr.size == 0 or np.all(arr == ''): # This an empty string array or a string array containing # only empty strings. Matlab cannot distiguish between a # string array that is empty, and a string array containing # only empty strings, because it stores strings as arrays of # char. There is no way of having an array of char that is # not empty, but contains an empty string. We have to # special-case the array-with-empty-strings because even # empty strings have zero padding, which would otherwise # appear in matlab as a string with a space. shape = (0,) * np.max([arr.ndim, 2]) self.write_header(shape, mxCHAR_CLASS) self.write_smalldata_element(arr, miUTF8, 0) return # non-empty string. # # Convert to char array arr = arr_to_chars(arr) # We have to write the shape directly, because we are going # recode the characters, and the resulting stream of chars # may have a different length shape = arr.shape self.write_header(shape, mxCHAR_CLASS) if arr.dtype.kind == 'U' and arr.size: # Make one long string from all the characters. We need to # transpose here, because we're flattening the array, before # we write the bytes. The bytes have to be written in # Fortran order. n_chars = np.product(shape) st_arr = np.ndarray(shape=(), dtype=arr_dtype_number(arr, n_chars), buffer=arr.T.copy()) # Fortran order # Recode with codec to give byte string st = st_arr.item().encode(codec) # Reconstruct as one-dimensional byte array arr = np.ndarray(shape=(len(st),), dtype='S1', buffer=st) self.write_element(arr, mdtype=miUTF8)
''' Sparse matrices are 2D ''' A = arr.tocsc() # convert to sparse CSC format A.sort_indices() # MATLAB expects sorted row indices is_complex = (A.dtype.kind == 'c') is_logical = (A.dtype.kind == 'b') nz = A.nnz self.write_header(matdims(arr, self.oned_as), mxSPARSE_CLASS, is_complex=is_complex, is_logical=is_logical, # matlab won't load file with 0 nzmax nzmax=1 if nz == 0 else nz) self.write_element(A.indices.astype('i4')) self.write_element(A.indptr.astype('i4')) self.write_element(A.data.real) if is_complex: self.write_element(A.data.imag)
self.write_header(matdims(arr, self.oned_as), mxCELL_CLASS) # loop over data, column major A = np.atleast_2d(arr).flatten('F') for el in A: self.write(el)
self.write_header((1, 1), mxSTRUCT_CLASS) # max field name length set to 1 in an example matlab struct self.write_element(np.array(1, dtype=np.int32)) # Field names element is empty self.write_element(np.array([], dtype=np.int8))
self.write_header(matdims(arr, self.oned_as), mxSTRUCT_CLASS) self._write_items(arr)
# write fieldnames fieldnames = [f[0] for f in arr.dtype.descr] length = max([len(fieldname) for fieldname in fieldnames])+1 max_length = (self.long_field_names and 64) or 32 if length > max_length: raise ValueError("Field names are restricted to %d characters" % (max_length-1)) self.write_element(np.array([length], dtype='i4')) self.write_element( np.array(fieldnames, dtype='S%d' % (length)), mdtype=miINT8) A = np.atleast_2d(arr).flatten('F') for el in A: for f in fieldnames: self.write(el[f])
'''Same as writing structs, except different mx class, and extra classname element after header ''' self.write_header(matdims(arr, self.oned_as), mxOBJECT_CLASS) self.write_element(np.array(arr.classname, dtype='S'), mdtype=miINT8) self._write_items(arr)
''' Class for writing mat5 files '''
do_compression=False, unicode_strings=False, global_vars=None, long_field_names=False, oned_as='row'): ''' Initialize writer for matlab 5 format files
Parameters ---------- %(do_compression)s %(unicode_strings)s global_vars : None or sequence of strings, optional Names of variables to be marked as global for matlab %(long_fields)s %(oned_as)s ''' self.file_stream = file_stream self.do_compression = do_compression self.unicode_strings = unicode_strings if global_vars: self.global_vars = global_vars else: self.global_vars = [] self.long_field_names = long_field_names self.oned_as = oned_as self._matrix_writer = None
# write header hdr = np.zeros((), NDT_FILE_HDR) hdr['description'] = 'MATLAB 5.0 MAT-file Platform: %s, Created on: %s' \ % (os.name,time.asctime()) hdr['version'] = 0x0100 hdr['endian_test'] = np.ndarray(shape=(), dtype='S2', buffer=np.uint16(0x4d49)) self.file_stream.write(hdr.tostring())
''' Write variables in `mdict` to stream
Parameters ---------- mdict : mapping mapping with method ``items`` returns name, contents pairs where ``name`` which will appear in the matlab workspace in file load, and ``contents`` is something writeable to a matlab file, such as a numpy array. write_header : {None, True, False}, optional If True, then write the matlab file header before writing the variables. If None (the default) then write the file header if we are at position 0 in the stream. By setting False here, and setting the stream position to the end of the file, you can append variables to a matlab file ''' # write header if requested, or None and start of file if write_header is None: write_header = self.file_stream.tell() == 0 if write_header: self.write_file_header() self._matrix_writer = VarWriter5(self) for name, var in mdict.items(): if name[0] == '_': continue is_global = name in self.global_vars if self.do_compression: stream = BytesIO() self._matrix_writer.file_stream = stream self._matrix_writer.write_top(var, asbytes(name), is_global) out_str = zlib.compress(stream.getvalue()) tag = np.empty((), NDT_TAG_FULL) tag['mdtype'] = miCOMPRESSED tag['byte_count'] = len(out_str) self.file_stream.write(tag.tostring()) self.file_stream.write(out_str) else: # not compressing self._matrix_writer.write_top(var, asbytes(name), is_global) |