1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

from __future__ import division, print_function, absolute_import 

 

import warnings 

 

import numpy as np 

from numpy import asarray_chkfinite 

 

from .misc import LinAlgError, _datacopied, LinAlgWarning 

from .lapack import get_lapack_funcs 

 

from scipy._lib.six import callable 

 

__all__ = ['qz', 'ordqz'] 

 

_double_precision = ['i', 'l', 'd'] 

 

 

def _select_function(sort): 

if callable(sort): 

# assume the user knows what they're doing 

sfunction = sort 

elif sort == 'lhp': 

sfunction = _lhp 

elif sort == 'rhp': 

sfunction = _rhp 

elif sort == 'iuc': 

sfunction = _iuc 

elif sort == 'ouc': 

sfunction = _ouc 

else: 

raise ValueError("sort parameter must be None, a callable, or " 

"one of ('lhp','rhp','iuc','ouc')") 

 

return sfunction 

 

 

def _lhp(x, y): 

out = np.empty_like(x, dtype=bool) 

nonzero = (y != 0) 

# handles (x, y) = (0, 0) too 

out[~nonzero] = False 

out[nonzero] = (np.real(x[nonzero]/y[nonzero]) < 0.0) 

return out 

 

 

def _rhp(x, y): 

out = np.empty_like(x, dtype=bool) 

nonzero = (y != 0) 

# handles (x, y) = (0, 0) too 

out[~nonzero] = False 

out[nonzero] = (np.real(x[nonzero]/y[nonzero]) > 0.0) 

return out 

 

 

def _iuc(x, y): 

out = np.empty_like(x, dtype=bool) 

nonzero = (y != 0) 

# handles (x, y) = (0, 0) too 

out[~nonzero] = False 

out[nonzero] = (abs(x[nonzero]/y[nonzero]) < 1.0) 

return out 

 

 

def _ouc(x, y): 

out = np.empty_like(x, dtype=bool) 

xzero = (x == 0) 

yzero = (y == 0) 

out[xzero & yzero] = False 

out[~xzero & yzero] = True 

out[~yzero] = (abs(x[~yzero]/y[~yzero]) > 1.0) 

return out 

 

 

def _qz(A, B, output='real', lwork=None, sort=None, overwrite_a=False, 

overwrite_b=False, check_finite=True): 

if sort is not None: 

# Disabled due to segfaults on win32, see ticket 1717. 

raise ValueError("The 'sort' input of qz() has to be None and will be " 

"removed in a future release. Use ordqz instead.") 

 

if output not in ['real', 'complex', 'r', 'c']: 

raise ValueError("argument must be 'real', or 'complex'") 

 

if check_finite: 

a1 = asarray_chkfinite(A) 

b1 = asarray_chkfinite(B) 

else: 

a1 = np.asarray(A) 

b1 = np.asarray(B) 

 

a_m, a_n = a1.shape 

b_m, b_n = b1.shape 

if not (a_m == a_n == b_m == b_n): 

raise ValueError("Array dimensions must be square and agree") 

 

typa = a1.dtype.char 

if output in ['complex', 'c'] and typa not in ['F', 'D']: 

if typa in _double_precision: 

a1 = a1.astype('D') 

typa = 'D' 

else: 

a1 = a1.astype('F') 

typa = 'F' 

typb = b1.dtype.char 

if output in ['complex', 'c'] and typb not in ['F', 'D']: 

if typb in _double_precision: 

b1 = b1.astype('D') 

typb = 'D' 

else: 

b1 = b1.astype('F') 

typb = 'F' 

 

overwrite_a = overwrite_a or (_datacopied(a1, A)) 

overwrite_b = overwrite_b or (_datacopied(b1, B)) 

 

gges, = get_lapack_funcs(('gges',), (a1, b1)) 

 

if lwork is None or lwork == -1: 

# get optimal work array size 

result = gges(lambda x: None, a1, b1, lwork=-1) 

lwork = result[-2][0].real.astype(np.int) 

 

sfunction = lambda x: None 

result = gges(sfunction, a1, b1, lwork=lwork, overwrite_a=overwrite_a, 

overwrite_b=overwrite_b, sort_t=0) 

 

info = result[-1] 

if info < 0: 

raise ValueError("Illegal value in argument {} of gges".format(-info)) 

elif info > 0 and info <= a_n: 

warnings.warn("The QZ iteration failed. (a,b) are not in Schur " 

"form, but ALPHAR(j), ALPHAI(j), and BETA(j) should be " 

"correct for J={},...,N".format(info-1), LinAlgWarning, 

stacklevel=3) 

elif info == a_n+1: 

raise LinAlgError("Something other than QZ iteration failed") 

elif info == a_n+2: 

raise LinAlgError("After reordering, roundoff changed values of some " 

"complex eigenvalues so that leading eigenvalues " 

"in the Generalized Schur form no longer satisfy " 

"sort=True. This could also be due to scaling.") 

elif info == a_n+3: 

raise LinAlgError("Reordering failed in <s,d,c,z>tgsen") 

 

return result, gges.typecode 

 

 

def qz(A, B, output='real', lwork=None, sort=None, overwrite_a=False, 

overwrite_b=False, check_finite=True): 

""" 

QZ decomposition for generalized eigenvalues of a pair of matrices. 

 

The QZ, or generalized Schur, decomposition for a pair of N x N 

nonsymmetric matrices (A,B) is:: 

 

(A,B) = (Q*AA*Z', Q*BB*Z') 

 

where AA, BB is in generalized Schur form if BB is upper-triangular 

with non-negative diagonal and AA is upper-triangular, or for real QZ 

decomposition (``output='real'``) block upper triangular with 1x1 

and 2x2 blocks. In this case, the 1x1 blocks correspond to real 

generalized eigenvalues and 2x2 blocks are 'standardized' by making 

the corresponding elements of BB have the form:: 

 

[ a 0 ] 

[ 0 b ] 

 

and the pair of corresponding 2x2 blocks in AA and BB will have a complex 

conjugate pair of generalized eigenvalues. If (``output='complex'``) or 

A and B are complex matrices, Z' denotes the conjugate-transpose of Z. 

Q and Z are unitary matrices. 

 

Parameters 

---------- 

A : (N, N) array_like 

2d array to decompose 

B : (N, N) array_like 

2d array to decompose 

output : {'real', 'complex'}, optional 

Construct the real or complex QZ decomposition for real matrices. 

Default is 'real'. 

lwork : int, optional 

Work array size. If None or -1, it is automatically computed. 

sort : {None, callable, 'lhp', 'rhp', 'iuc', 'ouc'}, optional 

NOTE: THIS INPUT IS DISABLED FOR NOW. Use ordqz instead. 

 

Specifies whether the upper eigenvalues should be sorted. A callable 

may be passed that, given a eigenvalue, returns a boolean denoting 

whether the eigenvalue should be sorted to the top-left (True). For 

real matrix pairs, the sort function takes three real arguments 

(alphar, alphai, beta). The eigenvalue 

``x = (alphar + alphai*1j)/beta``. For complex matrix pairs or 

output='complex', the sort function takes two complex arguments 

(alpha, beta). The eigenvalue ``x = (alpha/beta)``. Alternatively, 

string parameters may be used: 

 

- 'lhp' Left-hand plane (x.real < 0.0) 

- 'rhp' Right-hand plane (x.real > 0.0) 

- 'iuc' Inside the unit circle (x*x.conjugate() < 1.0) 

- 'ouc' Outside the unit circle (x*x.conjugate() > 1.0) 

 

Defaults to None (no sorting). 

overwrite_a : bool, optional 

Whether to overwrite data in a (may improve performance) 

overwrite_b : bool, optional 

Whether to overwrite data in b (may improve performance) 

check_finite : bool, optional 

If true checks the elements of `A` and `B` are finite numbers. If 

false does no checking and passes matrix through to 

underlying algorithm. 

 

Returns 

------- 

AA : (N, N) ndarray 

Generalized Schur form of A. 

BB : (N, N) ndarray 

Generalized Schur form of B. 

Q : (N, N) ndarray 

The left Schur vectors. 

Z : (N, N) ndarray 

The right Schur vectors. 

 

Notes 

----- 

Q is transposed versus the equivalent function in Matlab. 

 

.. versionadded:: 0.11.0 

 

Examples 

-------- 

>>> from scipy import linalg 

>>> np.random.seed(1234) 

>>> A = np.arange(9).reshape((3, 3)) 

>>> B = np.random.randn(3, 3) 

 

>>> AA, BB, Q, Z = linalg.qz(A, B) 

>>> AA 

array([[-13.40928183, -4.62471562, 1.09215523], 

[ 0. , 0. , 1.22805978], 

[ 0. , 0. , 0.31973817]]) 

>>> BB 

array([[ 0.33362547, -1.37393632, 0.02179805], 

[ 0. , 1.68144922, 0.74683866], 

[ 0. , 0. , 0.9258294 ]]) 

>>> Q 

array([[ 0.14134727, -0.97562773, 0.16784365], 

[ 0.49835904, -0.07636948, -0.86360059], 

[ 0.85537081, 0.20571399, 0.47541828]]) 

>>> Z 

array([[-0.24900855, -0.51772687, 0.81850696], 

[-0.79813178, 0.58842606, 0.12938478], 

[-0.54861681, -0.6210585 , -0.55973739]]) 

 

See also 

-------- 

ordqz 

""" 

# output for real 

# AA, BB, sdim, alphar, alphai, beta, vsl, vsr, work, info 

# output for complex 

# AA, BB, sdim, alpha, beta, vsl, vsr, work, info 

result, _ = _qz(A, B, output=output, lwork=lwork, sort=sort, 

overwrite_a=overwrite_a, overwrite_b=overwrite_b, 

check_finite=check_finite) 

return result[0], result[1], result[-4], result[-3] 

 

 

def ordqz(A, B, sort='lhp', output='real', overwrite_a=False, 

overwrite_b=False, check_finite=True): 

"""QZ decomposition for a pair of matrices with reordering. 

 

.. versionadded:: 0.17.0 

 

Parameters 

---------- 

A : (N, N) array_like 

2d array to decompose 

B : (N, N) array_like 

2d array to decompose 

sort : {callable, 'lhp', 'rhp', 'iuc', 'ouc'}, optional 

Specifies whether the upper eigenvalues should be sorted. A 

callable may be passed that, given an ordered pair ``(alpha, 

beta)`` representing the eigenvalue ``x = (alpha/beta)``, 

returns a boolean denoting whether the eigenvalue should be 

sorted to the top-left (True). For the real matrix pairs 

``beta`` is real while ``alpha`` can be complex, and for 

complex matrix pairs both ``alpha`` and ``beta`` can be 

complex. The callable must be able to accept a numpy 

array. Alternatively, string parameters may be used: 

 

- 'lhp' Left-hand plane (x.real < 0.0) 

- 'rhp' Right-hand plane (x.real > 0.0) 

- 'iuc' Inside the unit circle (x*x.conjugate() < 1.0) 

- 'ouc' Outside the unit circle (x*x.conjugate() > 1.0) 

 

With the predefined sorting functions, an infinite eigenvalue 

(i.e. ``alpha != 0`` and ``beta = 0``) is considered to lie in 

neither the left-hand nor the right-hand plane, but it is 

considered to lie outside the unit circle. For the eigenvalue 

``(alpha, beta) = (0, 0)`` the predefined sorting functions 

all return `False`. 

output : str {'real','complex'}, optional 

Construct the real or complex QZ decomposition for real matrices. 

Default is 'real'. 

overwrite_a : bool, optional 

If True, the contents of A are overwritten. 

overwrite_b : bool, optional 

If True, the contents of B are overwritten. 

check_finite : bool, optional 

If true checks the elements of `A` and `B` are finite numbers. If 

false does no checking and passes matrix through to 

underlying algorithm. 

 

Returns 

------- 

AA : (N, N) ndarray 

Generalized Schur form of A. 

BB : (N, N) ndarray 

Generalized Schur form of B. 

alpha : (N,) ndarray 

alpha = alphar + alphai * 1j. See notes. 

beta : (N,) ndarray 

See notes. 

Q : (N, N) ndarray 

The left Schur vectors. 

Z : (N, N) ndarray 

The right Schur vectors. 

 

Notes 

----- 

On exit, ``(ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N``, will be the 

generalized eigenvalues. ``ALPHAR(j) + ALPHAI(j)*i`` and 

``BETA(j),j=1,...,N`` are the diagonals of the complex Schur form (S,T) 

that would result if the 2-by-2 diagonal blocks of the real generalized 

Schur form of (A,B) were further reduced to triangular form using complex 

unitary transformations. If ALPHAI(j) is zero, then the j-th eigenvalue is 

real; if positive, then the ``j``-th and ``(j+1)``-st eigenvalues are a 

complex conjugate pair, with ``ALPHAI(j+1)`` negative. 

 

See also 

-------- 

qz 

 

Examples 

-------- 

>>> from scipy.linalg import ordqz 

>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]]) 

>>> B = np.array([[0, 6, 0, 0], [5, 0, 2, 1], [5, 2, 6, 6], [4, 7, 7, 7]]) 

>>> AA, BB, alpha, beta, Q, Z = ordqz(A, B, sort='lhp') 

 

Since we have sorted for left half plane eigenvalues, negatives come first 

 

>>> (alpha/beta).real < 0 

array([ True, True, False, False], dtype=bool) 

 

""" 

# NOTE: should users be able to set these? 

lwork = None 

result, typ = _qz(A, B, output=output, lwork=lwork, sort=None, 

overwrite_a=overwrite_a, overwrite_b=overwrite_b, 

check_finite=check_finite) 

AA, BB, Q, Z = result[0], result[1], result[-4], result[-3] 

if typ not in 'cz': 

alpha, beta = result[3] + result[4]*1.j, result[5] 

else: 

alpha, beta = result[3], result[4] 

 

sfunction = _select_function(sort) 

select = sfunction(alpha, beta) 

 

tgsen, = get_lapack_funcs(('tgsen',), (AA, BB)) 

 

if lwork is None or lwork == -1: 

result = tgsen(select, AA, BB, Q, Z, lwork=-1) 

lwork = result[-3][0].real.astype(np.int) 

# looks like wrong value passed to ZTGSYL if not 

lwork += 1 

 

liwork = None 

if liwork is None or liwork == -1: 

result = tgsen(select, AA, BB, Q, Z, liwork=-1) 

liwork = result[-2][0] 

 

result = tgsen(select, AA, BB, Q, Z, lwork=lwork, liwork=liwork) 

 

info = result[-1] 

if info < 0: 

raise ValueError("Illegal value in argument %d of tgsen" % -info) 

elif info == 1: 

raise ValueError("Reordering of (A, B) failed because the transformed" 

" matrix pair (A, B) would be too far from " 

"generalized Schur form; the problem is very " 

"ill-conditioned. (A, B) may have been partially " 

"reorded. If requested, 0 is returned in DIF(*), " 

"PL, and PR.") 

 

# for real results has a, b, alphar, alphai, beta, q, z, m, pl, pr, dif, 

# work, iwork, info 

if typ in ['f', 'd']: 

alpha = result[2] + result[3] * 1.j 

return (result[0], result[1], alpha, result[4], result[5], result[6]) 

# for complex results has a, b, alpha, beta, q, z, m, pl, pr, dif, work, 

# iwork, info 

else: 

return result[0], result[1], result[2], result[3], result[4], result[5]