""" Sketching-based Matrix Computations """
# Author: Jordi Montes <jomsdev@gmail.com> # August 28, 2017
r"""" Generate a matrix S for the Clarkson-Woodruff sketch.
Given the desired size of matrix, the method returns a matrix S of size (n_rows, n_columns) where each column has all the entries set to 0 less one position which has been randomly set to +1 or -1 with equal probability.
Parameters ---------- n_rows: int Number of rows of S n_columns: int Number of columns of S seed : None or int or `numpy.random.RandomState` instance, optional This parameter defines the ``RandomState`` object to use for drawing random variates. If None (or ``np.random``), the global ``np.random`` state is used. If integer, it is used to seed the local ``RandomState`` instance. Default is None.
Returns ------- S : (n_rows, n_columns) array_like
Notes ----- Given a matrix A, with probability at least 9/10, .. math:: ||SA|| == (1 \pm \epsilon)||A|| Where epsilon is related to the size of S """ S = np.zeros((n_rows, n_columns)) nz_positions = np.random.randint(0, n_rows, n_columns) rng = check_random_state(seed) values = rng.choice([1, -1], n_columns) for i in range(n_columns): S[nz_positions[i]][i] = values[i]
return S
r"""" Find low-rank matrix approximation via the Clarkson-Woodruff Transform.
Given an input_matrix ``A`` of size ``(n, d)``, compute a matrix ``A'`` of size (sketch_size, d) which holds:
.. math:: ||Ax|| = (1 \pm \epsilon)||A'x||
with high probability.
The error is related to the number of rows of the sketch and it is bounded
.. math:: poly(r(\epsilon^{-1}))
Parameters ---------- input_matrix: array_like Input matrix, of shape ``(n, d)``. sketch_size: int Number of rows for the sketch. seed : None or int or `numpy.random.RandomState` instance, optional This parameter defines the ``RandomState`` object to use for drawing random variates. If None (or ``np.random``), the global ``np.random`` state is used. If integer, it is used to seed the local ``RandomState`` instance. Default is None.
Returns ------- A' : array_like Sketch of the input matrix ``A``, of size ``(sketch_size, d)``.
Notes ----- This is an implementation of the Clarkson-Woodruff Transform (CountSketch). ``A'`` can be computed in principle in ``O(nnz(A))`` (with ``nnz`` meaning the number of nonzero entries), however we don't take advantage of sparse matrices in this implementation.
Examples -------- Given a big dense matrix ``A``:
>>> from scipy import linalg >>> n_rows, n_columns, sketch_n_rows = (2000, 100, 100) >>> threshold = 0.1 >>> tmp = np.random.normal(0, 0.1, n_rows*n_columns) >>> A = np.reshape(tmp, (n_rows, n_columns)) >>> sketch = linalg.clarkson_woodruff_transform(A, sketch_n_rows) >>> sketch.shape (100, 100) >>> normA = linalg.norm(A) >>> norm_sketch = linalg.norm(sketch)
Now with high probability, the condition ``abs(normA-normSketch) < threshold`` holds.
References ---------- .. [1] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in input sparsity time. In STOC, 2013.
""" S = cwt_matrix(sketch_size, input_matrix.shape[0], seed) return np.dot(S, input_matrix) |