# # Author: Pearu Peterson, March 2002 # # w/ additions by Travis Oliphant, March 2002 # and Jake Vanderplas, August 2012
'solve_toeplitz', 'solve_circulant', 'inv', 'det', 'lstsq', 'pinv', 'pinv2', 'pinvh', 'matrix_balance']
# Linear equations """ Check arguments during the different steps of the solution phase """ if info < 0: raise ValueError('LAPACK reported an illegal value in {}-th argument' '.'.format(-info)) elif 0 < info: raise LinAlgError('Matrix is singular.')
if lamch is None: return E = lamch('E') if rcond < E: warn('scipy.linalg.solve\nIll-conditioned matrix detected. Result ' 'is not guaranteed to be accurate.\nReciprocal condition ' 'number{:.6e}'.format(rcond), LinAlgWarning, stacklevel=3)
overwrite_b=False, debug=None, check_finite=True, assume_a='gen', transposed=False): """ Solves the linear equation set ``a * x = b`` for the unknown ``x`` for square ``a`` matrix.
If the data matrix is known to be a particular type then supplying the corresponding string to ``assume_a`` key chooses the dedicated solver. The available options are
=================== ======== generic matrix 'gen' symmetric 'sym' hermitian 'her' positive definite 'pos' =================== ========
If omitted, ``'gen'`` is the default structure.
The datatype of the arrays define which solver is called regardless of the values. In other words, even when the complex array entries have precisely zero imaginary parts, the complex solver will be called based on the data type of the array.
Parameters ---------- a : (N, N) array_like Square input data b : (N, NRHS) array_like Input data for the right hand side. sym_pos : bool, optional Assume `a` is symmetric and positive definite. This key is deprecated and assume_a = 'pos' keyword is recommended instead. The functionality is the same. It will be removed in the future. lower : bool, optional If True, only the data contained in the lower triangle of `a`. Default is to use upper triangle. (ignored for ``'gen'``) overwrite_a : bool, optional Allow overwriting data in `a` (may enhance performance). Default is False. overwrite_b : bool, optional Allow overwriting data in `b` (may enhance performance). Default is False. check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. assume_a : str, optional Valid entries are explained above. transposed: bool, optional If True, ``a^T x = b`` for real matrices, raises `NotImplementedError` for complex matrices (only for True).
Returns ------- x : (N, NRHS) ndarray The solution array.
Raises ------ ValueError If size mismatches detected or input a is not square. LinAlgError If the matrix is singular. LinAlgWarning If an ill-conditioned input a is detected. NotImplementedError If transposed is True and input a is a complex matrix.
Examples -------- Given `a` and `b`, solve for `x`:
>>> a = np.array([[3, 2, 0], [1, -1, 0], [0, 5, 1]]) >>> b = np.array([2, 4, -1]) >>> from scipy import linalg >>> x = linalg.solve(a, b) >>> x array([ 2., -2., 9.]) >>> np.dot(a, x) == b array([ True, True, True], dtype=bool)
Notes ----- If the input b matrix is a 1D array with N elements, when supplied together with an NxN input a, it is assumed as a valid column vector despite the apparent size mismatch. This is compatible with the numpy.dot() behavior and the returned result is still 1D array.
The generic, symmetric, hermitian and positive definite solutions are obtained via calling ?GESV, ?SYSV, ?HESV, and ?POSV routines of LAPACK respectively. """ # Flags for 1D or nD right hand side b_is_1D = False
a1 = atleast_2d(_asarray_validated(a, check_finite=check_finite)) b1 = atleast_1d(_asarray_validated(b, check_finite=check_finite)) n = a1.shape[0]
overwrite_a = overwrite_a or _datacopied(a1, a) overwrite_b = overwrite_b or _datacopied(b1, b)
if a1.shape[0] != a1.shape[1]: raise ValueError('Input a needs to be a square matrix.')
if n != b1.shape[0]: # Last chance to catch 1x1 scalar a and 1D b arrays if not (n == 1 and b1.size != 0): raise ValueError('Input b has to have same number of rows as ' 'input a')
# accommodate empty arrays if b1.size == 0: return np.asfortranarray(b1.copy())
# regularize 1D b arrays to 2D if b1.ndim == 1: if n == 1: b1 = b1[None, :] else: b1 = b1[:, None] b_is_1D = True
# Backwards compatibility - old keyword. if sym_pos: assume_a = 'pos'
if assume_a not in ('gen', 'sym', 'her', 'pos'): raise ValueError('{} is not a recognized matrix structure' ''.format(assume_a))
# Deprecate keyword "debug" if debug is not None: warn('Use of the "debug" keyword is deprecated ' 'and this keyword will be removed in future ' 'versions of SciPy.', DeprecationWarning, stacklevel=2)
# Get the correct lamch function. # The LAMCH functions only exists for S and D # So for complex values we have to convert to real/double. if a1.dtype.char in 'fF': # single precision lamch = get_lapack_funcs('lamch', dtype='f') else: lamch = get_lapack_funcs('lamch', dtype='d')
# Currently we do not have the other forms of the norm calculators # lansy, lanpo, lanhe. # However, in any case they only reduce computations slightly... lange = get_lapack_funcs('lange', (a1,))
# Since the I-norm and 1-norm are the same for symmetric matrices # we can collect them all in this one call # Note however, that when issuing 'gen' and form!='none', then # the I-norm should be used if transposed: trans = 1 norm = 'I' if np.iscomplexobj(a1): raise NotImplementedError('scipy.linalg.solve can currently ' 'not solve a^T x = b or a^H x = b ' 'for complex matrices.') else: trans = 0 norm = '1'
anorm = lange(norm, a1)
# Generalized case 'gesv' if assume_a == 'gen': gecon, getrf, getrs = get_lapack_funcs(('gecon', 'getrf', 'getrs'), (a1, b1)) lu, ipvt, info = getrf(a1, overwrite_a=overwrite_a) _solve_check(n, info) x, info = getrs(lu, ipvt, b1, trans=trans, overwrite_b=overwrite_b) _solve_check(n, info) rcond, info = gecon(lu, anorm, norm=norm) # Hermitian case 'hesv' elif assume_a == 'her': hecon, hesv, hesv_lw = get_lapack_funcs(('hecon', 'hesv', 'hesv_lwork'), (a1, b1)) lwork = _compute_lwork(hesv_lw, n, lower) lu, ipvt, x, info = hesv(a1, b1, lwork=lwork, lower=lower, overwrite_a=overwrite_a, overwrite_b=overwrite_b) _solve_check(n, info) rcond, info = hecon(lu, ipvt, anorm) # Symmetric case 'sysv' elif assume_a == 'sym': sycon, sysv, sysv_lw = get_lapack_funcs(('sycon', 'sysv', 'sysv_lwork'), (a1, b1)) lwork = _compute_lwork(sysv_lw, n, lower) lu, ipvt, x, info = sysv(a1, b1, lwork=lwork, lower=lower, overwrite_a=overwrite_a, overwrite_b=overwrite_b) _solve_check(n, info) rcond, info = sycon(lu, ipvt, anorm) # Positive definite case 'posv' else: pocon, posv = get_lapack_funcs(('pocon', 'posv'), (a1, b1)) lu, x, info = posv(a1, b1, lower=lower, overwrite_a=overwrite_a, overwrite_b=overwrite_b) _solve_check(n, info) rcond, info = pocon(lu, anorm)
_solve_check(n, info, lamch, rcond)
if b_is_1D: x = x.ravel()
return x
overwrite_b=False, debug=None, check_finite=True): """ Solve the equation `a x = b` for `x`, assuming a is a triangular matrix.
Parameters ---------- a : (M, M) array_like A triangular matrix b : (M,) or (M, N) array_like Right-hand side matrix in `a x = b` lower : bool, optional Use only data contained in the lower triangle of `a`. Default is to use upper triangle. trans : {0, 1, 2, 'N', 'T', 'C'}, optional Type of system to solve:
======== ========= trans system ======== ========= 0 or 'N' a x = b 1 or 'T' a^T x = b 2 or 'C' a^H x = b ======== ========= unit_diagonal : bool, optional If True, diagonal elements of `a` are assumed to be 1 and will not be referenced. overwrite_b : bool, optional Allow overwriting data in `b` (may enhance performance) check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns ------- x : (M,) or (M, N) ndarray Solution to the system `a x = b`. Shape of return matches `b`.
Raises ------ LinAlgError If `a` is singular
Notes ----- .. versionadded:: 0.9.0
Examples -------- Solve the lower triangular system a x = b, where::
[3 0 0 0] [4] a = [2 1 0 0] b = [2] [1 0 1 0] [4] [1 1 1 1] [2]
>>> from scipy.linalg import solve_triangular >>> a = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]]) >>> b = np.array([4, 2, 4, 2]) >>> x = solve_triangular(a, b, lower=True) >>> x array([ 1.33333333, -0.66666667, 2.66666667, -1.33333333]) >>> a.dot(x) # Check the result array([ 4., 2., 4., 2.])
"""
# Deprecate keyword "debug" if debug is not None: warn('Use of the "debug" keyword is deprecated ' 'and this keyword will be removed in the future ' 'versions of SciPy.', DeprecationWarning, stacklevel=2)
a1 = _asarray_validated(a, check_finite=check_finite) b1 = _asarray_validated(b, check_finite=check_finite) if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]: raise ValueError('expected square matrix') if a1.shape[0] != b1.shape[0]: raise ValueError('incompatible dimensions') overwrite_b = overwrite_b or _datacopied(b1, b) if debug: print('solve:overwrite_b=', overwrite_b) trans = {'N': 0, 'T': 1, 'C': 2}.get(trans, trans) trtrs, = get_lapack_funcs(('trtrs',), (a1, b1)) x, info = trtrs(a1, b1, overwrite_b=overwrite_b, lower=lower, trans=trans, unitdiag=unit_diagonal)
if info == 0: return x if info > 0: raise LinAlgError("singular matrix: resolution failed at diagonal %d" % (info-1)) raise ValueError('illegal value in %d-th argument of internal trtrs' % (-info))
debug=None, check_finite=True): """ Solve the equation a x = b for x, assuming a is banded matrix.
The matrix a is stored in `ab` using the matrix diagonal ordered form::
ab[u + i - j, j] == a[i,j]
Example of `ab` (shape of a is (6,6), `u` =1, `l` =2)::
* a01 a12 a23 a34 a45 a00 a11 a22 a33 a44 a55 a10 a21 a32 a43 a54 * a20 a31 a42 a53 * *
Parameters ---------- (l, u) : (integer, integer) Number of non-zero lower and upper diagonals ab : (`l` + `u` + 1, M) array_like Banded matrix b : (M,) or (M, K) array_like Right-hand side overwrite_ab : bool, optional Discard data in `ab` (may enhance performance) overwrite_b : bool, optional Discard data in `b` (may enhance performance) check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns ------- x : (M,) or (M, K) ndarray The solution to the system a x = b. Returned shape depends on the shape of `b`.
Examples -------- Solve the banded system a x = b, where::
[5 2 -1 0 0] [0] [1 4 2 -1 0] [1] a = [0 1 3 2 -1] b = [2] [0 0 1 2 2] [2] [0 0 0 1 1] [3]
There is one nonzero diagonal below the main diagonal (l = 1), and two above (u = 2). The diagonal banded form of the matrix is::
[* * -1 -1 -1] ab = [* 2 2 2 2] [5 4 3 2 1] [1 1 1 1 *]
>>> from scipy.linalg import solve_banded >>> ab = np.array([[0, 0, -1, -1, -1], ... [0, 2, 2, 2, 2], ... [5, 4, 3, 2, 1], ... [1, 1, 1, 1, 0]]) >>> b = np.array([0, 1, 2, 2, 3]) >>> x = solve_banded((1, 2), ab, b) >>> x array([-2.37288136, 3.93220339, -4. , 4.3559322 , -1.3559322 ])
"""
# Deprecate keyword "debug" if debug is not None: warn('Use of the "debug" keyword is deprecated ' 'and this keyword will be removed in the future ' 'versions of SciPy.', DeprecationWarning, stacklevel=2)
a1 = _asarray_validated(ab, check_finite=check_finite, as_inexact=True) b1 = _asarray_validated(b, check_finite=check_finite, as_inexact=True) # Validate shapes. if a1.shape[-1] != b1.shape[0]: raise ValueError("shapes of ab and b are not compatible.") (nlower, nupper) = l_and_u if nlower + nupper + 1 != a1.shape[0]: raise ValueError("invalid values for the number of lower and upper " "diagonals: l+u+1 (%d) does not equal ab.shape[0] " "(%d)" % (nlower + nupper + 1, ab.shape[0]))
overwrite_b = overwrite_b or _datacopied(b1, b) if a1.shape[-1] == 1: b2 = np.array(b1, copy=(not overwrite_b)) b2 /= a1[1, 0] return b2 if nlower == nupper == 1: overwrite_ab = overwrite_ab or _datacopied(a1, ab) gtsv, = get_lapack_funcs(('gtsv',), (a1, b1)) du = a1[0, 1:] d = a1[1, :] dl = a1[2, :-1] du2, d, du, x, info = gtsv(dl, d, du, b1, overwrite_ab, overwrite_ab, overwrite_ab, overwrite_b) else: gbsv, = get_lapack_funcs(('gbsv',), (a1, b1)) a2 = np.zeros((2*nlower + nupper + 1, a1.shape[1]), dtype=gbsv.dtype) a2[nlower:, :] = a1 lu, piv, x, info = gbsv(nlower, nupper, a2, b1, overwrite_ab=True, overwrite_b=overwrite_b) if info == 0: return x if info > 0: raise LinAlgError("singular matrix") raise ValueError('illegal value in %d-th argument of internal ' 'gbsv/gtsv' % -info)
check_finite=True): """ Solve equation a x = b. a is Hermitian positive-definite banded matrix.
The matrix a is stored in `ab` either in lower diagonal or upper diagonal ordered form:
ab[u + i - j, j] == a[i,j] (if upper form; i <= j) ab[ i - j, j] == a[i,j] (if lower form; i >= j)
Example of `ab` (shape of a is (6, 6), `u` =2)::
upper form: * * a02 a13 a24 a35 * a01 a12 a23 a34 a45 a00 a11 a22 a33 a44 a55
lower form: a00 a11 a22 a33 a44 a55 a10 a21 a32 a43 a54 * a20 a31 a42 a53 * *
Cells marked with * are not used.
Parameters ---------- ab : (`u` + 1, M) array_like Banded matrix b : (M,) or (M, K) array_like Right-hand side overwrite_ab : bool, optional Discard data in `ab` (may enhance performance) overwrite_b : bool, optional Discard data in `b` (may enhance performance) lower : bool, optional Is the matrix in the lower form. (Default is upper form) check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns ------- x : (M,) or (M, K) ndarray The solution to the system a x = b. Shape of return matches shape of `b`.
Examples -------- Solve the banded system A x = b, where::
[ 4 2 -1 0 0 0] [1] [ 2 5 2 -1 0 0] [2] A = [-1 2 6 2 -1 0] b = [2] [ 0 -1 2 7 2 -1] [3] [ 0 0 -1 2 8 2] [3] [ 0 0 0 -1 2 9] [3]
>>> from scipy.linalg import solveh_banded
`ab` contains the main diagonal and the nonzero diagonals below the main diagonal. That is, we use the lower form:
>>> ab = np.array([[ 4, 5, 6, 7, 8, 9], ... [ 2, 2, 2, 2, 2, 0], ... [-1, -1, -1, -1, 0, 0]]) >>> b = np.array([1, 2, 2, 3, 3, 3]) >>> x = solveh_banded(ab, b, lower=True) >>> x array([ 0.03431373, 0.45938375, 0.05602241, 0.47759104, 0.17577031, 0.34733894])
Solve the Hermitian banded system H x = b, where::
[ 8 2-1j 0 0 ] [ 1 ] H = [2+1j 5 1j 0 ] b = [1+1j] [ 0 -1j 9 -2-1j] [1-2j] [ 0 0 -2+1j 6 ] [ 0 ]
In this example, we put the upper diagonals in the array `hb`:
>>> hb = np.array([[0, 2-1j, 1j, -2-1j], ... [8, 5, 9, 6 ]]) >>> b = np.array([1, 1+1j, 1-2j, 0]) >>> x = solveh_banded(hb, b) >>> x array([ 0.07318536-0.02939412j, 0.11877624+0.17696461j, 0.10077984-0.23035393j, -0.00479904-0.09358128j])
""" a1 = _asarray_validated(ab, check_finite=check_finite) b1 = _asarray_validated(b, check_finite=check_finite) # Validate shapes. if a1.shape[-1] != b1.shape[0]: raise ValueError("shapes of ab and b are not compatible.")
overwrite_b = overwrite_b or _datacopied(b1, b) overwrite_ab = overwrite_ab or _datacopied(a1, ab)
if a1.shape[0] == 2: ptsv, = get_lapack_funcs(('ptsv',), (a1, b1)) if lower: d = a1[0, :].real e = a1[1, :-1] else: d = a1[1, :].real e = a1[0, 1:].conj() d, du, x, info = ptsv(d, e, b1, overwrite_ab, overwrite_ab, overwrite_b) else: pbsv, = get_lapack_funcs(('pbsv',), (a1, b1)) c, x, info = pbsv(a1, b1, lower=lower, overwrite_ab=overwrite_ab, overwrite_b=overwrite_b) if info > 0: raise LinAlgError("%d-th leading minor not positive definite" % info) if info < 0: raise ValueError('illegal value in %d-th argument of internal ' 'pbsv' % -info) return x
"""Solve a Toeplitz system using Levinson Recursion
The Toeplitz matrix has constant diagonals, with c as its first column and r as its first row. If r is not given, ``r == conjugate(c)`` is assumed.
Parameters ---------- c_or_cr : array_like or tuple of (array_like, array_like) The vector ``c``, or a tuple of arrays (``c``, ``r``). Whatever the actual shape of ``c``, it will be converted to a 1-D array. If not supplied, ``r = conjugate(c)`` is assumed; in this case, if c[0] is real, the Toeplitz matrix is Hermitian. r[0] is ignored; the first row of the Toeplitz matrix is ``[c[0], r[1:]]``. Whatever the actual shape of ``r``, it will be converted to a 1-D array. b : (M,) or (M, K) array_like Right-hand side in ``T x = b``. check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (result entirely NaNs) if the inputs do contain infinities or NaNs.
Returns ------- x : (M,) or (M, K) ndarray The solution to the system ``T x = b``. Shape of return matches shape of `b`.
See Also -------- toeplitz : Toeplitz matrix
Notes ----- The solution is computed using Levinson-Durbin recursion, which is faster than generic least-squares methods, but can be less numerically stable.
Examples -------- Solve the Toeplitz system T x = b, where::
[ 1 -1 -2 -3] [1] T = [ 3 1 -1 -2] b = [2] [ 6 3 1 -1] [2] [10 6 3 1] [5]
To specify the Toeplitz matrix, only the first column and the first row are needed.
>>> c = np.array([1, 3, 6, 10]) # First column of T >>> r = np.array([1, -1, -2, -3]) # First row of T >>> b = np.array([1, 2, 2, 5])
>>> from scipy.linalg import solve_toeplitz, toeplitz >>> x = solve_toeplitz((c, r), b) >>> x array([ 1.66666667, -1. , -2.66666667, 2.33333333])
Check the result by creating the full Toeplitz matrix and multiplying it by `x`. We should get `b`.
>>> T = toeplitz(c, r) >>> T.dot(x) array([ 1., 2., 2., 5.])
""" # If numerical stability of this algorithm is a problem, a future # developer might consider implementing other O(N^2) Toeplitz solvers, # such as GKO (http://www.jstor.org/stable/2153371) or Bareiss. if isinstance(c_or_cr, tuple): c, r = c_or_cr c = _asarray_validated(c, check_finite=check_finite).ravel() r = _asarray_validated(r, check_finite=check_finite).ravel() else: c = _asarray_validated(c_or_cr, check_finite=check_finite).ravel() r = c.conjugate()
# Form a 1D array of values to be used in the matrix, containing a reversed # copy of r[1:], followed by c. vals = np.concatenate((r[-1:0:-1], c)) if b is None: raise ValueError('illegal value, `b` is a required argument')
b = _asarray_validated(b) if vals.shape[0] != (2*b.shape[0] - 1): raise ValueError('incompatible dimensions') if np.iscomplexobj(vals) or np.iscomplexobj(b): vals = np.asarray(vals, dtype=np.complex128, order='c') b = np.asarray(b, dtype=np.complex128) else: vals = np.asarray(vals, dtype=np.double, order='c') b = np.asarray(b, dtype=np.double)
if b.ndim == 1: x, _ = levinson(vals, np.ascontiguousarray(b)) else: b_shape = b.shape b = b.reshape(b.shape[0], -1) x = np.column_stack( (levinson(vals, np.ascontiguousarray(b[:, i]))[0]) for i in range(b.shape[1])) x = x.reshape(*b_shape)
return x
ax = axis if ax < 0: ax += a.ndim if 0 <= ax < a.ndim: return a.shape[ax] raise ValueError("'%saxis' entry is out of bounds" % (aname,))
def solve_circulant(c, b, singular='raise', tol=None, caxis=-1, baxis=0, outaxis=0): """Solve C x = b for x, where C is a circulant matrix.
`C` is the circulant matrix associated with the vector `c`.
The system is solved by doing division in Fourier space. The calculation is::
x = ifft(fft(b) / fft(c))
where `fft` and `ifft` are the fast Fourier transform and its inverse, respectively. For a large vector `c`, this is *much* faster than solving the system with the full circulant matrix.
Parameters ---------- c : array_like The coefficients of the circulant matrix. b : array_like Right-hand side matrix in ``a x = b``. singular : str, optional This argument controls how a near singular circulant matrix is handled. If `singular` is "raise" and the circulant matrix is near singular, a `LinAlgError` is raised. If `singular` is "lstsq", the least squares solution is returned. Default is "raise". tol : float, optional If any eigenvalue of the circulant matrix has an absolute value that is less than or equal to `tol`, the matrix is considered to be near singular. If not given, `tol` is set to::
tol = abs_eigs.max() * abs_eigs.size * np.finfo(np.float64).eps
where `abs_eigs` is the array of absolute values of the eigenvalues of the circulant matrix. caxis : int When `c` has dimension greater than 1, it is viewed as a collection of circulant vectors. In this case, `caxis` is the axis of `c` that holds the vectors of circulant coefficients. baxis : int When `b` has dimension greater than 1, it is viewed as a collection of vectors. In this case, `baxis` is the axis of `b` that holds the right-hand side vectors. outaxis : int When `c` or `b` are multidimensional, the value returned by `solve_circulant` is multidimensional. In this case, `outaxis` is the axis of the result that holds the solution vectors.
Returns ------- x : ndarray Solution to the system ``C x = b``.
Raises ------ LinAlgError If the circulant matrix associated with `c` is near singular.
See Also -------- circulant : circulant matrix
Notes ----- For a one-dimensional vector `c` with length `m`, and an array `b` with shape ``(m, ...)``,
solve_circulant(c, b)
returns the same result as
solve(circulant(c), b)
where `solve` and `circulant` are from `scipy.linalg`.
.. versionadded:: 0.16.0
Examples -------- >>> from scipy.linalg import solve_circulant, solve, circulant, lstsq
>>> c = np.array([2, 2, 4]) >>> b = np.array([1, 2, 3]) >>> solve_circulant(c, b) array([ 0.75, -0.25, 0.25])
Compare that result to solving the system with `scipy.linalg.solve`:
>>> solve(circulant(c), b) array([ 0.75, -0.25, 0.25])
A singular example:
>>> c = np.array([1, 1, 0, 0]) >>> b = np.array([1, 2, 3, 4])
Calling ``solve_circulant(c, b)`` will raise a `LinAlgError`. For the least square solution, use the option ``singular='lstsq'``:
>>> solve_circulant(c, b, singular='lstsq') array([ 0.25, 1.25, 2.25, 1.25])
Compare to `scipy.linalg.lstsq`:
>>> x, resid, rnk, s = lstsq(circulant(c), b) >>> x array([ 0.25, 1.25, 2.25, 1.25])
A broadcasting example:
Suppose we have the vectors of two circulant matrices stored in an array with shape (2, 5), and three `b` vectors stored in an array with shape (3, 5). For example,
>>> c = np.array([[1.5, 2, 3, 0, 0], [1, 1, 4, 3, 2]]) >>> b = np.arange(15).reshape(-1, 5)
We want to solve all combinations of circulant matrices and `b` vectors, with the result stored in an array with shape (2, 3, 5). When we disregard the axes of `c` and `b` that hold the vectors of coefficients, the shapes of the collections are (2,) and (3,), respectively, which are not compatible for broadcasting. To have a broadcast result with shape (2, 3), we add a trivial dimension to `c`: ``c[:, np.newaxis, :]`` has shape (2, 1, 5). The last dimension holds the coefficients of the circulant matrices, so when we call `solve_circulant`, we can use the default ``caxis=-1``. The coefficients of the `b` vectors are in the last dimension of the array `b`, so we use ``baxis=-1``. If we use the default `outaxis`, the result will have shape (5, 2, 3), so we'll use ``outaxis=-1`` to put the solution vectors in the last dimension.
>>> x = solve_circulant(c[:, np.newaxis, :], b, baxis=-1, outaxis=-1) >>> x.shape (2, 3, 5) >>> np.set_printoptions(precision=3) # For compact output of numbers. >>> x array([[[-0.118, 0.22 , 1.277, -0.142, 0.302], [ 0.651, 0.989, 2.046, 0.627, 1.072], [ 1.42 , 1.758, 2.816, 1.396, 1.841]], [[ 0.401, 0.304, 0.694, -0.867, 0.377], [ 0.856, 0.758, 1.149, -0.412, 0.831], [ 1.31 , 1.213, 1.603, 0.042, 1.286]]])
Check by solving one pair of `c` and `b` vectors (cf. ``x[1, 1, :]``):
>>> solve_circulant(c[1], b[1, :]) array([ 0.856, 0.758, 1.149, -0.412, 0.831])
""" c = np.atleast_1d(c) nc = _get_axis_len("c", c, caxis) b = np.atleast_1d(b) nb = _get_axis_len("b", b, baxis) if nc != nb: raise ValueError('Incompatible c and b axis lengths')
fc = np.fft.fft(np.rollaxis(c, caxis, c.ndim), axis=-1) abs_fc = np.abs(fc) if tol is None: # This is the same tolerance as used in np.linalg.matrix_rank. tol = abs_fc.max(axis=-1) * nc * np.finfo(np.float64).eps if tol.shape != (): tol.shape = tol.shape + (1,) else: tol = np.atleast_1d(tol)
near_zeros = abs_fc <= tol is_near_singular = np.any(near_zeros) if is_near_singular: if singular == 'raise': raise LinAlgError("near singular circulant matrix.") else: # Replace the small values with 1 to avoid errors in the # division fb/fc below. fc[near_zeros] = 1
fb = np.fft.fft(np.rollaxis(b, baxis, b.ndim), axis=-1)
q = fb / fc
if is_near_singular: # `near_zeros` is a boolean array, same shape as `c`, that is # True where `fc` is (near) zero. `q` is the broadcasted result # of fb / fc, so to set the values of `q` to 0 where `fc` is near # zero, we use a mask that is the broadcast result of an array # of True values shaped like `b` with `near_zeros`. mask = np.ones_like(b, dtype=bool) & near_zeros q[mask] = 0
x = np.fft.ifft(q, axis=-1) if not (np.iscomplexobj(c) or np.iscomplexobj(b)): x = x.real if outaxis != -1: x = np.rollaxis(x, -1, outaxis) return x
# matrix inversion """ Compute the inverse of a matrix.
Parameters ---------- a : array_like Square matrix to be inverted. overwrite_a : bool, optional Discard data in `a` (may improve performance). Default is False. check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns ------- ainv : ndarray Inverse of the matrix `a`.
Raises ------ LinAlgError If `a` is singular. ValueError If `a` is not square, or not 2-dimensional.
Examples -------- >>> from scipy import linalg >>> a = np.array([[1., 2.], [3., 4.]]) >>> linalg.inv(a) array([[-2. , 1. ], [ 1.5, -0.5]]) >>> np.dot(a, linalg.inv(a)) array([[ 1., 0.], [ 0., 1.]])
""" raise ValueError('expected square matrix') # XXX: I found no advantage or disadvantage of using finv. # finv, = get_flinalg_funcs(('inv',),(a1,)) # if finv is not None: # a_inv,info = finv(a1,overwrite_a=overwrite_a) # if info==0: # return a_inv # if info>0: raise LinAlgError, "singular matrix" # if info<0: raise ValueError('illegal value in %d-th argument of ' # 'internal inv.getrf|getri'%(-info)) 'getri_lwork'), (a1,))
# XXX: the following line fixes curious SEGFAULT when # benchmarking 500x500 matrix inverse. This seems to # be a bug in LAPACK ?getri routine because if lwork is # minimal (when using lwork[0] instead of lwork[1]) then # all tests pass. Further investigation is required if # more such SEGFAULTs occur. raise LinAlgError("singular matrix") raise ValueError('illegal value in %d-th argument of internal ' 'getrf|getri' % -info)
# Determinant
""" Compute the determinant of a matrix
The determinant of a square matrix is a value derived arithmetically from the coefficients of the matrix.
The determinant for a 3x3 matrix, for example, is computed as follows::
a b c d e f = A g h i
det(A) = a*e*i + b*f*g + c*d*h - c*e*g - b*d*i - a*f*h
Parameters ---------- a : (M, M) array_like A square matrix. overwrite_a : bool, optional Allow overwriting data in a (may enhance performance). check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns ------- det : float or complex Determinant of `a`.
Notes ----- The determinant is computed via LU factorization, LAPACK routine z/dgetrf.
Examples -------- >>> from scipy import linalg >>> a = np.array([[1,2,3], [4,5,6], [7,8,9]]) >>> linalg.det(a) 0.0 >>> a = np.array([[0,2,3], [4,5,6], [7,8,9]]) >>> linalg.det(a) 3.0
""" raise ValueError('expected square matrix') raise ValueError('illegal value in %d-th argument of internal ' 'det.getrf' % -info)
# Linear Least Squares
check_finite=True, lapack_driver=None): """ Compute least-squares solution to equation Ax = b.
Compute a vector x such that the 2-norm ``|b - A x|`` is minimized.
Parameters ---------- a : (M, N) array_like Left hand side matrix (2-D array). b : (M,) or (M, K) array_like Right hand side matrix or vector (1-D or 2-D array). cond : float, optional Cutoff for 'small' singular values; used to determine effective rank of a. Singular values smaller than ``rcond * largest_singular_value`` are considered zero. overwrite_a : bool, optional Discard data in `a` (may enhance performance). Default is False. overwrite_b : bool, optional Discard data in `b` (may enhance performance). Default is False. check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. lapack_driver : str, optional Which LAPACK driver is used to solve the least-squares problem. Options are ``'gelsd'``, ``'gelsy'``, ``'gelss'``. Default (``'gelsd'``) is a good choice. However, ``'gelsy'`` can be slightly faster on many problems. ``'gelss'`` was used historically. It is generally slow but uses less memory.
.. versionadded:: 0.17.0
Returns ------- x : (N,) or (N, K) ndarray Least-squares solution. Return shape matches shape of `b`. residues : (0,) or () or (K,) ndarray Sums of residues, squared 2-norm for each column in ``b - a x``. If rank of matrix a is ``< N`` or ``N > M``, or ``'gelsy'`` is used, this is a length zero array. If b was 1-D, this is a () shape array (numpy scalar), otherwise the shape is (K,). rank : int Effective rank of matrix `a`. s : (min(M,N),) ndarray or None Singular values of `a`. The condition number of a is ``abs(s[0] / s[-1])``. None is returned when ``'gelsy'`` is used.
Raises ------ LinAlgError If computation does not converge.
ValueError When parameters are wrong.
See Also -------- optimize.nnls : linear least squares with non-negativity constraint
Examples -------- >>> from scipy.linalg import lstsq >>> import matplotlib.pyplot as plt
Suppose we have the following data:
>>> x = np.array([1, 2.5, 3.5, 4, 5, 7, 8.5]) >>> y = np.array([0.3, 1.1, 1.5, 2.0, 3.2, 6.6, 8.6])
We want to fit a quadratic polynomial of the form ``y = a + b*x**2`` to this data. We first form the "design matrix" M, with a constant column of 1s and a column containing ``x**2``:
>>> M = x[:, np.newaxis]**[0, 2] >>> M array([[ 1. , 1. ], [ 1. , 6.25], [ 1. , 12.25], [ 1. , 16. ], [ 1. , 25. ], [ 1. , 49. ], [ 1. , 72.25]])
We want to find the least-squares solution to ``M.dot(p) = y``, where ``p`` is a vector with length 2 that holds the parameters ``a`` and ``b``.
>>> p, res, rnk, s = lstsq(M, y) >>> p array([ 0.20925829, 0.12013861])
Plot the data and the fitted curve.
>>> plt.plot(x, y, 'o', label='data') >>> xx = np.linspace(0, 9, 101) >>> yy = p[0] + p[1]*xx**2 >>> plt.plot(xx, yy, label='least squares fit, $y = a + bx^2$') >>> plt.xlabel('x') >>> plt.ylabel('y') >>> plt.legend(framealpha=1, shadow=True) >>> plt.grid(alpha=0.25) >>> plt.show()
""" a1 = _asarray_validated(a, check_finite=check_finite) b1 = _asarray_validated(b, check_finite=check_finite) if len(a1.shape) != 2: raise ValueError('expected matrix') m, n = a1.shape if len(b1.shape) == 2: nrhs = b1.shape[1] else: nrhs = 1 if m != b1.shape[0]: raise ValueError('incompatible dimensions') if m == 0 or n == 0: # Zero-sized problem, confuses LAPACK x = np.zeros((n,) + b1.shape[1:], dtype=np.common_type(a1, b1)) if n == 0: residues = np.linalg.norm(b1, axis=0)**2 else: residues = np.empty((0,)) return x, residues, 0, np.empty((0,))
driver = lapack_driver if driver is None: driver = lstsq.default_lapack_driver if driver not in ('gelsd', 'gelsy', 'gelss'): raise ValueError('LAPACK driver "%s" is not found' % driver)
lapack_func, lapack_lwork = get_lapack_funcs((driver, '%s_lwork' % driver), (a1, b1)) real_data = True if (lapack_func.dtype.kind == 'f') else False
if m < n: # need to extend b matrix as it will be filled with # a larger solution matrix if len(b1.shape) == 2: b2 = np.zeros((n, nrhs), dtype=lapack_func.dtype) b2[:m, :] = b1 else: b2 = np.zeros(n, dtype=lapack_func.dtype) b2[:m] = b1 b1 = b2
overwrite_a = overwrite_a or _datacopied(a1, a) overwrite_b = overwrite_b or _datacopied(b1, b)
if cond is None: cond = np.finfo(lapack_func.dtype).eps
if driver in ('gelss', 'gelsd'): if driver == 'gelss': lwork = _compute_lwork(lapack_lwork, m, n, nrhs, cond) v, x, s, rank, work, info = lapack_func(a1, b1, cond, lwork, overwrite_a=overwrite_a, overwrite_b=overwrite_b)
elif driver == 'gelsd': if real_data: lwork, iwork = _compute_lwork(lapack_lwork, m, n, nrhs, cond) if iwork == 0: # this is LAPACK bug 0038: dgelsd does not provide the # size of the iwork array in query mode. This bug was # fixed in LAPACK 3.2.2, released July 21, 2010. mesg = ("internal gelsd driver lwork query error, " "required iwork dimension not returned. " "This is likely the result of LAPACK bug " "0038, fixed in LAPACK 3.2.2 (released " "July 21, 2010). ")
if lapack_driver is None: # restart with gelss lstsq.default_lapack_driver = 'gelss' mesg += "Falling back to 'gelss' driver." warn(mesg, RuntimeWarning, stacklevel=2) return lstsq(a, b, cond, overwrite_a, overwrite_b, check_finite, lapack_driver='gelss')
# can't proceed, bail out mesg += ("Use a different lapack_driver when calling lstsq" " or upgrade LAPACK.") raise LstsqLapackError(mesg)
x, s, rank, info = lapack_func(a1, b1, lwork, iwork, cond, False, False) else: # complex data lwork, rwork, iwork = _compute_lwork(lapack_lwork, m, n, nrhs, cond) x, s, rank, info = lapack_func(a1, b1, lwork, rwork, iwork, cond, False, False) if info > 0: raise LinAlgError("SVD did not converge in Linear Least Squares") if info < 0: raise ValueError('illegal value in %d-th argument of internal %s' % (-info, lapack_driver)) resids = np.asarray([], dtype=x.dtype) if m > n: x1 = x[:n] if rank == n: resids = np.sum(np.abs(x[n:])**2, axis=0) x = x1 return x, resids, rank, s
elif driver == 'gelsy': lwork = _compute_lwork(lapack_lwork, m, n, nrhs, cond) jptv = np.zeros((a1.shape[1], 1), dtype=np.int32) v, x, j, rank, info = lapack_func(a1, b1, jptv, cond, lwork, False, False) if info < 0: raise ValueError("illegal value in %d-th argument of internal " "gelsy" % -info) if m > n: x1 = x[:n] x = x1 return x, np.array([], x.dtype), rank, None
""" Compute the (Moore-Penrose) pseudo-inverse of a matrix.
Calculate a generalized inverse of a matrix using a least-squares solver.
Parameters ---------- a : (M, N) array_like Matrix to be pseudo-inverted. cond, rcond : float, optional Cutoff for 'small' singular values in the least-squares solver. Singular values smaller than ``rcond * largest_singular_value`` are considered zero. return_rank : bool, optional if True, return the effective rank of the matrix check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns ------- B : (N, M) ndarray The pseudo-inverse of matrix `a`. rank : int The effective rank of the matrix. Returned if return_rank == True
Raises ------ LinAlgError If computation does not converge.
Examples -------- >>> from scipy import linalg >>> a = np.random.randn(9, 6) >>> B = linalg.pinv(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True
""" a = _asarray_validated(a, check_finite=check_finite) b = np.identity(a.shape[0], dtype=a.dtype) if rcond is not None: cond = rcond
x, resids, rank, s = lstsq(a, b, cond=cond, check_finite=False)
if return_rank: return x, rank else: return x
""" Compute the (Moore-Penrose) pseudo-inverse of a matrix.
Calculate a generalized inverse of a matrix using its singular-value decomposition and including all 'large' singular values.
Parameters ---------- a : (M, N) array_like Matrix to be pseudo-inverted. cond, rcond : float or None Cutoff for 'small' singular values. Singular values smaller than ``rcond*largest_singular_value`` are considered zero. If None or -1, suitable machine precision is used. return_rank : bool, optional if True, return the effective rank of the matrix check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns ------- B : (N, M) ndarray The pseudo-inverse of matrix `a`. rank : int The effective rank of the matrix. Returned if return_rank == True
Raises ------ LinAlgError If SVD computation does not converge.
Examples -------- >>> from scipy import linalg >>> a = np.random.randn(9, 6) >>> B = linalg.pinv2(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True
""" a = _asarray_validated(a, check_finite=check_finite) u, s, vh = decomp_svd.svd(a, full_matrices=False, check_finite=False)
if rcond is not None: cond = rcond if cond in [None, -1]: t = u.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps
rank = np.sum(s > cond * np.max(s))
u = u[:, :rank] u /= s[:rank] B = np.transpose(np.conjugate(np.dot(u, vh[:rank])))
if return_rank: return B, rank else: return B
check_finite=True): """ Compute the (Moore-Penrose) pseudo-inverse of a Hermitian matrix.
Calculate a generalized inverse of a Hermitian or real symmetric matrix using its eigenvalue decomposition and including all eigenvalues with 'large' absolute value.
Parameters ---------- a : (N, N) array_like Real symmetric or complex hermetian matrix to be pseudo-inverted cond, rcond : float or None Cutoff for 'small' eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero.
If None or -1, suitable machine precision is used. lower : bool, optional Whether the pertinent array data is taken from the lower or upper triangle of a. (Default: lower) return_rank : bool, optional if True, return the effective rank of the matrix check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns ------- B : (N, N) ndarray The pseudo-inverse of matrix `a`. rank : int The effective rank of the matrix. Returned if return_rank == True
Raises ------ LinAlgError If eigenvalue does not converge
Examples -------- >>> from scipy.linalg import pinvh >>> a = np.random.randn(9, 6) >>> a = np.dot(a, a.T) >>> B = pinvh(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True
""" a = _asarray_validated(a, check_finite=check_finite) s, u = decomp.eigh(a, lower=lower, check_finite=False)
if rcond is not None: cond = rcond if cond in [None, -1]: t = u.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps
# For Hermitian matrices, singular values equal abs(eigenvalues) above_cutoff = (abs(s) > cond * np.max(abs(s))) psigma_diag = 1.0 / s[above_cutoff] u = u[:, above_cutoff]
B = np.dot(u * psigma_diag, np.conjugate(u).T)
if return_rank: return B, len(psigma_diag) else: return B
overwrite_a=False): """ Compute a diagonal similarity transformation for row/column balancing.
The balancing tries to equalize the row and column 1-norms by applying a similarity transformation such that the magnitude variation of the matrix entries is reflected to the scaling matrices.
Moreover, if enabled, the matrix is first permuted to isolate the upper triangular parts of the matrix and, again if scaling is also enabled, only the remaining subblocks are subjected to scaling.
The balanced matrix satisfies the following equality
.. math::
B = T^{-1} A T
The scaling coefficients are approximated to the nearest power of 2 to avoid round-off errors.
Parameters ---------- A : (n, n) array_like Square data matrix for the balancing. permute : bool, optional The selector to define whether permutation of A is also performed prior to scaling. scale : bool, optional The selector to turn on and off the scaling. If False, the matrix will not be scaled. separate : bool, optional This switches from returning a full matrix of the transformation to a tuple of two separate 1D permutation and scaling arrays. overwrite_a : bool, optional This is passed to xGEBAL directly. Essentially, overwrites the result to the data. It might increase the space efficiency. See LAPACK manual for details. This is False by default.
Returns ------- B : (n, n) ndarray Balanced matrix T : (n, n) ndarray A possibly permuted diagonal matrix whose nonzero entries are integer powers of 2 to avoid numerical truncation errors. scale, perm : (n,) ndarray If ``separate`` keyword is set to True then instead of the array ``T`` above, the scaling and the permutation vectors are given separately as a tuple without allocating the full array ``T``.
.. versionadded:: 0.19.0
Notes -----
This algorithm is particularly useful for eigenvalue and matrix decompositions and in many cases it is already called by various LAPACK routines.
The algorithm is based on the well-known technique of [1]_ and has been modified to account for special cases. See [2]_ for details which have been implemented since LAPACK v3.5.0. Before this version there are corner cases where balancing can actually worsen the conditioning. See [3]_ for such examples.
The code is a wrapper around LAPACK's xGEBAL routine family for matrix balancing.
Examples -------- >>> from scipy import linalg >>> x = np.array([[1,2,0], [9,1,0.01], [1,2,10*np.pi]])
>>> y, permscale = linalg.matrix_balance(x) >>> np.abs(x).sum(axis=0) / np.abs(x).sum(axis=1) array([ 3.66666667, 0.4995005 , 0.91312162])
>>> np.abs(y).sum(axis=0) / np.abs(y).sum(axis=1) array([ 1.2 , 1.27041742, 0.92658316]) # may vary
>>> permscale # only powers of 2 (0.5 == 2^(-1)) array([[ 0.5, 0. , 0. ], # may vary [ 0. , 1. , 0. ], [ 0. , 0. , 1. ]])
References ---------- .. [1] : B.N. Parlett and C. Reinsch, "Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors", Numerische Mathematik, Vol.13(4), 1969, DOI:10.1007/BF02165404
.. [2] : R. James, J. Langou, B.R. Lowery, "On matrix balancing and eigenvector computation", 2014, Available online: http://arxiv.org/abs/1401.5766
.. [3] : D.S. Watkins. A case where balancing is harmful. Electron. Trans. Numer. Anal, Vol.23, 2006.
"""
A = np.atleast_2d(_asarray_validated(A, check_finite=True))
if not np.equal(*A.shape): raise ValueError('The data matrix for balancing should be square.')
gebal = get_lapack_funcs(('gebal'), (A,)) B, lo, hi, ps, info = gebal(A, scale=scale, permute=permute, overwrite_a=overwrite_a)
if info < 0: raise ValueError('xGEBAL exited with the internal error ' '"illegal value in argument number {}.". See ' 'LAPACK documentation for the xGEBAL error codes.' ''.format(-info))
# Separate the permutations from the scalings and then convert to int scaling = np.ones_like(ps, dtype=float) scaling[lo:hi+1] = ps[lo:hi+1]
# gebal uses 1-indexing ps = ps.astype(int, copy=False) - 1 n = A.shape[0] perm = np.arange(n)
# LAPACK permutes with the ordering n --> hi, then 0--> lo if hi < n: for ind, x in enumerate(ps[hi+1:][::-1], 1): if n-ind == x: continue perm[[x, n-ind]] = perm[[n-ind, x]]
if lo > 0: for ind, x in enumerate(ps[:lo]): if ind == x: continue perm[[x, ind]] = perm[[ind, x]]
if separate: return B, (scaling, perm)
# get the inverse permutation iperm = np.empty_like(perm) iperm[perm] = np.arange(n)
return B, np.diag(scaling)[iperm, :] |