1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

# 

# Author: Pearu Peterson, March 2002 

# 

# w/ additions by Travis Oliphant, March 2002 

# and Jake Vanderplas, August 2012 

 

from __future__ import division, print_function, absolute_import 

 

from warnings import warn 

import numpy as np 

from numpy import atleast_1d, atleast_2d 

from .flinalg import get_flinalg_funcs 

from .lapack import get_lapack_funcs, _compute_lwork 

from .misc import LinAlgError, _datacopied, LinAlgWarning 

from .decomp import _asarray_validated 

from . import decomp, decomp_svd 

from ._solve_toeplitz import levinson 

 

__all__ = ['solve', 'solve_triangular', 'solveh_banded', 'solve_banded', 

'solve_toeplitz', 'solve_circulant', 'inv', 'det', 'lstsq', 

'pinv', 'pinv2', 'pinvh', 'matrix_balance'] 

 

 

# Linear equations 

def _solve_check(n, info, lamch=None, rcond=None): 

""" Check arguments during the different steps of the solution phase """ 

if info < 0: 

raise ValueError('LAPACK reported an illegal value in {}-th argument' 

'.'.format(-info)) 

elif 0 < info: 

raise LinAlgError('Matrix is singular.') 

 

if lamch is None: 

return 

E = lamch('E') 

if rcond < E: 

warn('scipy.linalg.solve\nIll-conditioned matrix detected. Result ' 

'is not guaranteed to be accurate.\nReciprocal condition ' 

'number{:.6e}'.format(rcond), LinAlgWarning, stacklevel=3) 

 

 

def solve(a, b, sym_pos=False, lower=False, overwrite_a=False, 

overwrite_b=False, debug=None, check_finite=True, assume_a='gen', 

transposed=False): 

""" 

Solves the linear equation set ``a * x = b`` for the unknown ``x`` 

for square ``a`` matrix. 

 

If the data matrix is known to be a particular type then supplying the 

corresponding string to ``assume_a`` key chooses the dedicated solver. 

The available options are 

 

=================== ======== 

generic matrix 'gen' 

symmetric 'sym' 

hermitian 'her' 

positive definite 'pos' 

=================== ======== 

 

If omitted, ``'gen'`` is the default structure. 

 

The datatype of the arrays define which solver is called regardless 

of the values. In other words, even when the complex array entries have 

precisely zero imaginary parts, the complex solver will be called based 

on the data type of the array. 

 

Parameters 

---------- 

a : (N, N) array_like 

Square input data 

b : (N, NRHS) array_like 

Input data for the right hand side. 

sym_pos : bool, optional 

Assume `a` is symmetric and positive definite. This key is deprecated 

and assume_a = 'pos' keyword is recommended instead. The functionality 

is the same. It will be removed in the future. 

lower : bool, optional 

If True, only the data contained in the lower triangle of `a`. Default 

is to use upper triangle. (ignored for ``'gen'``) 

overwrite_a : bool, optional 

Allow overwriting data in `a` (may enhance performance). 

Default is False. 

overwrite_b : bool, optional 

Allow overwriting data in `b` (may enhance performance). 

Default is False. 

check_finite : bool, optional 

Whether to check that the input matrices contain only finite numbers. 

Disabling may give a performance gain, but may result in problems 

(crashes, non-termination) if the inputs do contain infinities or NaNs. 

assume_a : str, optional 

Valid entries are explained above. 

transposed: bool, optional 

If True, ``a^T x = b`` for real matrices, raises `NotImplementedError` 

for complex matrices (only for True). 

 

Returns 

------- 

x : (N, NRHS) ndarray 

The solution array. 

 

Raises 

------ 

ValueError 

If size mismatches detected or input a is not square. 

LinAlgError 

If the matrix is singular. 

LinAlgWarning 

If an ill-conditioned input a is detected. 

NotImplementedError 

If transposed is True and input a is a complex matrix. 

 

Examples 

-------- 

Given `a` and `b`, solve for `x`: 

 

>>> a = np.array([[3, 2, 0], [1, -1, 0], [0, 5, 1]]) 

>>> b = np.array([2, 4, -1]) 

>>> from scipy import linalg 

>>> x = linalg.solve(a, b) 

>>> x 

array([ 2., -2., 9.]) 

>>> np.dot(a, x) == b 

array([ True, True, True], dtype=bool) 

 

Notes 

----- 

If the input b matrix is a 1D array with N elements, when supplied 

together with an NxN input a, it is assumed as a valid column vector 

despite the apparent size mismatch. This is compatible with the 

numpy.dot() behavior and the returned result is still 1D array. 

 

The generic, symmetric, hermitian and positive definite solutions are 

obtained via calling ?GESV, ?SYSV, ?HESV, and ?POSV routines of 

LAPACK respectively. 

""" 

# Flags for 1D or nD right hand side 

b_is_1D = False 

 

a1 = atleast_2d(_asarray_validated(a, check_finite=check_finite)) 

b1 = atleast_1d(_asarray_validated(b, check_finite=check_finite)) 

n = a1.shape[0] 

 

overwrite_a = overwrite_a or _datacopied(a1, a) 

overwrite_b = overwrite_b or _datacopied(b1, b) 

 

if a1.shape[0] != a1.shape[1]: 

raise ValueError('Input a needs to be a square matrix.') 

 

if n != b1.shape[0]: 

# Last chance to catch 1x1 scalar a and 1D b arrays 

if not (n == 1 and b1.size != 0): 

raise ValueError('Input b has to have same number of rows as ' 

'input a') 

 

# accommodate empty arrays 

if b1.size == 0: 

return np.asfortranarray(b1.copy()) 

 

# regularize 1D b arrays to 2D 

if b1.ndim == 1: 

if n == 1: 

b1 = b1[None, :] 

else: 

b1 = b1[:, None] 

b_is_1D = True 

 

# Backwards compatibility - old keyword. 

if sym_pos: 

assume_a = 'pos' 

 

if assume_a not in ('gen', 'sym', 'her', 'pos'): 

raise ValueError('{} is not a recognized matrix structure' 

''.format(assume_a)) 

 

# Deprecate keyword "debug" 

if debug is not None: 

warn('Use of the "debug" keyword is deprecated ' 

'and this keyword will be removed in future ' 

'versions of SciPy.', DeprecationWarning, stacklevel=2) 

 

# Get the correct lamch function. 

# The LAMCH functions only exists for S and D 

# So for complex values we have to convert to real/double. 

if a1.dtype.char in 'fF': # single precision 

lamch = get_lapack_funcs('lamch', dtype='f') 

else: 

lamch = get_lapack_funcs('lamch', dtype='d') 

 

# Currently we do not have the other forms of the norm calculators 

# lansy, lanpo, lanhe. 

# However, in any case they only reduce computations slightly... 

lange = get_lapack_funcs('lange', (a1,)) 

 

# Since the I-norm and 1-norm are the same for symmetric matrices 

# we can collect them all in this one call 

# Note however, that when issuing 'gen' and form!='none', then 

# the I-norm should be used 

if transposed: 

trans = 1 

norm = 'I' 

if np.iscomplexobj(a1): 

raise NotImplementedError('scipy.linalg.solve can currently ' 

'not solve a^T x = b or a^H x = b ' 

'for complex matrices.') 

else: 

trans = 0 

norm = '1' 

 

anorm = lange(norm, a1) 

 

# Generalized case 'gesv' 

if assume_a == 'gen': 

gecon, getrf, getrs = get_lapack_funcs(('gecon', 'getrf', 'getrs'), 

(a1, b1)) 

lu, ipvt, info = getrf(a1, overwrite_a=overwrite_a) 

_solve_check(n, info) 

x, info = getrs(lu, ipvt, b1, 

trans=trans, overwrite_b=overwrite_b) 

_solve_check(n, info) 

rcond, info = gecon(lu, anorm, norm=norm) 

# Hermitian case 'hesv' 

elif assume_a == 'her': 

hecon, hesv, hesv_lw = get_lapack_funcs(('hecon', 'hesv', 

'hesv_lwork'), (a1, b1)) 

lwork = _compute_lwork(hesv_lw, n, lower) 

lu, ipvt, x, info = hesv(a1, b1, lwork=lwork, 

lower=lower, 

overwrite_a=overwrite_a, 

overwrite_b=overwrite_b) 

_solve_check(n, info) 

rcond, info = hecon(lu, ipvt, anorm) 

# Symmetric case 'sysv' 

elif assume_a == 'sym': 

sycon, sysv, sysv_lw = get_lapack_funcs(('sycon', 'sysv', 

'sysv_lwork'), (a1, b1)) 

lwork = _compute_lwork(sysv_lw, n, lower) 

lu, ipvt, x, info = sysv(a1, b1, lwork=lwork, 

lower=lower, 

overwrite_a=overwrite_a, 

overwrite_b=overwrite_b) 

_solve_check(n, info) 

rcond, info = sycon(lu, ipvt, anorm) 

# Positive definite case 'posv' 

else: 

pocon, posv = get_lapack_funcs(('pocon', 'posv'), 

(a1, b1)) 

lu, x, info = posv(a1, b1, lower=lower, 

overwrite_a=overwrite_a, 

overwrite_b=overwrite_b) 

_solve_check(n, info) 

rcond, info = pocon(lu, anorm) 

 

_solve_check(n, info, lamch, rcond) 

 

if b_is_1D: 

x = x.ravel() 

 

return x 

 

 

def solve_triangular(a, b, trans=0, lower=False, unit_diagonal=False, 

overwrite_b=False, debug=None, check_finite=True): 

""" 

Solve the equation `a x = b` for `x`, assuming a is a triangular matrix. 

 

Parameters 

---------- 

a : (M, M) array_like 

A triangular matrix 

b : (M,) or (M, N) array_like 

Right-hand side matrix in `a x = b` 

lower : bool, optional 

Use only data contained in the lower triangle of `a`. 

Default is to use upper triangle. 

trans : {0, 1, 2, 'N', 'T', 'C'}, optional 

Type of system to solve: 

 

======== ========= 

trans system 

======== ========= 

0 or 'N' a x = b 

1 or 'T' a^T x = b 

2 or 'C' a^H x = b 

======== ========= 

unit_diagonal : bool, optional 

If True, diagonal elements of `a` are assumed to be 1 and 

will not be referenced. 

overwrite_b : bool, optional 

Allow overwriting data in `b` (may enhance performance) 

check_finite : bool, optional 

Whether to check that the input matrices contain only finite numbers. 

Disabling may give a performance gain, but may result in problems 

(crashes, non-termination) if the inputs do contain infinities or NaNs. 

 

Returns 

------- 

x : (M,) or (M, N) ndarray 

Solution to the system `a x = b`. Shape of return matches `b`. 

 

Raises 

------ 

LinAlgError 

If `a` is singular 

 

Notes 

----- 

.. versionadded:: 0.9.0 

 

Examples 

-------- 

Solve the lower triangular system a x = b, where:: 

 

[3 0 0 0] [4] 

a = [2 1 0 0] b = [2] 

[1 0 1 0] [4] 

[1 1 1 1] [2] 

 

>>> from scipy.linalg import solve_triangular 

>>> a = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]]) 

>>> b = np.array([4, 2, 4, 2]) 

>>> x = solve_triangular(a, b, lower=True) 

>>> x 

array([ 1.33333333, -0.66666667, 2.66666667, -1.33333333]) 

>>> a.dot(x) # Check the result 

array([ 4., 2., 4., 2.]) 

 

""" 

 

# Deprecate keyword "debug" 

if debug is not None: 

warn('Use of the "debug" keyword is deprecated ' 

'and this keyword will be removed in the future ' 

'versions of SciPy.', DeprecationWarning, stacklevel=2) 

 

a1 = _asarray_validated(a, check_finite=check_finite) 

b1 = _asarray_validated(b, check_finite=check_finite) 

if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]: 

raise ValueError('expected square matrix') 

if a1.shape[0] != b1.shape[0]: 

raise ValueError('incompatible dimensions') 

overwrite_b = overwrite_b or _datacopied(b1, b) 

if debug: 

print('solve:overwrite_b=', overwrite_b) 

trans = {'N': 0, 'T': 1, 'C': 2}.get(trans, trans) 

trtrs, = get_lapack_funcs(('trtrs',), (a1, b1)) 

x, info = trtrs(a1, b1, overwrite_b=overwrite_b, lower=lower, 

trans=trans, unitdiag=unit_diagonal) 

 

if info == 0: 

return x 

if info > 0: 

raise LinAlgError("singular matrix: resolution failed at diagonal %d" % 

(info-1)) 

raise ValueError('illegal value in %d-th argument of internal trtrs' % 

(-info)) 

 

 

def solve_banded(l_and_u, ab, b, overwrite_ab=False, overwrite_b=False, 

debug=None, check_finite=True): 

""" 

Solve the equation a x = b for x, assuming a is banded matrix. 

 

The matrix a is stored in `ab` using the matrix diagonal ordered form:: 

 

ab[u + i - j, j] == a[i,j] 

 

Example of `ab` (shape of a is (6,6), `u` =1, `l` =2):: 

 

* a01 a12 a23 a34 a45 

a00 a11 a22 a33 a44 a55 

a10 a21 a32 a43 a54 * 

a20 a31 a42 a53 * * 

 

Parameters 

---------- 

(l, u) : (integer, integer) 

Number of non-zero lower and upper diagonals 

ab : (`l` + `u` + 1, M) array_like 

Banded matrix 

b : (M,) or (M, K) array_like 

Right-hand side 

overwrite_ab : bool, optional 

Discard data in `ab` (may enhance performance) 

overwrite_b : bool, optional 

Discard data in `b` (may enhance performance) 

check_finite : bool, optional 

Whether to check that the input matrices contain only finite numbers. 

Disabling may give a performance gain, but may result in problems 

(crashes, non-termination) if the inputs do contain infinities or NaNs. 

 

Returns 

------- 

x : (M,) or (M, K) ndarray 

The solution to the system a x = b. Returned shape depends on the 

shape of `b`. 

 

Examples 

-------- 

Solve the banded system a x = b, where:: 

 

[5 2 -1 0 0] [0] 

[1 4 2 -1 0] [1] 

a = [0 1 3 2 -1] b = [2] 

[0 0 1 2 2] [2] 

[0 0 0 1 1] [3] 

 

There is one nonzero diagonal below the main diagonal (l = 1), and 

two above (u = 2). The diagonal banded form of the matrix is:: 

 

[* * -1 -1 -1] 

ab = [* 2 2 2 2] 

[5 4 3 2 1] 

[1 1 1 1 *] 

 

>>> from scipy.linalg import solve_banded 

>>> ab = np.array([[0, 0, -1, -1, -1], 

... [0, 2, 2, 2, 2], 

... [5, 4, 3, 2, 1], 

... [1, 1, 1, 1, 0]]) 

>>> b = np.array([0, 1, 2, 2, 3]) 

>>> x = solve_banded((1, 2), ab, b) 

>>> x 

array([-2.37288136, 3.93220339, -4. , 4.3559322 , -1.3559322 ]) 

 

""" 

 

# Deprecate keyword "debug" 

if debug is not None: 

warn('Use of the "debug" keyword is deprecated ' 

'and this keyword will be removed in the future ' 

'versions of SciPy.', DeprecationWarning, stacklevel=2) 

 

a1 = _asarray_validated(ab, check_finite=check_finite, as_inexact=True) 

b1 = _asarray_validated(b, check_finite=check_finite, as_inexact=True) 

# Validate shapes. 

if a1.shape[-1] != b1.shape[0]: 

raise ValueError("shapes of ab and b are not compatible.") 

(nlower, nupper) = l_and_u 

if nlower + nupper + 1 != a1.shape[0]: 

raise ValueError("invalid values for the number of lower and upper " 

"diagonals: l+u+1 (%d) does not equal ab.shape[0] " 

"(%d)" % (nlower + nupper + 1, ab.shape[0])) 

 

overwrite_b = overwrite_b or _datacopied(b1, b) 

if a1.shape[-1] == 1: 

b2 = np.array(b1, copy=(not overwrite_b)) 

b2 /= a1[1, 0] 

return b2 

if nlower == nupper == 1: 

overwrite_ab = overwrite_ab or _datacopied(a1, ab) 

gtsv, = get_lapack_funcs(('gtsv',), (a1, b1)) 

du = a1[0, 1:] 

d = a1[1, :] 

dl = a1[2, :-1] 

du2, d, du, x, info = gtsv(dl, d, du, b1, overwrite_ab, overwrite_ab, 

overwrite_ab, overwrite_b) 

else: 

gbsv, = get_lapack_funcs(('gbsv',), (a1, b1)) 

a2 = np.zeros((2*nlower + nupper + 1, a1.shape[1]), dtype=gbsv.dtype) 

a2[nlower:, :] = a1 

lu, piv, x, info = gbsv(nlower, nupper, a2, b1, overwrite_ab=True, 

overwrite_b=overwrite_b) 

if info == 0: 

return x 

if info > 0: 

raise LinAlgError("singular matrix") 

raise ValueError('illegal value in %d-th argument of internal ' 

'gbsv/gtsv' % -info) 

 

 

def solveh_banded(ab, b, overwrite_ab=False, overwrite_b=False, lower=False, 

check_finite=True): 

""" 

Solve equation a x = b. a is Hermitian positive-definite banded matrix. 

 

The matrix a is stored in `ab` either in lower diagonal or upper 

diagonal ordered form: 

 

ab[u + i - j, j] == a[i,j] (if upper form; i <= j) 

ab[ i - j, j] == a[i,j] (if lower form; i >= j) 

 

Example of `ab` (shape of a is (6, 6), `u` =2):: 

 

upper form: 

* * a02 a13 a24 a35 

* a01 a12 a23 a34 a45 

a00 a11 a22 a33 a44 a55 

 

lower form: 

a00 a11 a22 a33 a44 a55 

a10 a21 a32 a43 a54 * 

a20 a31 a42 a53 * * 

 

Cells marked with * are not used. 

 

Parameters 

---------- 

ab : (`u` + 1, M) array_like 

Banded matrix 

b : (M,) or (M, K) array_like 

Right-hand side 

overwrite_ab : bool, optional 

Discard data in `ab` (may enhance performance) 

overwrite_b : bool, optional 

Discard data in `b` (may enhance performance) 

lower : bool, optional 

Is the matrix in the lower form. (Default is upper form) 

check_finite : bool, optional 

Whether to check that the input matrices contain only finite numbers. 

Disabling may give a performance gain, but may result in problems 

(crashes, non-termination) if the inputs do contain infinities or NaNs. 

 

Returns 

------- 

x : (M,) or (M, K) ndarray 

The solution to the system a x = b. Shape of return matches shape 

of `b`. 

 

Examples 

-------- 

Solve the banded system A x = b, where:: 

 

[ 4 2 -1 0 0 0] [1] 

[ 2 5 2 -1 0 0] [2] 

A = [-1 2 6 2 -1 0] b = [2] 

[ 0 -1 2 7 2 -1] [3] 

[ 0 0 -1 2 8 2] [3] 

[ 0 0 0 -1 2 9] [3] 

 

>>> from scipy.linalg import solveh_banded 

 

`ab` contains the main diagonal and the nonzero diagonals below the 

main diagonal. That is, we use the lower form: 

 

>>> ab = np.array([[ 4, 5, 6, 7, 8, 9], 

... [ 2, 2, 2, 2, 2, 0], 

... [-1, -1, -1, -1, 0, 0]]) 

>>> b = np.array([1, 2, 2, 3, 3, 3]) 

>>> x = solveh_banded(ab, b, lower=True) 

>>> x 

array([ 0.03431373, 0.45938375, 0.05602241, 0.47759104, 0.17577031, 

0.34733894]) 

 

 

Solve the Hermitian banded system H x = b, where:: 

 

[ 8 2-1j 0 0 ] [ 1 ] 

H = [2+1j 5 1j 0 ] b = [1+1j] 

[ 0 -1j 9 -2-1j] [1-2j] 

[ 0 0 -2+1j 6 ] [ 0 ] 

 

In this example, we put the upper diagonals in the array `hb`: 

 

>>> hb = np.array([[0, 2-1j, 1j, -2-1j], 

... [8, 5, 9, 6 ]]) 

>>> b = np.array([1, 1+1j, 1-2j, 0]) 

>>> x = solveh_banded(hb, b) 

>>> x 

array([ 0.07318536-0.02939412j, 0.11877624+0.17696461j, 

0.10077984-0.23035393j, -0.00479904-0.09358128j]) 

 

""" 

a1 = _asarray_validated(ab, check_finite=check_finite) 

b1 = _asarray_validated(b, check_finite=check_finite) 

# Validate shapes. 

if a1.shape[-1] != b1.shape[0]: 

raise ValueError("shapes of ab and b are not compatible.") 

 

overwrite_b = overwrite_b or _datacopied(b1, b) 

overwrite_ab = overwrite_ab or _datacopied(a1, ab) 

 

if a1.shape[0] == 2: 

ptsv, = get_lapack_funcs(('ptsv',), (a1, b1)) 

if lower: 

d = a1[0, :].real 

e = a1[1, :-1] 

else: 

d = a1[1, :].real 

e = a1[0, 1:].conj() 

d, du, x, info = ptsv(d, e, b1, overwrite_ab, overwrite_ab, 

overwrite_b) 

else: 

pbsv, = get_lapack_funcs(('pbsv',), (a1, b1)) 

c, x, info = pbsv(a1, b1, lower=lower, overwrite_ab=overwrite_ab, 

overwrite_b=overwrite_b) 

if info > 0: 

raise LinAlgError("%d-th leading minor not positive definite" % info) 

if info < 0: 

raise ValueError('illegal value in %d-th argument of internal ' 

'pbsv' % -info) 

return x 

 

 

def solve_toeplitz(c_or_cr, b, check_finite=True): 

"""Solve a Toeplitz system using Levinson Recursion 

 

The Toeplitz matrix has constant diagonals, with c as its first column 

and r as its first row. If r is not given, ``r == conjugate(c)`` is 

assumed. 

 

Parameters 

---------- 

c_or_cr : array_like or tuple of (array_like, array_like) 

The vector ``c``, or a tuple of arrays (``c``, ``r``). Whatever the 

actual shape of ``c``, it will be converted to a 1-D array. If not 

supplied, ``r = conjugate(c)`` is assumed; in this case, if c[0] is 

real, the Toeplitz matrix is Hermitian. r[0] is ignored; the first row 

of the Toeplitz matrix is ``[c[0], r[1:]]``. Whatever the actual shape 

of ``r``, it will be converted to a 1-D array. 

b : (M,) or (M, K) array_like 

Right-hand side in ``T x = b``. 

check_finite : bool, optional 

Whether to check that the input matrices contain only finite numbers. 

Disabling may give a performance gain, but may result in problems 

(result entirely NaNs) if the inputs do contain infinities or NaNs. 

 

Returns 

------- 

x : (M,) or (M, K) ndarray 

The solution to the system ``T x = b``. Shape of return matches shape 

of `b`. 

 

See Also 

-------- 

toeplitz : Toeplitz matrix 

 

Notes 

----- 

The solution is computed using Levinson-Durbin recursion, which is faster 

than generic least-squares methods, but can be less numerically stable. 

 

Examples 

-------- 

Solve the Toeplitz system T x = b, where:: 

 

[ 1 -1 -2 -3] [1] 

T = [ 3 1 -1 -2] b = [2] 

[ 6 3 1 -1] [2] 

[10 6 3 1] [5] 

 

To specify the Toeplitz matrix, only the first column and the first 

row are needed. 

 

>>> c = np.array([1, 3, 6, 10]) # First column of T 

>>> r = np.array([1, -1, -2, -3]) # First row of T 

>>> b = np.array([1, 2, 2, 5]) 

 

>>> from scipy.linalg import solve_toeplitz, toeplitz 

>>> x = solve_toeplitz((c, r), b) 

>>> x 

array([ 1.66666667, -1. , -2.66666667, 2.33333333]) 

 

Check the result by creating the full Toeplitz matrix and 

multiplying it by `x`. We should get `b`. 

 

>>> T = toeplitz(c, r) 

>>> T.dot(x) 

array([ 1., 2., 2., 5.]) 

 

""" 

# If numerical stability of this algorithm is a problem, a future 

# developer might consider implementing other O(N^2) Toeplitz solvers, 

# such as GKO (http://www.jstor.org/stable/2153371) or Bareiss. 

if isinstance(c_or_cr, tuple): 

c, r = c_or_cr 

c = _asarray_validated(c, check_finite=check_finite).ravel() 

r = _asarray_validated(r, check_finite=check_finite).ravel() 

else: 

c = _asarray_validated(c_or_cr, check_finite=check_finite).ravel() 

r = c.conjugate() 

 

# Form a 1D array of values to be used in the matrix, containing a reversed 

# copy of r[1:], followed by c. 

vals = np.concatenate((r[-1:0:-1], c)) 

if b is None: 

raise ValueError('illegal value, `b` is a required argument') 

 

b = _asarray_validated(b) 

if vals.shape[0] != (2*b.shape[0] - 1): 

raise ValueError('incompatible dimensions') 

if np.iscomplexobj(vals) or np.iscomplexobj(b): 

vals = np.asarray(vals, dtype=np.complex128, order='c') 

b = np.asarray(b, dtype=np.complex128) 

else: 

vals = np.asarray(vals, dtype=np.double, order='c') 

b = np.asarray(b, dtype=np.double) 

 

if b.ndim == 1: 

x, _ = levinson(vals, np.ascontiguousarray(b)) 

else: 

b_shape = b.shape 

b = b.reshape(b.shape[0], -1) 

x = np.column_stack( 

(levinson(vals, np.ascontiguousarray(b[:, i]))[0]) 

for i in range(b.shape[1])) 

x = x.reshape(*b_shape) 

 

return x 

 

 

def _get_axis_len(aname, a, axis): 

ax = axis 

if ax < 0: 

ax += a.ndim 

if 0 <= ax < a.ndim: 

return a.shape[ax] 

raise ValueError("'%saxis' entry is out of bounds" % (aname,)) 

 

 

def solve_circulant(c, b, singular='raise', tol=None, 

caxis=-1, baxis=0, outaxis=0): 

"""Solve C x = b for x, where C is a circulant matrix. 

 

`C` is the circulant matrix associated with the vector `c`. 

 

The system is solved by doing division in Fourier space. The 

calculation is:: 

 

x = ifft(fft(b) / fft(c)) 

 

where `fft` and `ifft` are the fast Fourier transform and its inverse, 

respectively. For a large vector `c`, this is *much* faster than 

solving the system with the full circulant matrix. 

 

Parameters 

---------- 

c : array_like 

The coefficients of the circulant matrix. 

b : array_like 

Right-hand side matrix in ``a x = b``. 

singular : str, optional 

This argument controls how a near singular circulant matrix is 

handled. If `singular` is "raise" and the circulant matrix is 

near singular, a `LinAlgError` is raised. If `singular` is 

"lstsq", the least squares solution is returned. Default is "raise". 

tol : float, optional 

If any eigenvalue of the circulant matrix has an absolute value 

that is less than or equal to `tol`, the matrix is considered to be 

near singular. If not given, `tol` is set to:: 

 

tol = abs_eigs.max() * abs_eigs.size * np.finfo(np.float64).eps 

 

where `abs_eigs` is the array of absolute values of the eigenvalues 

of the circulant matrix. 

caxis : int 

When `c` has dimension greater than 1, it is viewed as a collection 

of circulant vectors. In this case, `caxis` is the axis of `c` that 

holds the vectors of circulant coefficients. 

baxis : int 

When `b` has dimension greater than 1, it is viewed as a collection 

of vectors. In this case, `baxis` is the axis of `b` that holds the 

right-hand side vectors. 

outaxis : int 

When `c` or `b` are multidimensional, the value returned by 

`solve_circulant` is multidimensional. In this case, `outaxis` is 

the axis of the result that holds the solution vectors. 

 

Returns 

------- 

x : ndarray 

Solution to the system ``C x = b``. 

 

Raises 

------ 

LinAlgError 

If the circulant matrix associated with `c` is near singular. 

 

See Also 

-------- 

circulant : circulant matrix 

 

Notes 

----- 

For a one-dimensional vector `c` with length `m`, and an array `b` 

with shape ``(m, ...)``, 

 

solve_circulant(c, b) 

 

returns the same result as 

 

solve(circulant(c), b) 

 

where `solve` and `circulant` are from `scipy.linalg`. 

 

.. versionadded:: 0.16.0 

 

Examples 

-------- 

>>> from scipy.linalg import solve_circulant, solve, circulant, lstsq 

 

>>> c = np.array([2, 2, 4]) 

>>> b = np.array([1, 2, 3]) 

>>> solve_circulant(c, b) 

array([ 0.75, -0.25, 0.25]) 

 

Compare that result to solving the system with `scipy.linalg.solve`: 

 

>>> solve(circulant(c), b) 

array([ 0.75, -0.25, 0.25]) 

 

A singular example: 

 

>>> c = np.array([1, 1, 0, 0]) 

>>> b = np.array([1, 2, 3, 4]) 

 

Calling ``solve_circulant(c, b)`` will raise a `LinAlgError`. For the 

least square solution, use the option ``singular='lstsq'``: 

 

>>> solve_circulant(c, b, singular='lstsq') 

array([ 0.25, 1.25, 2.25, 1.25]) 

 

Compare to `scipy.linalg.lstsq`: 

 

>>> x, resid, rnk, s = lstsq(circulant(c), b) 

>>> x 

array([ 0.25, 1.25, 2.25, 1.25]) 

 

A broadcasting example: 

 

Suppose we have the vectors of two circulant matrices stored in an array 

with shape (2, 5), and three `b` vectors stored in an array with shape 

(3, 5). For example, 

 

>>> c = np.array([[1.5, 2, 3, 0, 0], [1, 1, 4, 3, 2]]) 

>>> b = np.arange(15).reshape(-1, 5) 

 

We want to solve all combinations of circulant matrices and `b` vectors, 

with the result stored in an array with shape (2, 3, 5). When we 

disregard the axes of `c` and `b` that hold the vectors of coefficients, 

the shapes of the collections are (2,) and (3,), respectively, which are 

not compatible for broadcasting. To have a broadcast result with shape 

(2, 3), we add a trivial dimension to `c`: ``c[:, np.newaxis, :]`` has 

shape (2, 1, 5). The last dimension holds the coefficients of the 

circulant matrices, so when we call `solve_circulant`, we can use the 

default ``caxis=-1``. The coefficients of the `b` vectors are in the last 

dimension of the array `b`, so we use ``baxis=-1``. If we use the 

default `outaxis`, the result will have shape (5, 2, 3), so we'll use 

``outaxis=-1`` to put the solution vectors in the last dimension. 

 

>>> x = solve_circulant(c[:, np.newaxis, :], b, baxis=-1, outaxis=-1) 

>>> x.shape 

(2, 3, 5) 

>>> np.set_printoptions(precision=3) # For compact output of numbers. 

>>> x 

array([[[-0.118, 0.22 , 1.277, -0.142, 0.302], 

[ 0.651, 0.989, 2.046, 0.627, 1.072], 

[ 1.42 , 1.758, 2.816, 1.396, 1.841]], 

[[ 0.401, 0.304, 0.694, -0.867, 0.377], 

[ 0.856, 0.758, 1.149, -0.412, 0.831], 

[ 1.31 , 1.213, 1.603, 0.042, 1.286]]]) 

 

Check by solving one pair of `c` and `b` vectors (cf. ``x[1, 1, :]``): 

 

>>> solve_circulant(c[1], b[1, :]) 

array([ 0.856, 0.758, 1.149, -0.412, 0.831]) 

 

""" 

c = np.atleast_1d(c) 

nc = _get_axis_len("c", c, caxis) 

b = np.atleast_1d(b) 

nb = _get_axis_len("b", b, baxis) 

if nc != nb: 

raise ValueError('Incompatible c and b axis lengths') 

 

fc = np.fft.fft(np.rollaxis(c, caxis, c.ndim), axis=-1) 

abs_fc = np.abs(fc) 

if tol is None: 

# This is the same tolerance as used in np.linalg.matrix_rank. 

tol = abs_fc.max(axis=-1) * nc * np.finfo(np.float64).eps 

if tol.shape != (): 

tol.shape = tol.shape + (1,) 

else: 

tol = np.atleast_1d(tol) 

 

near_zeros = abs_fc <= tol 

is_near_singular = np.any(near_zeros) 

if is_near_singular: 

if singular == 'raise': 

raise LinAlgError("near singular circulant matrix.") 

else: 

# Replace the small values with 1 to avoid errors in the 

# division fb/fc below. 

fc[near_zeros] = 1 

 

fb = np.fft.fft(np.rollaxis(b, baxis, b.ndim), axis=-1) 

 

q = fb / fc 

 

if is_near_singular: 

# `near_zeros` is a boolean array, same shape as `c`, that is 

# True where `fc` is (near) zero. `q` is the broadcasted result 

# of fb / fc, so to set the values of `q` to 0 where `fc` is near 

# zero, we use a mask that is the broadcast result of an array 

# of True values shaped like `b` with `near_zeros`. 

mask = np.ones_like(b, dtype=bool) & near_zeros 

q[mask] = 0 

 

x = np.fft.ifft(q, axis=-1) 

if not (np.iscomplexobj(c) or np.iscomplexobj(b)): 

x = x.real 

if outaxis != -1: 

x = np.rollaxis(x, -1, outaxis) 

return x 

 

 

# matrix inversion 

def inv(a, overwrite_a=False, check_finite=True): 

""" 

Compute the inverse of a matrix. 

 

Parameters 

---------- 

a : array_like 

Square matrix to be inverted. 

overwrite_a : bool, optional 

Discard data in `a` (may improve performance). Default is False. 

check_finite : bool, optional 

Whether to check that the input matrix contains only finite numbers. 

Disabling may give a performance gain, but may result in problems 

(crashes, non-termination) if the inputs do contain infinities or NaNs. 

 

Returns 

------- 

ainv : ndarray 

Inverse of the matrix `a`. 

 

Raises 

------ 

LinAlgError 

If `a` is singular. 

ValueError 

If `a` is not square, or not 2-dimensional. 

 

Examples 

-------- 

>>> from scipy import linalg 

>>> a = np.array([[1., 2.], [3., 4.]]) 

>>> linalg.inv(a) 

array([[-2. , 1. ], 

[ 1.5, -0.5]]) 

>>> np.dot(a, linalg.inv(a)) 

array([[ 1., 0.], 

[ 0., 1.]]) 

 

""" 

a1 = _asarray_validated(a, check_finite=check_finite) 

if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]: 

raise ValueError('expected square matrix') 

overwrite_a = overwrite_a or _datacopied(a1, a) 

# XXX: I found no advantage or disadvantage of using finv. 

# finv, = get_flinalg_funcs(('inv',),(a1,)) 

# if finv is not None: 

# a_inv,info = finv(a1,overwrite_a=overwrite_a) 

# if info==0: 

# return a_inv 

# if info>0: raise LinAlgError, "singular matrix" 

# if info<0: raise ValueError('illegal value in %d-th argument of ' 

# 'internal inv.getrf|getri'%(-info)) 

getrf, getri, getri_lwork = get_lapack_funcs(('getrf', 'getri', 

'getri_lwork'), 

(a1,)) 

lu, piv, info = getrf(a1, overwrite_a=overwrite_a) 

if info == 0: 

lwork = _compute_lwork(getri_lwork, a1.shape[0]) 

 

# XXX: the following line fixes curious SEGFAULT when 

# benchmarking 500x500 matrix inverse. This seems to 

# be a bug in LAPACK ?getri routine because if lwork is 

# minimal (when using lwork[0] instead of lwork[1]) then 

# all tests pass. Further investigation is required if 

# more such SEGFAULTs occur. 

lwork = int(1.01 * lwork) 

inv_a, info = getri(lu, piv, lwork=lwork, overwrite_lu=1) 

if info > 0: 

raise LinAlgError("singular matrix") 

if info < 0: 

raise ValueError('illegal value in %d-th argument of internal ' 

'getrf|getri' % -info) 

return inv_a 

 

 

# Determinant 

 

def det(a, overwrite_a=False, check_finite=True): 

""" 

Compute the determinant of a matrix 

 

The determinant of a square matrix is a value derived arithmetically 

from the coefficients of the matrix. 

 

The determinant for a 3x3 matrix, for example, is computed as follows:: 

 

a b c 

d e f = A 

g h i 

 

det(A) = a*e*i + b*f*g + c*d*h - c*e*g - b*d*i - a*f*h 

 

Parameters 

---------- 

a : (M, M) array_like 

A square matrix. 

overwrite_a : bool, optional 

Allow overwriting data in a (may enhance performance). 

check_finite : bool, optional 

Whether to check that the input matrix contains only finite numbers. 

Disabling may give a performance gain, but may result in problems 

(crashes, non-termination) if the inputs do contain infinities or NaNs. 

 

Returns 

------- 

det : float or complex 

Determinant of `a`. 

 

Notes 

----- 

The determinant is computed via LU factorization, LAPACK routine z/dgetrf. 

 

Examples 

-------- 

>>> from scipy import linalg 

>>> a = np.array([[1,2,3], [4,5,6], [7,8,9]]) 

>>> linalg.det(a) 

0.0 

>>> a = np.array([[0,2,3], [4,5,6], [7,8,9]]) 

>>> linalg.det(a) 

3.0 

 

""" 

a1 = _asarray_validated(a, check_finite=check_finite) 

if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]: 

raise ValueError('expected square matrix') 

overwrite_a = overwrite_a or _datacopied(a1, a) 

fdet, = get_flinalg_funcs(('det',), (a1,)) 

a_det, info = fdet(a1, overwrite_a=overwrite_a) 

if info < 0: 

raise ValueError('illegal value in %d-th argument of internal ' 

'det.getrf' % -info) 

return a_det 

 

# Linear Least Squares 

 

 

class LstsqLapackError(LinAlgError): 

pass 

 

 

def lstsq(a, b, cond=None, overwrite_a=False, overwrite_b=False, 

check_finite=True, lapack_driver=None): 

""" 

Compute least-squares solution to equation Ax = b. 

 

Compute a vector x such that the 2-norm ``|b - A x|`` is minimized. 

 

Parameters 

---------- 

a : (M, N) array_like 

Left hand side matrix (2-D array). 

b : (M,) or (M, K) array_like 

Right hand side matrix or vector (1-D or 2-D array). 

cond : float, optional 

Cutoff for 'small' singular values; used to determine effective 

rank of a. Singular values smaller than 

``rcond * largest_singular_value`` are considered zero. 

overwrite_a : bool, optional 

Discard data in `a` (may enhance performance). Default is False. 

overwrite_b : bool, optional 

Discard data in `b` (may enhance performance). Default is False. 

check_finite : bool, optional 

Whether to check that the input matrices contain only finite numbers. 

Disabling may give a performance gain, but may result in problems 

(crashes, non-termination) if the inputs do contain infinities or NaNs. 

lapack_driver : str, optional 

Which LAPACK driver is used to solve the least-squares problem. 

Options are ``'gelsd'``, ``'gelsy'``, ``'gelss'``. Default 

(``'gelsd'``) is a good choice. However, ``'gelsy'`` can be slightly 

faster on many problems. ``'gelss'`` was used historically. It is 

generally slow but uses less memory. 

 

.. versionadded:: 0.17.0 

 

Returns 

------- 

x : (N,) or (N, K) ndarray 

Least-squares solution. Return shape matches shape of `b`. 

residues : (0,) or () or (K,) ndarray 

Sums of residues, squared 2-norm for each column in ``b - a x``. 

If rank of matrix a is ``< N`` or ``N > M``, or ``'gelsy'`` is used, 

this is a length zero array. If b was 1-D, this is a () shape array 

(numpy scalar), otherwise the shape is (K,). 

rank : int 

Effective rank of matrix `a`. 

s : (min(M,N),) ndarray or None 

Singular values of `a`. The condition number of a is 

``abs(s[0] / s[-1])``. None is returned when ``'gelsy'`` is used. 

 

Raises 

------ 

LinAlgError 

If computation does not converge. 

 

ValueError 

When parameters are wrong. 

 

See Also 

-------- 

optimize.nnls : linear least squares with non-negativity constraint 

 

Examples 

-------- 

>>> from scipy.linalg import lstsq 

>>> import matplotlib.pyplot as plt 

 

Suppose we have the following data: 

 

>>> x = np.array([1, 2.5, 3.5, 4, 5, 7, 8.5]) 

>>> y = np.array([0.3, 1.1, 1.5, 2.0, 3.2, 6.6, 8.6]) 

 

We want to fit a quadratic polynomial of the form ``y = a + b*x**2`` 

to this data. We first form the "design matrix" M, with a constant 

column of 1s and a column containing ``x**2``: 

 

>>> M = x[:, np.newaxis]**[0, 2] 

>>> M 

array([[ 1. , 1. ], 

[ 1. , 6.25], 

[ 1. , 12.25], 

[ 1. , 16. ], 

[ 1. , 25. ], 

[ 1. , 49. ], 

[ 1. , 72.25]]) 

 

We want to find the least-squares solution to ``M.dot(p) = y``, 

where ``p`` is a vector with length 2 that holds the parameters 

``a`` and ``b``. 

 

>>> p, res, rnk, s = lstsq(M, y) 

>>> p 

array([ 0.20925829, 0.12013861]) 

 

Plot the data and the fitted curve. 

 

>>> plt.plot(x, y, 'o', label='data') 

>>> xx = np.linspace(0, 9, 101) 

>>> yy = p[0] + p[1]*xx**2 

>>> plt.plot(xx, yy, label='least squares fit, $y = a + bx^2$') 

>>> plt.xlabel('x') 

>>> plt.ylabel('y') 

>>> plt.legend(framealpha=1, shadow=True) 

>>> plt.grid(alpha=0.25) 

>>> plt.show() 

 

""" 

a1 = _asarray_validated(a, check_finite=check_finite) 

b1 = _asarray_validated(b, check_finite=check_finite) 

if len(a1.shape) != 2: 

raise ValueError('expected matrix') 

m, n = a1.shape 

if len(b1.shape) == 2: 

nrhs = b1.shape[1] 

else: 

nrhs = 1 

if m != b1.shape[0]: 

raise ValueError('incompatible dimensions') 

if m == 0 or n == 0: # Zero-sized problem, confuses LAPACK 

x = np.zeros((n,) + b1.shape[1:], dtype=np.common_type(a1, b1)) 

if n == 0: 

residues = np.linalg.norm(b1, axis=0)**2 

else: 

residues = np.empty((0,)) 

return x, residues, 0, np.empty((0,)) 

 

driver = lapack_driver 

if driver is None: 

driver = lstsq.default_lapack_driver 

if driver not in ('gelsd', 'gelsy', 'gelss'): 

raise ValueError('LAPACK driver "%s" is not found' % driver) 

 

lapack_func, lapack_lwork = get_lapack_funcs((driver, 

'%s_lwork' % driver), 

(a1, b1)) 

real_data = True if (lapack_func.dtype.kind == 'f') else False 

 

if m < n: 

# need to extend b matrix as it will be filled with 

# a larger solution matrix 

if len(b1.shape) == 2: 

b2 = np.zeros((n, nrhs), dtype=lapack_func.dtype) 

b2[:m, :] = b1 

else: 

b2 = np.zeros(n, dtype=lapack_func.dtype) 

b2[:m] = b1 

b1 = b2 

 

overwrite_a = overwrite_a or _datacopied(a1, a) 

overwrite_b = overwrite_b or _datacopied(b1, b) 

 

if cond is None: 

cond = np.finfo(lapack_func.dtype).eps 

 

if driver in ('gelss', 'gelsd'): 

if driver == 'gelss': 

lwork = _compute_lwork(lapack_lwork, m, n, nrhs, cond) 

v, x, s, rank, work, info = lapack_func(a1, b1, cond, lwork, 

overwrite_a=overwrite_a, 

overwrite_b=overwrite_b) 

 

elif driver == 'gelsd': 

if real_data: 

lwork, iwork = _compute_lwork(lapack_lwork, m, n, nrhs, cond) 

if iwork == 0: 

# this is LAPACK bug 0038: dgelsd does not provide the 

# size of the iwork array in query mode. This bug was 

# fixed in LAPACK 3.2.2, released July 21, 2010. 

mesg = ("internal gelsd driver lwork query error, " 

"required iwork dimension not returned. " 

"This is likely the result of LAPACK bug " 

"0038, fixed in LAPACK 3.2.2 (released " 

"July 21, 2010). ") 

 

if lapack_driver is None: 

# restart with gelss 

lstsq.default_lapack_driver = 'gelss' 

mesg += "Falling back to 'gelss' driver." 

warn(mesg, RuntimeWarning, stacklevel=2) 

return lstsq(a, b, cond, overwrite_a, overwrite_b, 

check_finite, lapack_driver='gelss') 

 

# can't proceed, bail out 

mesg += ("Use a different lapack_driver when calling lstsq" 

" or upgrade LAPACK.") 

raise LstsqLapackError(mesg) 

 

x, s, rank, info = lapack_func(a1, b1, lwork, 

iwork, cond, False, False) 

else: # complex data 

lwork, rwork, iwork = _compute_lwork(lapack_lwork, m, n, 

nrhs, cond) 

x, s, rank, info = lapack_func(a1, b1, lwork, rwork, iwork, 

cond, False, False) 

if info > 0: 

raise LinAlgError("SVD did not converge in Linear Least Squares") 

if info < 0: 

raise ValueError('illegal value in %d-th argument of internal %s' 

% (-info, lapack_driver)) 

resids = np.asarray([], dtype=x.dtype) 

if m > n: 

x1 = x[:n] 

if rank == n: 

resids = np.sum(np.abs(x[n:])**2, axis=0) 

x = x1 

return x, resids, rank, s 

 

elif driver == 'gelsy': 

lwork = _compute_lwork(lapack_lwork, m, n, nrhs, cond) 

jptv = np.zeros((a1.shape[1], 1), dtype=np.int32) 

v, x, j, rank, info = lapack_func(a1, b1, jptv, cond, 

lwork, False, False) 

if info < 0: 

raise ValueError("illegal value in %d-th argument of internal " 

"gelsy" % -info) 

if m > n: 

x1 = x[:n] 

x = x1 

return x, np.array([], x.dtype), rank, None 

 

 

lstsq.default_lapack_driver = 'gelsd' 

 

 

def pinv(a, cond=None, rcond=None, return_rank=False, check_finite=True): 

""" 

Compute the (Moore-Penrose) pseudo-inverse of a matrix. 

 

Calculate a generalized inverse of a matrix using a least-squares 

solver. 

 

Parameters 

---------- 

a : (M, N) array_like 

Matrix to be pseudo-inverted. 

cond, rcond : float, optional 

Cutoff for 'small' singular values in the least-squares solver. 

Singular values smaller than ``rcond * largest_singular_value`` 

are considered zero. 

return_rank : bool, optional 

if True, return the effective rank of the matrix 

check_finite : bool, optional 

Whether to check that the input matrix contains only finite numbers. 

Disabling may give a performance gain, but may result in problems 

(crashes, non-termination) if the inputs do contain infinities or NaNs. 

 

Returns 

------- 

B : (N, M) ndarray 

The pseudo-inverse of matrix `a`. 

rank : int 

The effective rank of the matrix. Returned if return_rank == True 

 

Raises 

------ 

LinAlgError 

If computation does not converge. 

 

Examples 

-------- 

>>> from scipy import linalg 

>>> a = np.random.randn(9, 6) 

>>> B = linalg.pinv(a) 

>>> np.allclose(a, np.dot(a, np.dot(B, a))) 

True 

>>> np.allclose(B, np.dot(B, np.dot(a, B))) 

True 

 

""" 

a = _asarray_validated(a, check_finite=check_finite) 

b = np.identity(a.shape[0], dtype=a.dtype) 

if rcond is not None: 

cond = rcond 

 

x, resids, rank, s = lstsq(a, b, cond=cond, check_finite=False) 

 

if return_rank: 

return x, rank 

else: 

return x 

 

 

def pinv2(a, cond=None, rcond=None, return_rank=False, check_finite=True): 

""" 

Compute the (Moore-Penrose) pseudo-inverse of a matrix. 

 

Calculate a generalized inverse of a matrix using its 

singular-value decomposition and including all 'large' singular 

values. 

 

Parameters 

---------- 

a : (M, N) array_like 

Matrix to be pseudo-inverted. 

cond, rcond : float or None 

Cutoff for 'small' singular values. 

Singular values smaller than ``rcond*largest_singular_value`` 

are considered zero. 

If None or -1, suitable machine precision is used. 

return_rank : bool, optional 

if True, return the effective rank of the matrix 

check_finite : bool, optional 

Whether to check that the input matrix contains only finite numbers. 

Disabling may give a performance gain, but may result in problems 

(crashes, non-termination) if the inputs do contain infinities or NaNs. 

 

Returns 

------- 

B : (N, M) ndarray 

The pseudo-inverse of matrix `a`. 

rank : int 

The effective rank of the matrix. Returned if return_rank == True 

 

Raises 

------ 

LinAlgError 

If SVD computation does not converge. 

 

Examples 

-------- 

>>> from scipy import linalg 

>>> a = np.random.randn(9, 6) 

>>> B = linalg.pinv2(a) 

>>> np.allclose(a, np.dot(a, np.dot(B, a))) 

True 

>>> np.allclose(B, np.dot(B, np.dot(a, B))) 

True 

 

""" 

a = _asarray_validated(a, check_finite=check_finite) 

u, s, vh = decomp_svd.svd(a, full_matrices=False, check_finite=False) 

 

if rcond is not None: 

cond = rcond 

if cond in [None, -1]: 

t = u.dtype.char.lower() 

factor = {'f': 1E3, 'd': 1E6} 

cond = factor[t] * np.finfo(t).eps 

 

rank = np.sum(s > cond * np.max(s)) 

 

u = u[:, :rank] 

u /= s[:rank] 

B = np.transpose(np.conjugate(np.dot(u, vh[:rank]))) 

 

if return_rank: 

return B, rank 

else: 

return B 

 

 

def pinvh(a, cond=None, rcond=None, lower=True, return_rank=False, 

check_finite=True): 

""" 

Compute the (Moore-Penrose) pseudo-inverse of a Hermitian matrix. 

 

Calculate a generalized inverse of a Hermitian or real symmetric matrix 

using its eigenvalue decomposition and including all eigenvalues with 

'large' absolute value. 

 

Parameters 

---------- 

a : (N, N) array_like 

Real symmetric or complex hermetian matrix to be pseudo-inverted 

cond, rcond : float or None 

Cutoff for 'small' eigenvalues. 

Singular values smaller than rcond * largest_eigenvalue are considered 

zero. 

 

If None or -1, suitable machine precision is used. 

lower : bool, optional 

Whether the pertinent array data is taken from the lower or upper 

triangle of a. (Default: lower) 

return_rank : bool, optional 

if True, return the effective rank of the matrix 

check_finite : bool, optional 

Whether to check that the input matrix contains only finite numbers. 

Disabling may give a performance gain, but may result in problems 

(crashes, non-termination) if the inputs do contain infinities or NaNs. 

 

Returns 

------- 

B : (N, N) ndarray 

The pseudo-inverse of matrix `a`. 

rank : int 

The effective rank of the matrix. Returned if return_rank == True 

 

Raises 

------ 

LinAlgError 

If eigenvalue does not converge 

 

Examples 

-------- 

>>> from scipy.linalg import pinvh 

>>> a = np.random.randn(9, 6) 

>>> a = np.dot(a, a.T) 

>>> B = pinvh(a) 

>>> np.allclose(a, np.dot(a, np.dot(B, a))) 

True 

>>> np.allclose(B, np.dot(B, np.dot(a, B))) 

True 

 

""" 

a = _asarray_validated(a, check_finite=check_finite) 

s, u = decomp.eigh(a, lower=lower, check_finite=False) 

 

if rcond is not None: 

cond = rcond 

if cond in [None, -1]: 

t = u.dtype.char.lower() 

factor = {'f': 1E3, 'd': 1E6} 

cond = factor[t] * np.finfo(t).eps 

 

# For Hermitian matrices, singular values equal abs(eigenvalues) 

above_cutoff = (abs(s) > cond * np.max(abs(s))) 

psigma_diag = 1.0 / s[above_cutoff] 

u = u[:, above_cutoff] 

 

B = np.dot(u * psigma_diag, np.conjugate(u).T) 

 

if return_rank: 

return B, len(psigma_diag) 

else: 

return B 

 

 

def matrix_balance(A, permute=True, scale=True, separate=False, 

overwrite_a=False): 

""" 

Compute a diagonal similarity transformation for row/column balancing. 

 

The balancing tries to equalize the row and column 1-norms by applying 

a similarity transformation such that the magnitude variation of the 

matrix entries is reflected to the scaling matrices. 

 

Moreover, if enabled, the matrix is first permuted to isolate the upper 

triangular parts of the matrix and, again if scaling is also enabled, 

only the remaining subblocks are subjected to scaling. 

 

The balanced matrix satisfies the following equality 

 

.. math:: 

 

B = T^{-1} A T 

 

The scaling coefficients are approximated to the nearest power of 2 

to avoid round-off errors. 

 

Parameters 

---------- 

A : (n, n) array_like 

Square data matrix for the balancing. 

permute : bool, optional 

The selector to define whether permutation of A is also performed 

prior to scaling. 

scale : bool, optional 

The selector to turn on and off the scaling. If False, the matrix 

will not be scaled. 

separate : bool, optional 

This switches from returning a full matrix of the transformation 

to a tuple of two separate 1D permutation and scaling arrays. 

overwrite_a : bool, optional 

This is passed to xGEBAL directly. Essentially, overwrites the result 

to the data. It might increase the space efficiency. See LAPACK manual 

for details. This is False by default. 

 

Returns 

------- 

B : (n, n) ndarray 

Balanced matrix 

T : (n, n) ndarray 

A possibly permuted diagonal matrix whose nonzero entries are 

integer powers of 2 to avoid numerical truncation errors. 

scale, perm : (n,) ndarray 

If ``separate`` keyword is set to True then instead of the array 

``T`` above, the scaling and the permutation vectors are given 

separately as a tuple without allocating the full array ``T``. 

 

.. versionadded:: 0.19.0 

 

Notes 

----- 

 

This algorithm is particularly useful for eigenvalue and matrix 

decompositions and in many cases it is already called by various 

LAPACK routines. 

 

The algorithm is based on the well-known technique of [1]_ and has 

been modified to account for special cases. See [2]_ for details 

which have been implemented since LAPACK v3.5.0. Before this version 

there are corner cases where balancing can actually worsen the 

conditioning. See [3]_ for such examples. 

 

The code is a wrapper around LAPACK's xGEBAL routine family for matrix 

balancing. 

 

Examples 

-------- 

>>> from scipy import linalg 

>>> x = np.array([[1,2,0], [9,1,0.01], [1,2,10*np.pi]]) 

 

>>> y, permscale = linalg.matrix_balance(x) 

>>> np.abs(x).sum(axis=0) / np.abs(x).sum(axis=1) 

array([ 3.66666667, 0.4995005 , 0.91312162]) 

 

>>> np.abs(y).sum(axis=0) / np.abs(y).sum(axis=1) 

array([ 1.2 , 1.27041742, 0.92658316]) # may vary 

 

>>> permscale # only powers of 2 (0.5 == 2^(-1)) 

array([[ 0.5, 0. , 0. ], # may vary 

[ 0. , 1. , 0. ], 

[ 0. , 0. , 1. ]]) 

 

References 

---------- 

.. [1] : B.N. Parlett and C. Reinsch, "Balancing a Matrix for 

Calculation of Eigenvalues and Eigenvectors", Numerische Mathematik, 

Vol.13(4), 1969, DOI:10.1007/BF02165404 

 

.. [2] : R. James, J. Langou, B.R. Lowery, "On matrix balancing and 

eigenvector computation", 2014, Available online: 

http://arxiv.org/abs/1401.5766 

 

.. [3] : D.S. Watkins. A case where balancing is harmful. 

Electron. Trans. Numer. Anal, Vol.23, 2006. 

 

""" 

 

A = np.atleast_2d(_asarray_validated(A, check_finite=True)) 

 

if not np.equal(*A.shape): 

raise ValueError('The data matrix for balancing should be square.') 

 

gebal = get_lapack_funcs(('gebal'), (A,)) 

B, lo, hi, ps, info = gebal(A, scale=scale, permute=permute, 

overwrite_a=overwrite_a) 

 

if info < 0: 

raise ValueError('xGEBAL exited with the internal error ' 

'"illegal value in argument number {}.". See ' 

'LAPACK documentation for the xGEBAL error codes.' 

''.format(-info)) 

 

# Separate the permutations from the scalings and then convert to int 

scaling = np.ones_like(ps, dtype=float) 

scaling[lo:hi+1] = ps[lo:hi+1] 

 

# gebal uses 1-indexing 

ps = ps.astype(int, copy=False) - 1 

n = A.shape[0] 

perm = np.arange(n) 

 

# LAPACK permutes with the ordering n --> hi, then 0--> lo 

if hi < n: 

for ind, x in enumerate(ps[hi+1:][::-1], 1): 

if n-ind == x: 

continue 

perm[[x, n-ind]] = perm[[n-ind, x]] 

 

if lo > 0: 

for ind, x in enumerate(ps[:lo]): 

if ind == x: 

continue 

perm[[x, ind]] = perm[[ind, x]] 

 

if separate: 

return B, (scaling, perm) 

 

# get the inverse permutation 

iperm = np.empty_like(perm) 

iperm[perm] = np.arange(n) 

 

return B, np.diag(scaling)[iperm, :]