1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

"""Cholesky decomposition functions.""" 

 

from __future__ import division, print_function, absolute_import 

 

from numpy import asarray_chkfinite, asarray, atleast_2d 

 

# Local imports 

from .misc import LinAlgError, _datacopied 

from .lapack import get_lapack_funcs 

 

__all__ = ['cholesky', 'cho_factor', 'cho_solve', 'cholesky_banded', 

'cho_solve_banded'] 

 

 

def _cholesky(a, lower=False, overwrite_a=False, clean=True, 

check_finite=True): 

"""Common code for cholesky() and cho_factor().""" 

 

a1 = asarray_chkfinite(a) if check_finite else asarray(a) 

a1 = atleast_2d(a1) 

 

# Dimension check 

if a1.ndim != 2: 

raise ValueError('Input array needs to be 2 dimensional but received ' 

'a {}d-array.'.format(a1.ndim)) 

# Squareness check 

if a1.shape[0] != a1.shape[1]: 

raise ValueError('Input array is expected to be square but has ' 

'the shape: {}.'.format(a1.shape)) 

 

# Quick return for square empty array 

if a1.size == 0: 

return a1.copy(), lower 

 

overwrite_a = overwrite_a or _datacopied(a1, a) 

potrf, = get_lapack_funcs(('potrf',), (a1,)) 

c, info = potrf(a1, lower=lower, overwrite_a=overwrite_a, clean=clean) 

if info > 0: 

raise LinAlgError("%d-th leading minor of the array is not positive " 

"definite" % info) 

if info < 0: 

raise ValueError('LAPACK reported an illegal value in {}-th argument' 

'on entry to "POTRF".'.format(-info)) 

return c, lower 

 

 

def cholesky(a, lower=False, overwrite_a=False, check_finite=True): 

""" 

Compute the Cholesky decomposition of a matrix. 

 

Returns the Cholesky decomposition, :math:`A = L L^*` or 

:math:`A = U^* U` of a Hermitian positive-definite matrix A. 

 

Parameters 

---------- 

a : (M, M) array_like 

Matrix to be decomposed 

lower : bool, optional 

Whether to compute the upper or lower triangular Cholesky 

factorization. Default is upper-triangular. 

overwrite_a : bool, optional 

Whether to overwrite data in `a` (may improve performance). 

check_finite : bool, optional 

Whether to check that the input matrix contains only finite numbers. 

Disabling may give a performance gain, but may result in problems 

(crashes, non-termination) if the inputs do contain infinities or NaNs. 

 

Returns 

------- 

c : (M, M) ndarray 

Upper- or lower-triangular Cholesky factor of `a`. 

 

Raises 

------ 

LinAlgError : if decomposition fails. 

 

Examples 

-------- 

>>> from scipy.linalg import cholesky 

>>> a = np.array([[1,-2j],[2j,5]]) 

>>> L = cholesky(a, lower=True) 

>>> L 

array([[ 1.+0.j, 0.+0.j], 

[ 0.+2.j, 1.+0.j]]) 

>>> L @ L.T.conj() 

array([[ 1.+0.j, 0.-2.j], 

[ 0.+2.j, 5.+0.j]]) 

 

""" 

c, lower = _cholesky(a, lower=lower, overwrite_a=overwrite_a, clean=True, 

check_finite=check_finite) 

return c 

 

 

def cho_factor(a, lower=False, overwrite_a=False, check_finite=True): 

""" 

Compute the Cholesky decomposition of a matrix, to use in cho_solve 

 

Returns a matrix containing the Cholesky decomposition, 

``A = L L*`` or ``A = U* U`` of a Hermitian positive-definite matrix `a`. 

The return value can be directly used as the first parameter to cho_solve. 

 

.. warning:: 

The returned matrix also contains random data in the entries not 

used by the Cholesky decomposition. If you need to zero these 

entries, use the function `cholesky` instead. 

 

Parameters 

---------- 

a : (M, M) array_like 

Matrix to be decomposed 

lower : bool, optional 

Whether to compute the upper or lower triangular Cholesky factorization 

(Default: upper-triangular) 

overwrite_a : bool, optional 

Whether to overwrite data in a (may improve performance) 

check_finite : bool, optional 

Whether to check that the input matrix contains only finite numbers. 

Disabling may give a performance gain, but may result in problems 

(crashes, non-termination) if the inputs do contain infinities or NaNs. 

 

Returns 

------- 

c : (M, M) ndarray 

Matrix whose upper or lower triangle contains the Cholesky factor 

of `a`. Other parts of the matrix contain random data. 

lower : bool 

Flag indicating whether the factor is in the lower or upper triangle 

 

Raises 

------ 

LinAlgError 

Raised if decomposition fails. 

 

See also 

-------- 

cho_solve : Solve a linear set equations using the Cholesky factorization 

of a matrix. 

 

Examples 

-------- 

>>> from scipy.linalg import cho_factor 

>>> A = np.array([[9, 3, 1, 5], [3, 7, 5, 1], [1, 5, 9, 2], [5, 1, 2, 6]]) 

>>> c, low = cho_factor(A) 

>>> c 

array([[3. , 1. , 0.33333333, 1.66666667], 

[3. , 2.44948974, 1.90515869, -0.27216553], 

[1. , 5. , 2.29330749, 0.8559528 ], 

[5. , 1. , 2. , 1.55418563]]) 

>>> np.allclose(np.triu(c).T @ np. triu(c) - A, np.zeros((4, 4))) 

True 

 

""" 

c, lower = _cholesky(a, lower=lower, overwrite_a=overwrite_a, clean=False, 

check_finite=check_finite) 

return c, lower 

 

 

def cho_solve(c_and_lower, b, overwrite_b=False, check_finite=True): 

"""Solve the linear equations A x = b, given the Cholesky factorization of A. 

 

Parameters 

---------- 

(c, lower) : tuple, (array, bool) 

Cholesky factorization of a, as given by cho_factor 

b : array 

Right-hand side 

overwrite_b : bool, optional 

Whether to overwrite data in b (may improve performance) 

check_finite : bool, optional 

Whether to check that the input matrices contain only finite numbers. 

Disabling may give a performance gain, but may result in problems 

(crashes, non-termination) if the inputs do contain infinities or NaNs. 

 

Returns 

------- 

x : array 

The solution to the system A x = b 

 

See also 

-------- 

cho_factor : Cholesky factorization of a matrix 

 

Examples 

-------- 

>>> from scipy.linalg import cho_factor, cho_solve 

>>> A = np.array([[9, 3, 1, 5], [3, 7, 5, 1], [1, 5, 9, 2], [5, 1, 2, 6]]) 

>>> c, low = cho_factor(A) 

>>> x = cho_solve((c, low), [1, 1, 1, 1]) 

>>> np.allclose(A @ x - [1, 1, 1, 1], np.zeros(4)) 

True 

 

""" 

(c, lower) = c_and_lower 

if check_finite: 

b1 = asarray_chkfinite(b) 

c = asarray_chkfinite(c) 

else: 

b1 = asarray(b) 

c = asarray(c) 

if c.ndim != 2 or c.shape[0] != c.shape[1]: 

raise ValueError("The factored matrix c is not square.") 

if c.shape[1] != b1.shape[0]: 

raise ValueError("incompatible dimensions.") 

 

overwrite_b = overwrite_b or _datacopied(b1, b) 

 

potrs, = get_lapack_funcs(('potrs',), (c, b1)) 

x, info = potrs(c, b1, lower=lower, overwrite_b=overwrite_b) 

if info != 0: 

raise ValueError('illegal value in %d-th argument of internal potrs' 

% -info) 

return x 

 

 

def cholesky_banded(ab, overwrite_ab=False, lower=False, check_finite=True): 

""" 

Cholesky decompose a banded Hermitian positive-definite matrix 

 

The matrix a is stored in ab either in lower diagonal or upper 

diagonal ordered form:: 

 

ab[u + i - j, j] == a[i,j] (if upper form; i <= j) 

ab[ i - j, j] == a[i,j] (if lower form; i >= j) 

 

Example of ab (shape of a is (6,6), u=2):: 

 

upper form: 

* * a02 a13 a24 a35 

* a01 a12 a23 a34 a45 

a00 a11 a22 a33 a44 a55 

 

lower form: 

a00 a11 a22 a33 a44 a55 

a10 a21 a32 a43 a54 * 

a20 a31 a42 a53 * * 

 

Parameters 

---------- 

ab : (u + 1, M) array_like 

Banded matrix 

overwrite_ab : bool, optional 

Discard data in ab (may enhance performance) 

lower : bool, optional 

Is the matrix in the lower form. (Default is upper form) 

check_finite : bool, optional 

Whether to check that the input matrix contains only finite numbers. 

Disabling may give a performance gain, but may result in problems 

(crashes, non-termination) if the inputs do contain infinities or NaNs. 

 

Returns 

------- 

c : (u + 1, M) ndarray 

Cholesky factorization of a, in the same banded format as ab 

 

Examples 

-------- 

>>> from scipy.linalg import cholesky_banded 

>>> from numpy import allclose, zeros, diag 

>>> Ab = np.array([[0, 0, 1j, 2, 3j], [0, -1, -2, 3, 4], [9, 8, 7, 6, 9]]) 

>>> A = np.diag(Ab[0,2:], k=2) + np.diag(Ab[1,1:], k=1) 

>>> A = A + A.conj().T + np.diag(Ab[2, :]) 

>>> c = cholesky_banded(Ab) 

>>> C = np.diag(c[0, 2:], k=2) + np.diag(c[1, 1:], k=1) + np.diag(c[2, :]) 

>>> np.allclose(C.conj().T @ C - A, np.zeros((5, 5))) 

True 

 

""" 

if check_finite: 

ab = asarray_chkfinite(ab) 

else: 

ab = asarray(ab) 

 

pbtrf, = get_lapack_funcs(('pbtrf',), (ab,)) 

c, info = pbtrf(ab, lower=lower, overwrite_ab=overwrite_ab) 

if info > 0: 

raise LinAlgError("%d-th leading minor not positive definite" % info) 

if info < 0: 

raise ValueError('illegal value in %d-th argument of internal pbtrf' 

% -info) 

return c 

 

 

def cho_solve_banded(cb_and_lower, b, overwrite_b=False, check_finite=True): 

""" 

Solve the linear equations ``A x = b``, given the Cholesky factorization of 

the banded hermitian ``A``. 

 

Parameters 

---------- 

(cb, lower) : tuple, (ndarray, bool) 

`cb` is the Cholesky factorization of A, as given by cholesky_banded. 

`lower` must be the same value that was given to cholesky_banded. 

b : array_like 

Right-hand side 

overwrite_b : bool, optional 

If True, the function will overwrite the values in `b`. 

check_finite : bool, optional 

Whether to check that the input matrices contain only finite numbers. 

Disabling may give a performance gain, but may result in problems 

(crashes, non-termination) if the inputs do contain infinities or NaNs. 

 

Returns 

------- 

x : array 

The solution to the system A x = b 

 

See also 

-------- 

cholesky_banded : Cholesky factorization of a banded matrix 

 

Notes 

----- 

 

.. versionadded:: 0.8.0 

 

Examples 

-------- 

>>> from scipy.linalg import cholesky_banded, cho_solve_banded 

>>> Ab = np.array([[0, 0, 1j, 2, 3j], [0, -1, -2, 3, 4], [9, 8, 7, 6, 9]]) 

>>> A = np.diag(Ab[0,2:], k=2) + np.diag(Ab[1,1:], k=1) 

>>> A = A + A.conj().T + np.diag(Ab[2, :]) 

>>> c = cholesky_banded(Ab) 

>>> x = cho_solve_banded((c, False), np.ones(5)) 

>>> np.allclose(A @ x - np.ones(5), np.zeros(5)) 

True 

 

""" 

(cb, lower) = cb_and_lower 

if check_finite: 

cb = asarray_chkfinite(cb) 

b = asarray_chkfinite(b) 

else: 

cb = asarray(cb) 

b = asarray(b) 

 

# Validate shapes. 

if cb.shape[-1] != b.shape[0]: 

raise ValueError("shapes of cb and b are not compatible.") 

 

pbtrs, = get_lapack_funcs(('pbtrs',), (cb, b)) 

x, info = pbtrs(cb, b, lower=lower, overwrite_b=overwrite_b) 

if info > 0: 

raise LinAlgError("%d-th leading minor not positive definite" % info) 

if info < 0: 

raise ValueError('illegal value in %d-th argument of internal pbtrs' 

% -info) 

return x