"""SVD decomposition functions."""
# Local imports.
check_finite=True, lapack_driver='gesdd'): """ Singular Value Decomposition.
Factorizes the matrix `a` into two unitary matrices ``U`` and ``Vh``, and a 1-D array ``s`` of singular values (real, non-negative) such that ``a == U @ S @ Vh``, where ``S`` is a suitably shaped matrix of zeros with main diagonal ``s``.
Parameters ---------- a : (M, N) array_like Matrix to decompose. full_matrices : bool, optional If True (default), `U` and `Vh` are of shape ``(M, M)``, ``(N, N)``. If False, the shapes are ``(M, K)`` and ``(K, N)``, where ``K = min(M, N)``. compute_uv : bool, optional Whether to compute also ``U`` and ``Vh`` in addition to ``s``. Default is True. overwrite_a : bool, optional Whether to overwrite `a`; may improve performance. Default is False. check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. lapack_driver : {'gesdd', 'gesvd'}, optional Whether to use the more efficient divide-and-conquer approach (``'gesdd'``) or general rectangular approach (``'gesvd'``) to compute the SVD. MATLAB and Octave use the ``'gesvd'`` approach. Default is ``'gesdd'``.
.. versionadded:: 0.18
Returns ------- U : ndarray Unitary matrix having left singular vectors as columns. Of shape ``(M, M)`` or ``(M, K)``, depending on `full_matrices`. s : ndarray The singular values, sorted in non-increasing order. Of shape (K,), with ``K = min(M, N)``. Vh : ndarray Unitary matrix having right singular vectors as rows. Of shape ``(N, N)`` or ``(K, N)`` depending on `full_matrices`.
For ``compute_uv=False``, only ``s`` is returned.
Raises ------ LinAlgError If SVD computation does not converge.
See also -------- svdvals : Compute singular values of a matrix. diagsvd : Construct the Sigma matrix, given the vector s.
Examples -------- >>> from scipy import linalg >>> m, n = 9, 6 >>> a = np.random.randn(m, n) + 1.j*np.random.randn(m, n) >>> U, s, Vh = linalg.svd(a) >>> U.shape, s.shape, Vh.shape ((9, 9), (6,), (6, 6))
Reconstruct the original matrix from the decomposition:
>>> sigma = np.zeros((m, n)) >>> for i in range(min(m, n)): ... sigma[i, i] = s[i] >>> a1 = np.dot(U, np.dot(sigma, Vh)) >>> np.allclose(a, a1) True
Alternatively, use ``full_matrices=False`` (notice that the shape of ``U`` is then ``(m, n)`` instead of ``(m, m)``):
>>> U, s, Vh = linalg.svd(a, full_matrices=False) >>> U.shape, s.shape, Vh.shape ((9, 6), (6,), (6, 6)) >>> S = np.diag(s) >>> np.allclose(a, np.dot(U, np.dot(S, Vh))) True
>>> s2 = linalg.svd(a, compute_uv=False) >>> np.allclose(s, s2) True
""" a1 = _asarray_validated(a, check_finite=check_finite) if len(a1.shape) != 2: raise ValueError('expected matrix') m, n = a1.shape overwrite_a = overwrite_a or (_datacopied(a1, a))
if not isinstance(lapack_driver, string_types): raise TypeError('lapack_driver must be a string') if lapack_driver not in ('gesdd', 'gesvd'): raise ValueError('lapack_driver must be "gesdd" or "gesvd", not "%s"' % (lapack_driver,)) funcs = (lapack_driver, lapack_driver + '_lwork') gesXd, gesXd_lwork = get_lapack_funcs(funcs, (a1,))
# compute optimal lwork lwork = _compute_lwork(gesXd_lwork, a1.shape[0], a1.shape[1], compute_uv=compute_uv, full_matrices=full_matrices)
# perform decomposition u, s, v, info = gesXd(a1, compute_uv=compute_uv, lwork=lwork, full_matrices=full_matrices, overwrite_a=overwrite_a)
if info > 0: raise LinAlgError("SVD did not converge") if info < 0: raise ValueError('illegal value in %d-th argument of internal gesdd' % -info) if compute_uv: return u, s, v else: return s
""" Compute singular values of a matrix.
Parameters ---------- a : (M, N) array_like Matrix to decompose. overwrite_a : bool, optional Whether to overwrite `a`; may improve performance. Default is False. check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns ------- s : (min(M, N),) ndarray The singular values, sorted in decreasing order.
Raises ------ LinAlgError If SVD computation does not converge.
Notes ----- ``svdvals(a)`` only differs from ``svd(a, compute_uv=False)`` by its handling of the edge case of empty ``a``, where it returns an empty sequence:
>>> a = np.empty((0, 2)) >>> from scipy.linalg import svdvals >>> svdvals(a) array([], dtype=float64)
See Also -------- svd : Compute the full singular value decomposition of a matrix. diagsvd : Construct the Sigma matrix, given the vector s.
Examples -------- >>> from scipy.linalg import svdvals >>> m = np.array([[1.0, 0.0], ... [2.0, 3.0], ... [1.0, 1.0], ... [0.0, 2.0], ... [1.0, 0.0]]) >>> svdvals(m) array([ 4.28091555, 1.63516424])
We can verify the maximum singular value of `m` by computing the maximum length of `m.dot(u)` over all the unit vectors `u` in the (x,y) plane. We approximate "all" the unit vectors with a large sample. Because of linearity, we only need the unit vectors with angles in [0, pi].
>>> t = np.linspace(0, np.pi, 2000) >>> u = np.array([np.cos(t), np.sin(t)]) >>> np.linalg.norm(m.dot(u), axis=0).max() 4.2809152422538475
`p` is a projection matrix with rank 1. With exact arithmetic, its singular values would be [1, 0, 0, 0].
>>> v = np.array([0.1, 0.3, 0.9, 0.3]) >>> p = np.outer(v, v) >>> svdvals(p) array([ 1.00000000e+00, 2.02021698e-17, 1.56692500e-17, 8.15115104e-34])
The singular values of an orthogonal matrix are all 1. Here we create a random orthogonal matrix by using the `rvs()` method of `scipy.stats.ortho_group`.
>>> from scipy.stats import ortho_group >>> np.random.seed(123) >>> orth = ortho_group.rvs(4) >>> svdvals(orth) array([ 1., 1., 1., 1.])
""" a = _asarray_validated(a, check_finite=check_finite) if a.size: return svd(a, compute_uv=0, overwrite_a=overwrite_a, check_finite=False) elif len(a.shape) != 2: raise ValueError('expected matrix') else: return numpy.empty(0)
""" Construct the sigma matrix in SVD from singular values and size M, N.
Parameters ---------- s : (M,) or (N,) array_like Singular values M : int Size of the matrix whose singular values are `s`. N : int Size of the matrix whose singular values are `s`.
Returns ------- S : (M, N) ndarray The S-matrix in the singular value decomposition
See Also -------- svd : Singular value decomposition of a matrix svdvals : Compute singular values of a matrix.
Examples -------- >>> from scipy.linalg import diagsvd >>> vals = np.array([1, 2, 3]) # The array representing the computed svd >>> diagsvd(vals, 3, 4) array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0]]) >>> diagsvd(vals, 4, 3) array([[1, 0, 0], [0, 2, 0], [0, 0, 3], [0, 0, 0]])
""" part = diag(s) typ = part.dtype.char MorN = len(s) if MorN == M: return r_['-1', part, zeros((M, N-M), typ)] elif MorN == N: return r_[part, zeros((M-N, N), typ)] else: raise ValueError("Length of s must be M or N.")
# Orthonormal decomposition
""" Construct an orthonormal basis for the range of A using SVD
Parameters ---------- A : (M, N) array_like Input array rcond : float, optional Relative condition number. Singular values ``s`` smaller than ``rcond * max(s)`` are considered zero. Default: floating point eps * max(M,N).
Returns ------- Q : (M, K) ndarray Orthonormal basis for the range of A. K = effective rank of A, as determined by rcond
See also -------- svd : Singular value decomposition of a matrix null_space : Matrix null space
Examples -------- >>> from scipy.linalg import orth >>> A = np.array([[2, 0, 0], [0, 5, 0]]) # rank 2 array >>> orth(A) array([[0., 1.], [1., 0.]]) >>> orth(A.T) array([[0., 1.], [1., 0.], [0., 0.]])
""" u, s, vh = svd(A, full_matrices=False) M, N = u.shape[0], vh.shape[1] if rcond is None: rcond = numpy.finfo(s.dtype).eps * max(M, N) tol = numpy.amax(s) * rcond num = numpy.sum(s > tol, dtype=int) Q = u[:, :num] return Q
""" Construct an orthonormal basis for the null space of A using SVD
Parameters ---------- A : (M, N) array_like Input array rcond : float, optional Relative condition number. Singular values ``s`` smaller than ``rcond * max(s)`` are considered zero. Default: floating point eps * max(M,N).
Returns ------- Z : (N, K) ndarray Orthonormal basis for the null space of A. K = dimension of effective null space, as determined by rcond
See also -------- svd : Singular value decomposition of a matrix orth : Matrix range
Examples -------- One-dimensional null space:
>>> from scipy.linalg import null_space >>> A = np.array([[1, 1], [1, 1]]) >>> ns = null_space(A) >>> ns * np.sign(ns[0,0]) # Remove the sign ambiguity of the vector array([[ 0.70710678], [-0.70710678]])
Two-dimensional null space:
>>> B = np.random.rand(3, 5) >>> Z = null_space(B) >>> Z.shape (5, 2) >>> np.allclose(B.dot(Z), 0) True
The basis vectors are orthonormal (up to rounding error):
>>> Z.T.dot(Z) array([[ 1.00000000e+00, 6.92087741e-17], [ 6.92087741e-17, 1.00000000e+00]])
""" u, s, vh = svd(A, full_matrices=True) M, N = u.shape[0], vh.shape[1] if rcond is None: rcond = numpy.finfo(s.dtype).eps * max(M, N) tol = numpy.amax(s) * rcond num = numpy.sum(s > tol, dtype=int) Q = vh[num:,:].T.conj() return Q
r""" Compute the subspace angles between two matrices.
Parameters ---------- A : (M, N) array_like The first input array. B : (M, K) array_like The second input array.
Returns ------- angles : ndarray, shape (min(N, K),) The subspace angles between the column spaces of `A` and `B`.
See Also -------- orth svd
Notes ----- This computes the subspace angles according to the formula provided in [1]_. For equivalence with MATLAB and Octave behavior, use ``angles[0]``.
.. versionadded:: 1.0
References ---------- .. [1] Knyazev A, Argentati M (2002) Principal Angles between Subspaces in an A-Based Scalar Product: Algorithms and Perturbation Estimates. SIAM J. Sci. Comput. 23:2008-2040.
Examples -------- A Hadamard matrix, which has orthogonal columns, so we expect that the suspace angle to be :math:`\frac{\pi}{2}`:
>>> from scipy.linalg import hadamard, subspace_angles >>> H = hadamard(4) >>> print(H) [[ 1 1 1 1] [ 1 -1 1 -1] [ 1 1 -1 -1] [ 1 -1 -1 1]] >>> np.rad2deg(subspace_angles(H[:, :2], H[:, 2:])) array([ 90., 90.])
And the subspace angle of a matrix to itself should be zero:
>>> subspace_angles(H[:, :2], H[:, :2]) <= 2 * np.finfo(float).eps array([ True, True], dtype=bool)
The angles between non-orthogonal subspaces are in between these extremes:
>>> x = np.random.RandomState(0).randn(4, 3) >>> np.rad2deg(subspace_angles(x[:, :2], x[:, [2]])) array([ 55.832]) """ # Steps here omit the U and V calculation steps from the paper
# 1. Compute orthonormal bases of column-spaces A = _asarray_validated(A, check_finite=True) if len(A.shape) != 2: raise ValueError('expected 2D array, got shape %s' % (A.shape,)) QA = orth(A) del A
B = _asarray_validated(B, check_finite=True) if len(B.shape) != 2: raise ValueError('expected 2D array, got shape %s' % (B.shape,)) if len(B) != len(QA): raise ValueError('A and B must have the same number of rows, got ' '%s and %s' % (QA.shape[0], B.shape[0])) QB = orth(B) del B
# 2. Compute SVD for cosine QA_T_QB = dot(QA.T, QB) sigma = svdvals(QA_T_QB)
# 3. Compute matrix B if QA.shape[1] >= QB.shape[1]: B = QB - dot(QA, QA_T_QB) else: B = QA - dot(QB, QA_T_QB.T) del QA, QB, QA_T_QB
# 4. Compute SVD for sine mask = sigma ** 2 >= 0.5 if mask.any(): mu_arcsin = arcsin(clip(svdvals(B, overwrite_a=True), -1., 1.)) else: mu_arcsin = 0.
# 5. Compute the principal angles theta = where(mask, mu_arcsin, arccos(clip(sigma, -1., 1.))) return theta |