1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

"""SVD decomposition functions.""" 

from __future__ import division, print_function, absolute_import 

 

import numpy 

from numpy import zeros, r_, diag, dot, arccos, arcsin, where, clip 

 

# Local imports. 

from .misc import LinAlgError, _datacopied 

from .lapack import get_lapack_funcs, _compute_lwork 

from .decomp import _asarray_validated 

from scipy._lib.six import string_types 

 

__all__ = ['svd', 'svdvals', 'diagsvd', 'orth', 'subspace_angles', 'null_space'] 

 

 

def svd(a, full_matrices=True, compute_uv=True, overwrite_a=False, 

check_finite=True, lapack_driver='gesdd'): 

""" 

Singular Value Decomposition. 

 

Factorizes the matrix `a` into two unitary matrices ``U`` and ``Vh``, and 

a 1-D array ``s`` of singular values (real, non-negative) such that 

``a == U @ S @ Vh``, where ``S`` is a suitably shaped matrix of zeros with 

main diagonal ``s``. 

 

Parameters 

---------- 

a : (M, N) array_like 

Matrix to decompose. 

full_matrices : bool, optional 

If True (default), `U` and `Vh` are of shape ``(M, M)``, ``(N, N)``. 

If False, the shapes are ``(M, K)`` and ``(K, N)``, where 

``K = min(M, N)``. 

compute_uv : bool, optional 

Whether to compute also ``U`` and ``Vh`` in addition to ``s``. 

Default is True. 

overwrite_a : bool, optional 

Whether to overwrite `a`; may improve performance. 

Default is False. 

check_finite : bool, optional 

Whether to check that the input matrix contains only finite numbers. 

Disabling may give a performance gain, but may result in problems 

(crashes, non-termination) if the inputs do contain infinities or NaNs. 

lapack_driver : {'gesdd', 'gesvd'}, optional 

Whether to use the more efficient divide-and-conquer approach 

(``'gesdd'``) or general rectangular approach (``'gesvd'``) 

to compute the SVD. MATLAB and Octave use the ``'gesvd'`` approach. 

Default is ``'gesdd'``. 

 

.. versionadded:: 0.18 

 

Returns 

------- 

U : ndarray 

Unitary matrix having left singular vectors as columns. 

Of shape ``(M, M)`` or ``(M, K)``, depending on `full_matrices`. 

s : ndarray 

The singular values, sorted in non-increasing order. 

Of shape (K,), with ``K = min(M, N)``. 

Vh : ndarray 

Unitary matrix having right singular vectors as rows. 

Of shape ``(N, N)`` or ``(K, N)`` depending on `full_matrices`. 

 

For ``compute_uv=False``, only ``s`` is returned. 

 

Raises 

------ 

LinAlgError 

If SVD computation does not converge. 

 

See also 

-------- 

svdvals : Compute singular values of a matrix. 

diagsvd : Construct the Sigma matrix, given the vector s. 

 

Examples 

-------- 

>>> from scipy import linalg 

>>> m, n = 9, 6 

>>> a = np.random.randn(m, n) + 1.j*np.random.randn(m, n) 

>>> U, s, Vh = linalg.svd(a) 

>>> U.shape, s.shape, Vh.shape 

((9, 9), (6,), (6, 6)) 

 

Reconstruct the original matrix from the decomposition: 

 

>>> sigma = np.zeros((m, n)) 

>>> for i in range(min(m, n)): 

... sigma[i, i] = s[i] 

>>> a1 = np.dot(U, np.dot(sigma, Vh)) 

>>> np.allclose(a, a1) 

True 

 

Alternatively, use ``full_matrices=False`` (notice that the shape of 

``U`` is then ``(m, n)`` instead of ``(m, m)``): 

 

>>> U, s, Vh = linalg.svd(a, full_matrices=False) 

>>> U.shape, s.shape, Vh.shape 

((9, 6), (6,), (6, 6)) 

>>> S = np.diag(s) 

>>> np.allclose(a, np.dot(U, np.dot(S, Vh))) 

True 

 

>>> s2 = linalg.svd(a, compute_uv=False) 

>>> np.allclose(s, s2) 

True 

 

""" 

a1 = _asarray_validated(a, check_finite=check_finite) 

if len(a1.shape) != 2: 

raise ValueError('expected matrix') 

m, n = a1.shape 

overwrite_a = overwrite_a or (_datacopied(a1, a)) 

 

if not isinstance(lapack_driver, string_types): 

raise TypeError('lapack_driver must be a string') 

if lapack_driver not in ('gesdd', 'gesvd'): 

raise ValueError('lapack_driver must be "gesdd" or "gesvd", not "%s"' 

% (lapack_driver,)) 

funcs = (lapack_driver, lapack_driver + '_lwork') 

gesXd, gesXd_lwork = get_lapack_funcs(funcs, (a1,)) 

 

# compute optimal lwork 

lwork = _compute_lwork(gesXd_lwork, a1.shape[0], a1.shape[1], 

compute_uv=compute_uv, full_matrices=full_matrices) 

 

# perform decomposition 

u, s, v, info = gesXd(a1, compute_uv=compute_uv, lwork=lwork, 

full_matrices=full_matrices, overwrite_a=overwrite_a) 

 

if info > 0: 

raise LinAlgError("SVD did not converge") 

if info < 0: 

raise ValueError('illegal value in %d-th argument of internal gesdd' 

% -info) 

if compute_uv: 

return u, s, v 

else: 

return s 

 

 

def svdvals(a, overwrite_a=False, check_finite=True): 

""" 

Compute singular values of a matrix. 

 

Parameters 

---------- 

a : (M, N) array_like 

Matrix to decompose. 

overwrite_a : bool, optional 

Whether to overwrite `a`; may improve performance. 

Default is False. 

check_finite : bool, optional 

Whether to check that the input matrix contains only finite numbers. 

Disabling may give a performance gain, but may result in problems 

(crashes, non-termination) if the inputs do contain infinities or NaNs. 

 

Returns 

------- 

s : (min(M, N),) ndarray 

The singular values, sorted in decreasing order. 

 

Raises 

------ 

LinAlgError 

If SVD computation does not converge. 

 

Notes 

----- 

``svdvals(a)`` only differs from ``svd(a, compute_uv=False)`` by its 

handling of the edge case of empty ``a``, where it returns an 

empty sequence: 

 

>>> a = np.empty((0, 2)) 

>>> from scipy.linalg import svdvals 

>>> svdvals(a) 

array([], dtype=float64) 

 

See Also 

-------- 

svd : Compute the full singular value decomposition of a matrix. 

diagsvd : Construct the Sigma matrix, given the vector s. 

 

Examples 

-------- 

>>> from scipy.linalg import svdvals 

>>> m = np.array([[1.0, 0.0], 

... [2.0, 3.0], 

... [1.0, 1.0], 

... [0.0, 2.0], 

... [1.0, 0.0]]) 

>>> svdvals(m) 

array([ 4.28091555, 1.63516424]) 

 

We can verify the maximum singular value of `m` by computing the maximum 

length of `m.dot(u)` over all the unit vectors `u` in the (x,y) plane. 

We approximate "all" the unit vectors with a large sample. Because 

of linearity, we only need the unit vectors with angles in [0, pi]. 

 

>>> t = np.linspace(0, np.pi, 2000) 

>>> u = np.array([np.cos(t), np.sin(t)]) 

>>> np.linalg.norm(m.dot(u), axis=0).max() 

4.2809152422538475 

 

`p` is a projection matrix with rank 1. With exact arithmetic, 

its singular values would be [1, 0, 0, 0]. 

 

>>> v = np.array([0.1, 0.3, 0.9, 0.3]) 

>>> p = np.outer(v, v) 

>>> svdvals(p) 

array([ 1.00000000e+00, 2.02021698e-17, 1.56692500e-17, 

8.15115104e-34]) 

 

The singular values of an orthogonal matrix are all 1. Here we 

create a random orthogonal matrix by using the `rvs()` method of 

`scipy.stats.ortho_group`. 

 

>>> from scipy.stats import ortho_group 

>>> np.random.seed(123) 

>>> orth = ortho_group.rvs(4) 

>>> svdvals(orth) 

array([ 1., 1., 1., 1.]) 

 

""" 

a = _asarray_validated(a, check_finite=check_finite) 

if a.size: 

return svd(a, compute_uv=0, overwrite_a=overwrite_a, 

check_finite=False) 

elif len(a.shape) != 2: 

raise ValueError('expected matrix') 

else: 

return numpy.empty(0) 

 

 

def diagsvd(s, M, N): 

""" 

Construct the sigma matrix in SVD from singular values and size M, N. 

 

Parameters 

---------- 

s : (M,) or (N,) array_like 

Singular values 

M : int 

Size of the matrix whose singular values are `s`. 

N : int 

Size of the matrix whose singular values are `s`. 

 

Returns 

------- 

S : (M, N) ndarray 

The S-matrix in the singular value decomposition 

 

See Also 

-------- 

svd : Singular value decomposition of a matrix 

svdvals : Compute singular values of a matrix. 

 

Examples 

-------- 

>>> from scipy.linalg import diagsvd 

>>> vals = np.array([1, 2, 3]) # The array representing the computed svd 

>>> diagsvd(vals, 3, 4) 

array([[1, 0, 0, 0], 

[0, 2, 0, 0], 

[0, 0, 3, 0]]) 

>>> diagsvd(vals, 4, 3) 

array([[1, 0, 0], 

[0, 2, 0], 

[0, 0, 3], 

[0, 0, 0]]) 

 

""" 

part = diag(s) 

typ = part.dtype.char 

MorN = len(s) 

if MorN == M: 

return r_['-1', part, zeros((M, N-M), typ)] 

elif MorN == N: 

return r_[part, zeros((M-N, N), typ)] 

else: 

raise ValueError("Length of s must be M or N.") 

 

 

# Orthonormal decomposition 

 

def orth(A, rcond=None): 

""" 

Construct an orthonormal basis for the range of A using SVD 

 

Parameters 

---------- 

A : (M, N) array_like 

Input array 

rcond : float, optional 

Relative condition number. Singular values ``s`` smaller than 

``rcond * max(s)`` are considered zero. 

Default: floating point eps * max(M,N). 

 

Returns 

------- 

Q : (M, K) ndarray 

Orthonormal basis for the range of A. 

K = effective rank of A, as determined by rcond 

 

See also 

-------- 

svd : Singular value decomposition of a matrix 

null_space : Matrix null space 

 

Examples 

-------- 

>>> from scipy.linalg import orth 

>>> A = np.array([[2, 0, 0], [0, 5, 0]]) # rank 2 array 

>>> orth(A) 

array([[0., 1.], 

[1., 0.]]) 

>>> orth(A.T) 

array([[0., 1.], 

[1., 0.], 

[0., 0.]]) 

 

""" 

u, s, vh = svd(A, full_matrices=False) 

M, N = u.shape[0], vh.shape[1] 

if rcond is None: 

rcond = numpy.finfo(s.dtype).eps * max(M, N) 

tol = numpy.amax(s) * rcond 

num = numpy.sum(s > tol, dtype=int) 

Q = u[:, :num] 

return Q 

 

 

def null_space(A, rcond=None): 

""" 

Construct an orthonormal basis for the null space of A using SVD 

 

Parameters 

---------- 

A : (M, N) array_like 

Input array 

rcond : float, optional 

Relative condition number. Singular values ``s`` smaller than 

``rcond * max(s)`` are considered zero. 

Default: floating point eps * max(M,N). 

 

Returns 

------- 

Z : (N, K) ndarray 

Orthonormal basis for the null space of A. 

K = dimension of effective null space, as determined by rcond 

 

See also 

-------- 

svd : Singular value decomposition of a matrix 

orth : Matrix range 

 

Examples 

-------- 

One-dimensional null space: 

 

>>> from scipy.linalg import null_space 

>>> A = np.array([[1, 1], [1, 1]]) 

>>> ns = null_space(A) 

>>> ns * np.sign(ns[0,0]) # Remove the sign ambiguity of the vector 

array([[ 0.70710678], 

[-0.70710678]]) 

 

Two-dimensional null space: 

 

>>> B = np.random.rand(3, 5) 

>>> Z = null_space(B) 

>>> Z.shape 

(5, 2) 

>>> np.allclose(B.dot(Z), 0) 

True 

 

The basis vectors are orthonormal (up to rounding error): 

 

>>> Z.T.dot(Z) 

array([[ 1.00000000e+00, 6.92087741e-17], 

[ 6.92087741e-17, 1.00000000e+00]]) 

 

""" 

u, s, vh = svd(A, full_matrices=True) 

M, N = u.shape[0], vh.shape[1] 

if rcond is None: 

rcond = numpy.finfo(s.dtype).eps * max(M, N) 

tol = numpy.amax(s) * rcond 

num = numpy.sum(s > tol, dtype=int) 

Q = vh[num:,:].T.conj() 

return Q 

 

 

def subspace_angles(A, B): 

r""" 

Compute the subspace angles between two matrices. 

 

Parameters 

---------- 

A : (M, N) array_like 

The first input array. 

B : (M, K) array_like 

The second input array. 

 

Returns 

------- 

angles : ndarray, shape (min(N, K),) 

The subspace angles between the column spaces of `A` and `B`. 

 

See Also 

-------- 

orth 

svd 

 

Notes 

----- 

This computes the subspace angles according to the formula 

provided in [1]_. For equivalence with MATLAB and Octave behavior, 

use ``angles[0]``. 

 

.. versionadded:: 1.0 

 

References 

---------- 

.. [1] Knyazev A, Argentati M (2002) Principal Angles between Subspaces 

in an A-Based Scalar Product: Algorithms and Perturbation 

Estimates. SIAM J. Sci. Comput. 23:2008-2040. 

 

Examples 

-------- 

A Hadamard matrix, which has orthogonal columns, so we expect that 

the suspace angle to be :math:`\frac{\pi}{2}`: 

 

>>> from scipy.linalg import hadamard, subspace_angles 

>>> H = hadamard(4) 

>>> print(H) 

[[ 1 1 1 1] 

[ 1 -1 1 -1] 

[ 1 1 -1 -1] 

[ 1 -1 -1 1]] 

>>> np.rad2deg(subspace_angles(H[:, :2], H[:, 2:])) 

array([ 90., 90.]) 

 

And the subspace angle of a matrix to itself should be zero: 

 

>>> subspace_angles(H[:, :2], H[:, :2]) <= 2 * np.finfo(float).eps 

array([ True, True], dtype=bool) 

 

The angles between non-orthogonal subspaces are in between these extremes: 

 

>>> x = np.random.RandomState(0).randn(4, 3) 

>>> np.rad2deg(subspace_angles(x[:, :2], x[:, [2]])) 

array([ 55.832]) 

""" 

# Steps here omit the U and V calculation steps from the paper 

 

# 1. Compute orthonormal bases of column-spaces 

A = _asarray_validated(A, check_finite=True) 

if len(A.shape) != 2: 

raise ValueError('expected 2D array, got shape %s' % (A.shape,)) 

QA = orth(A) 

del A 

 

B = _asarray_validated(B, check_finite=True) 

if len(B.shape) != 2: 

raise ValueError('expected 2D array, got shape %s' % (B.shape,)) 

if len(B) != len(QA): 

raise ValueError('A and B must have the same number of rows, got ' 

'%s and %s' % (QA.shape[0], B.shape[0])) 

QB = orth(B) 

del B 

 

# 2. Compute SVD for cosine 

QA_T_QB = dot(QA.T, QB) 

sigma = svdvals(QA_T_QB) 

 

# 3. Compute matrix B 

if QA.shape[1] >= QB.shape[1]: 

B = QB - dot(QA, QA_T_QB) 

else: 

B = QA - dot(QB, QA_T_QB.T) 

del QA, QB, QA_T_QB 

 

# 4. Compute SVD for sine 

mask = sigma ** 2 >= 0.5 

if mask.any(): 

mu_arcsin = arcsin(clip(svdvals(B, overwrite_a=True), -1., 1.)) 

else: 

mu_arcsin = 0. 

 

# 5. Compute the principal angles 

theta = where(mask, mu_arcsin, arccos(clip(sigma, -1., 1.))) 

return theta