""" The warning emitted when a linear algebra related operation is close to fail conditions of the algorithm or loss of accuracy is expected. """
""" Matrix or vector norm.
This function is able to return one of seven different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the ``ord`` parameter.
Parameters ---------- a : (M,) or (M, N) array_like Input array. If `axis` is None, `a` must be 1-D or 2-D. ord : {non-zero int, inf, -inf, 'fro'}, optional Order of the norm (see table under ``Notes``). inf means numpy's `inf` object axis : {int, 2-tuple of ints, None}, optional If `axis` is an integer, it specifies the axis of `a` along which to compute the vector norms. If `axis` is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. If `axis` is None then either a vector norm (when `a` is 1-D) or a matrix norm (when `a` is 2-D) is returned. keepdims : bool, optional If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original `a`.
Returns ------- n : float or ndarray Norm of the matrix or vector(s).
Notes ----- For values of ``ord <= 0``, the result is, strictly speaking, not a mathematical 'norm', but it may still be useful for various numerical purposes.
The following norms can be calculated:
===== ============================ ========================== ord norm for matrices norm for vectors ===== ============================ ========================== None Frobenius norm 2-norm 'fro' Frobenius norm -- inf max(sum(abs(x), axis=1)) max(abs(x)) -inf min(sum(abs(x), axis=1)) min(abs(x)) 0 -- sum(x != 0) 1 max(sum(abs(x), axis=0)) as below -1 min(sum(abs(x), axis=0)) as below 2 2-norm (largest sing. value) as below -2 smallest singular value as below other -- sum(abs(x)**ord)**(1./ord) ===== ============================ ==========================
The Frobenius norm is given by [1]_:
:math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}`
The ``axis`` and ``keepdims`` arguments are passed directly to ``numpy.linalg.norm`` and are only usable if they are supported by the version of numpy in use.
References ---------- .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*, Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15
Examples -------- >>> from scipy.linalg import norm >>> a = np.arange(9) - 4.0 >>> a array([-4., -3., -2., -1., 0., 1., 2., 3., 4.]) >>> b = a.reshape((3, 3)) >>> b array([[-4., -3., -2.], [-1., 0., 1.], [ 2., 3., 4.]])
>>> norm(a) 7.745966692414834 >>> norm(b) 7.745966692414834 >>> norm(b, 'fro') 7.745966692414834 >>> norm(a, np.inf) 4 >>> norm(b, np.inf) 9 >>> norm(a, -np.inf) 0 >>> norm(b, -np.inf) 2
>>> norm(a, 1) 20 >>> norm(b, 1) 7 >>> norm(a, -1) -4.6566128774142013e-010 >>> norm(b, -1) 6 >>> norm(a, 2) 7.745966692414834 >>> norm(b, 2) 7.3484692283495345
>>> norm(a, -2) 0 >>> norm(b, -2) 1.8570331885190563e-016 >>> norm(a, 3) 5.8480354764257312 >>> norm(a, -3) 0
""" # Differs from numpy only in non-finite handling and the use of blas. a = np.asarray_chkfinite(a)
# Only use optimized norms if axis and keepdims are not specified. if a.dtype.char in 'fdFD' and axis is None and not keepdims:
if ord in (None, 2) and (a.ndim == 1): # use blas for fast and stable euclidean norm nrm2 = get_blas_funcs('nrm2', dtype=a.dtype) return nrm2(a)
if a.ndim == 2 and axis is None and not keepdims: # Use lapack for a couple fast matrix norms. # For some reason the *lange frobenius norm is slow. lange_args = None # Make sure this works if the user uses the axis keywords # to apply the norm to the transpose. if ord == 1: if np.isfortran(a): lange_args = '1', a elif np.isfortran(a.T): lange_args = 'i', a.T elif ord == np.inf: if np.isfortran(a): lange_args = 'i', a elif np.isfortran(a.T): lange_args = '1', a.T if lange_args: lange = get_lapack_funcs('lange', dtype=a.dtype) return lange(*lange_args)
# Filter out the axis and keepdims arguments if they aren't used so they # are never inadvertently passed to a version of numpy that doesn't # support them. if axis is not None: if keepdims: return np.linalg.norm(a, ord=ord, axis=axis, keepdims=keepdims) return np.linalg.norm(a, ord=ord, axis=axis) return np.linalg.norm(a, ord=ord)
""" Strict check for `arr` not sharing any data with `original`, under the assumption that arr = asarray(original)
""" return False |