1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

from __future__ import division, print_function, absolute_import 

 

import math 

import numpy as np 

from scipy._lib.six import xrange 

from scipy._lib.six import string_types 

from numpy.lib.stride_tricks import as_strided 

 

 

__all__ = ['tri', 'tril', 'triu', 'toeplitz', 'circulant', 'hankel', 

'hadamard', 'leslie', 'kron', 'block_diag', 'companion', 

'helmert', 'hilbert', 'invhilbert', 'pascal', 'invpascal', 'dft'] 

 

 

#----------------------------------------------------------------------------- 

# matrix construction functions 

#----------------------------------------------------------------------------- 

 

# 

# *Note*: tri{,u,l} is implemented in numpy, but an important bug was fixed in 

# 2.0.0.dev-1af2f3, the following tri{,u,l} definitions are here for backwards 

# compatibility. 

 

def tri(N, M=None, k=0, dtype=None): 

""" 

Construct (N, M) matrix filled with ones at and below the k-th diagonal. 

 

The matrix has A[i,j] == 1 for i <= j + k 

 

Parameters 

---------- 

N : int 

The size of the first dimension of the matrix. 

M : int or None, optional 

The size of the second dimension of the matrix. If `M` is None, 

`M = N` is assumed. 

k : int, optional 

Number of subdiagonal below which matrix is filled with ones. 

`k` = 0 is the main diagonal, `k` < 0 subdiagonal and `k` > 0 

superdiagonal. 

dtype : dtype, optional 

Data type of the matrix. 

 

Returns 

------- 

tri : (N, M) ndarray 

Tri matrix. 

 

Examples 

-------- 

>>> from scipy.linalg import tri 

>>> tri(3, 5, 2, dtype=int) 

array([[1, 1, 1, 0, 0], 

[1, 1, 1, 1, 0], 

[1, 1, 1, 1, 1]]) 

>>> tri(3, 5, -1, dtype=int) 

array([[0, 0, 0, 0, 0], 

[1, 0, 0, 0, 0], 

[1, 1, 0, 0, 0]]) 

 

""" 

if M is None: 

M = N 

if isinstance(M, string_types): 

#pearu: any objections to remove this feature? 

# As tri(N,'d') is equivalent to tri(N,dtype='d') 

dtype = M 

M = N 

m = np.greater_equal.outer(np.arange(k, N+k), np.arange(M)) 

if dtype is None: 

return m 

else: 

return m.astype(dtype) 

 

 

def tril(m, k=0): 

""" 

Make a copy of a matrix with elements above the k-th diagonal zeroed. 

 

Parameters 

---------- 

m : array_like 

Matrix whose elements to return 

k : int, optional 

Diagonal above which to zero elements. 

`k` == 0 is the main diagonal, `k` < 0 subdiagonal and 

`k` > 0 superdiagonal. 

 

Returns 

------- 

tril : ndarray 

Return is the same shape and type as `m`. 

 

Examples 

-------- 

>>> from scipy.linalg import tril 

>>> tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) 

array([[ 0, 0, 0], 

[ 4, 0, 0], 

[ 7, 8, 0], 

[10, 11, 12]]) 

 

""" 

m = np.asarray(m) 

out = tri(m.shape[0], m.shape[1], k=k, dtype=m.dtype.char) * m 

return out 

 

 

def triu(m, k=0): 

""" 

Make a copy of a matrix with elements below the k-th diagonal zeroed. 

 

Parameters 

---------- 

m : array_like 

Matrix whose elements to return 

k : int, optional 

Diagonal below which to zero elements. 

`k` == 0 is the main diagonal, `k` < 0 subdiagonal and 

`k` > 0 superdiagonal. 

 

Returns 

------- 

triu : ndarray 

Return matrix with zeroed elements below the k-th diagonal and has 

same shape and type as `m`. 

 

Examples 

-------- 

>>> from scipy.linalg import triu 

>>> triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) 

array([[ 1, 2, 3], 

[ 4, 5, 6], 

[ 0, 8, 9], 

[ 0, 0, 12]]) 

 

""" 

m = np.asarray(m) 

out = (1 - tri(m.shape[0], m.shape[1], k - 1, m.dtype.char)) * m 

return out 

 

 

def toeplitz(c, r=None): 

""" 

Construct a Toeplitz matrix. 

 

The Toeplitz matrix has constant diagonals, with c as its first column 

and r as its first row. If r is not given, ``r == conjugate(c)`` is 

assumed. 

 

Parameters 

---------- 

c : array_like 

First column of the matrix. Whatever the actual shape of `c`, it 

will be converted to a 1-D array. 

r : array_like, optional 

First row of the matrix. If None, ``r = conjugate(c)`` is assumed; 

in this case, if c[0] is real, the result is a Hermitian matrix. 

r[0] is ignored; the first row of the returned matrix is 

``[c[0], r[1:]]``. Whatever the actual shape of `r`, it will be 

converted to a 1-D array. 

 

Returns 

------- 

A : (len(c), len(r)) ndarray 

The Toeplitz matrix. Dtype is the same as ``(c[0] + r[0]).dtype``. 

 

See Also 

-------- 

circulant : circulant matrix 

hankel : Hankel matrix 

solve_toeplitz : Solve a Toeplitz system. 

 

Notes 

----- 

The behavior when `c` or `r` is a scalar, or when `c` is complex and 

`r` is None, was changed in version 0.8.0. The behavior in previous 

versions was undocumented and is no longer supported. 

 

Examples 

-------- 

>>> from scipy.linalg import toeplitz 

>>> toeplitz([1,2,3], [1,4,5,6]) 

array([[1, 4, 5, 6], 

[2, 1, 4, 5], 

[3, 2, 1, 4]]) 

>>> toeplitz([1.0, 2+3j, 4-1j]) 

array([[ 1.+0.j, 2.-3.j, 4.+1.j], 

[ 2.+3.j, 1.+0.j, 2.-3.j], 

[ 4.-1.j, 2.+3.j, 1.+0.j]]) 

 

""" 

c = np.asarray(c).ravel() 

if r is None: 

r = c.conjugate() 

else: 

r = np.asarray(r).ravel() 

# Form a 1D array containing a reversed c followed by r[1:] that could be 

# strided to give us toeplitz matrix. 

vals = np.concatenate((c[::-1], r[1:])) 

out_shp = len(c), len(r) 

n = vals.strides[0] 

return as_strided(vals[len(c)-1:], shape=out_shp, strides=(-n, n)).copy() 

 

 

def circulant(c): 

""" 

Construct a circulant matrix. 

 

Parameters 

---------- 

c : (N,) array_like 

1-D array, the first column of the matrix. 

 

Returns 

------- 

A : (N, N) ndarray 

A circulant matrix whose first column is `c`. 

 

See Also 

-------- 

toeplitz : Toeplitz matrix 

hankel : Hankel matrix 

solve_circulant : Solve a circulant system. 

 

Notes 

----- 

.. versionadded:: 0.8.0 

 

Examples 

-------- 

>>> from scipy.linalg import circulant 

>>> circulant([1, 2, 3]) 

array([[1, 3, 2], 

[2, 1, 3], 

[3, 2, 1]]) 

 

""" 

c = np.asarray(c).ravel() 

# Form an extended array that could be strided to give circulant version 

c_ext = np.concatenate((c[::-1], c[:0:-1])) 

L = len(c) 

n = c_ext.strides[0] 

return as_strided(c_ext[L-1:], shape=(L, L), strides=(-n, n)).copy() 

 

 

def hankel(c, r=None): 

""" 

Construct a Hankel matrix. 

 

The Hankel matrix has constant anti-diagonals, with `c` as its 

first column and `r` as its last row. If `r` is not given, then 

`r = zeros_like(c)` is assumed. 

 

Parameters 

---------- 

c : array_like 

First column of the matrix. Whatever the actual shape of `c`, it 

will be converted to a 1-D array. 

r : array_like, optional 

Last row of the matrix. If None, ``r = zeros_like(c)`` is assumed. 

r[0] is ignored; the last row of the returned matrix is 

``[c[-1], r[1:]]``. Whatever the actual shape of `r`, it will be 

converted to a 1-D array. 

 

Returns 

------- 

A : (len(c), len(r)) ndarray 

The Hankel matrix. Dtype is the same as ``(c[0] + r[0]).dtype``. 

 

See Also 

-------- 

toeplitz : Toeplitz matrix 

circulant : circulant matrix 

 

Examples 

-------- 

>>> from scipy.linalg import hankel 

>>> hankel([1, 17, 99]) 

array([[ 1, 17, 99], 

[17, 99, 0], 

[99, 0, 0]]) 

>>> hankel([1,2,3,4], [4,7,7,8,9]) 

array([[1, 2, 3, 4, 7], 

[2, 3, 4, 7, 7], 

[3, 4, 7, 7, 8], 

[4, 7, 7, 8, 9]]) 

 

""" 

c = np.asarray(c).ravel() 

if r is None: 

r = np.zeros_like(c) 

else: 

r = np.asarray(r).ravel() 

# Form a 1D array of values to be used in the matrix, containing `c` 

# followed by r[1:]. 

vals = np.concatenate((c, r[1:])) 

# Stride on concatenated array to get hankel matrix 

out_shp = len(c), len(r) 

n = vals.strides[0] 

return as_strided(vals, shape=out_shp, strides=(n, n)).copy() 

 

 

def hadamard(n, dtype=int): 

""" 

Construct a Hadamard matrix. 

 

Constructs an n-by-n Hadamard matrix, using Sylvester's 

construction. `n` must be a power of 2. 

 

Parameters 

---------- 

n : int 

The order of the matrix. `n` must be a power of 2. 

dtype : dtype, optional 

The data type of the array to be constructed. 

 

Returns 

------- 

H : (n, n) ndarray 

The Hadamard matrix. 

 

Notes 

----- 

.. versionadded:: 0.8.0 

 

Examples 

-------- 

>>> from scipy.linalg import hadamard 

>>> hadamard(2, dtype=complex) 

array([[ 1.+0.j, 1.+0.j], 

[ 1.+0.j, -1.-0.j]]) 

>>> hadamard(4) 

array([[ 1, 1, 1, 1], 

[ 1, -1, 1, -1], 

[ 1, 1, -1, -1], 

[ 1, -1, -1, 1]]) 

 

""" 

 

# This function is a slightly modified version of the 

# function contributed by Ivo in ticket #675. 

 

if n < 1: 

lg2 = 0 

else: 

lg2 = int(math.log(n, 2)) 

if 2 ** lg2 != n: 

raise ValueError("n must be an positive integer, and n must be " 

"a power of 2") 

 

H = np.array([[1]], dtype=dtype) 

 

# Sylvester's construction 

for i in range(0, lg2): 

H = np.vstack((np.hstack((H, H)), np.hstack((H, -H)))) 

 

return H 

 

 

def leslie(f, s): 

""" 

Create a Leslie matrix. 

 

Given the length n array of fecundity coefficients `f` and the length 

n-1 array of survival coefficients `s`, return the associated Leslie matrix. 

 

Parameters 

---------- 

f : (N,) array_like 

The "fecundity" coefficients. 

s : (N-1,) array_like 

The "survival" coefficients, has to be 1-D. The length of `s` 

must be one less than the length of `f`, and it must be at least 1. 

 

Returns 

------- 

L : (N, N) ndarray 

The array is zero except for the first row, 

which is `f`, and the first sub-diagonal, which is `s`. 

The data-type of the array will be the data-type of ``f[0]+s[0]``. 

 

Notes 

----- 

.. versionadded:: 0.8.0 

 

The Leslie matrix is used to model discrete-time, age-structured 

population growth [1]_ [2]_. In a population with `n` age classes, two sets 

of parameters define a Leslie matrix: the `n` "fecundity coefficients", 

which give the number of offspring per-capita produced by each age 

class, and the `n` - 1 "survival coefficients", which give the 

per-capita survival rate of each age class. 

 

References 

---------- 

.. [1] P. H. Leslie, On the use of matrices in certain population 

mathematics, Biometrika, Vol. 33, No. 3, 183--212 (Nov. 1945) 

.. [2] P. H. Leslie, Some further notes on the use of matrices in 

population mathematics, Biometrika, Vol. 35, No. 3/4, 213--245 

(Dec. 1948) 

 

Examples 

-------- 

>>> from scipy.linalg import leslie 

>>> leslie([0.1, 2.0, 1.0, 0.1], [0.2, 0.8, 0.7]) 

array([[ 0.1, 2. , 1. , 0.1], 

[ 0.2, 0. , 0. , 0. ], 

[ 0. , 0.8, 0. , 0. ], 

[ 0. , 0. , 0.7, 0. ]]) 

 

""" 

f = np.atleast_1d(f) 

s = np.atleast_1d(s) 

if f.ndim != 1: 

raise ValueError("Incorrect shape for f. f must be one-dimensional") 

if s.ndim != 1: 

raise ValueError("Incorrect shape for s. s must be one-dimensional") 

if f.size != s.size + 1: 

raise ValueError("Incorrect lengths for f and s. The length" 

" of s must be one less than the length of f.") 

if s.size == 0: 

raise ValueError("The length of s must be at least 1.") 

 

tmp = f[0] + s[0] 

n = f.size 

a = np.zeros((n, n), dtype=tmp.dtype) 

a[0] = f 

a[list(range(1, n)), list(range(0, n - 1))] = s 

return a 

 

 

def kron(a, b): 

""" 

Kronecker product. 

 

The result is the block matrix:: 

 

a[0,0]*b a[0,1]*b ... a[0,-1]*b 

a[1,0]*b a[1,1]*b ... a[1,-1]*b 

... 

a[-1,0]*b a[-1,1]*b ... a[-1,-1]*b 

 

Parameters 

---------- 

a : (M, N) ndarray 

Input array 

b : (P, Q) ndarray 

Input array 

 

Returns 

------- 

A : (M*P, N*Q) ndarray 

Kronecker product of `a` and `b`. 

 

Examples 

-------- 

>>> from numpy import array 

>>> from scipy.linalg import kron 

>>> kron(array([[1,2],[3,4]]), array([[1,1,1]])) 

array([[1, 1, 1, 2, 2, 2], 

[3, 3, 3, 4, 4, 4]]) 

 

""" 

if not a.flags['CONTIGUOUS']: 

a = np.reshape(a, a.shape) 

if not b.flags['CONTIGUOUS']: 

b = np.reshape(b, b.shape) 

o = np.outer(a, b) 

o = o.reshape(a.shape + b.shape) 

return np.concatenate(np.concatenate(o, axis=1), axis=1) 

 

 

def block_diag(*arrs): 

""" 

Create a block diagonal matrix from provided arrays. 

 

Given the inputs `A`, `B` and `C`, the output will have these 

arrays arranged on the diagonal:: 

 

[[A, 0, 0], 

[0, B, 0], 

[0, 0, C]] 

 

Parameters 

---------- 

A, B, C, ... : array_like, up to 2-D 

Input arrays. A 1-D array or array_like sequence of length `n` is 

treated as a 2-D array with shape ``(1,n)``. 

 

Returns 

------- 

D : ndarray 

Array with `A`, `B`, `C`, ... on the diagonal. `D` has the 

same dtype as `A`. 

 

Notes 

----- 

If all the input arrays are square, the output is known as a 

block diagonal matrix. 

 

Empty sequences (i.e., array-likes of zero size) will not be ignored. 

Noteworthy, both [] and [[]] are treated as matrices with shape ``(1,0)``. 

 

Examples 

-------- 

>>> from scipy.linalg import block_diag 

>>> A = [[1, 0], 

... [0, 1]] 

>>> B = [[3, 4, 5], 

... [6, 7, 8]] 

>>> C = [[7]] 

>>> P = np.zeros((2, 0), dtype='int32') 

>>> block_diag(A, B, C) 

array([[1, 0, 0, 0, 0, 0], 

[0, 1, 0, 0, 0, 0], 

[0, 0, 3, 4, 5, 0], 

[0, 0, 6, 7, 8, 0], 

[0, 0, 0, 0, 0, 7]]) 

>>> block_diag(A, P, B, C) 

array([[1, 0, 0, 0, 0, 0], 

[0, 1, 0, 0, 0, 0], 

[0, 0, 0, 0, 0, 0], 

[0, 0, 0, 0, 0, 0], 

[0, 0, 3, 4, 5, 0], 

[0, 0, 6, 7, 8, 0], 

[0, 0, 0, 0, 0, 7]]) 

>>> block_diag(1.0, [2, 3], [[4, 5], [6, 7]]) 

array([[ 1., 0., 0., 0., 0.], 

[ 0., 2., 3., 0., 0.], 

[ 0., 0., 0., 4., 5.], 

[ 0., 0., 0., 6., 7.]]) 

 

""" 

if arrs == (): 

arrs = ([],) 

arrs = [np.atleast_2d(a) for a in arrs] 

 

bad_args = [k for k in range(len(arrs)) if arrs[k].ndim > 2] 

if bad_args: 

raise ValueError("arguments in the following positions have dimension " 

"greater than 2: %s" % bad_args) 

 

shapes = np.array([a.shape for a in arrs]) 

out_dtype = np.find_common_type([arr.dtype for arr in arrs], []) 

out = np.zeros(np.sum(shapes, axis=0), dtype=out_dtype) 

 

r, c = 0, 0 

for i, (rr, cc) in enumerate(shapes): 

out[r:r + rr, c:c + cc] = arrs[i] 

r += rr 

c += cc 

return out 

 

 

def companion(a): 

""" 

Create a companion matrix. 

 

Create the companion matrix [1]_ associated with the polynomial whose 

coefficients are given in `a`. 

 

Parameters 

---------- 

a : (N,) array_like 

1-D array of polynomial coefficients. The length of `a` must be 

at least two, and ``a[0]`` must not be zero. 

 

Returns 

------- 

c : (N-1, N-1) ndarray 

The first row of `c` is ``-a[1:]/a[0]``, and the first 

sub-diagonal is all ones. The data-type of the array is the same 

as the data-type of ``1.0*a[0]``. 

 

Raises 

------ 

ValueError 

If any of the following are true: a) ``a.ndim != 1``; 

b) ``a.size < 2``; c) ``a[0] == 0``. 

 

Notes 

----- 

.. versionadded:: 0.8.0 

 

References 

---------- 

.. [1] R. A. Horn & C. R. Johnson, *Matrix Analysis*. Cambridge, UK: 

Cambridge University Press, 1999, pp. 146-7. 

 

Examples 

-------- 

>>> from scipy.linalg import companion 

>>> companion([1, -10, 31, -30]) 

array([[ 10., -31., 30.], 

[ 1., 0., 0.], 

[ 0., 1., 0.]]) 

 

""" 

a = np.atleast_1d(a) 

 

if a.ndim != 1: 

raise ValueError("Incorrect shape for `a`. `a` must be " 

"one-dimensional.") 

 

if a.size < 2: 

raise ValueError("The length of `a` must be at least 2.") 

 

if a[0] == 0: 

raise ValueError("The first coefficient in `a` must not be zero.") 

 

first_row = -a[1:] / (1.0 * a[0]) 

n = a.size 

c = np.zeros((n - 1, n - 1), dtype=first_row.dtype) 

c[0] = first_row 

c[list(range(1, n - 1)), list(range(0, n - 2))] = 1 

return c 

 

 

def helmert(n, full=False): 

""" 

Create a Helmert matrix of order `n`. 

 

This has applications in statistics, compositional or simplicial analysis, 

and in Aitchison geometry. 

 

Parameters 

---------- 

n : int 

The size of the array to create. 

full : bool, optional 

If True the (n, n) ndarray will be returned. 

Otherwise the submatrix that does not include the first 

row will be returned. 

Default: False. 

 

Returns 

------- 

M : ndarray 

The Helmert matrix. 

The shape is (n, n) or (n-1, n) depending on the `full` argument. 

 

Examples 

-------- 

>>> from scipy.linalg import helmert 

>>> helmert(5, full=True) 

array([[ 0.4472136 , 0.4472136 , 0.4472136 , 0.4472136 , 0.4472136 ], 

[ 0.70710678, -0.70710678, 0. , 0. , 0. ], 

[ 0.40824829, 0.40824829, -0.81649658, 0. , 0. ], 

[ 0.28867513, 0.28867513, 0.28867513, -0.8660254 , 0. ], 

[ 0.2236068 , 0.2236068 , 0.2236068 , 0.2236068 , -0.89442719]]) 

 

""" 

H = np.tril(np.ones((n, n)), -1) - np.diag(np.arange(n)) 

d = np.arange(n) * np.arange(1, n+1) 

H[0] = 1 

d[0] = n 

H_full = H / np.sqrt(d)[:, np.newaxis] 

if full: 

return H_full 

else: 

return H_full[1:] 

 

 

def hilbert(n): 

""" 

Create a Hilbert matrix of order `n`. 

 

Returns the `n` by `n` array with entries `h[i,j] = 1 / (i + j + 1)`. 

 

Parameters 

---------- 

n : int 

The size of the array to create. 

 

Returns 

------- 

h : (n, n) ndarray 

The Hilbert matrix. 

 

See Also 

-------- 

invhilbert : Compute the inverse of a Hilbert matrix. 

 

Notes 

----- 

.. versionadded:: 0.10.0 

 

Examples 

-------- 

>>> from scipy.linalg import hilbert 

>>> hilbert(3) 

array([[ 1. , 0.5 , 0.33333333], 

[ 0.5 , 0.33333333, 0.25 ], 

[ 0.33333333, 0.25 , 0.2 ]]) 

 

""" 

values = 1.0 / (1.0 + np.arange(2 * n - 1)) 

h = hankel(values[:n], r=values[n - 1:]) 

return h 

 

 

def invhilbert(n, exact=False): 

""" 

Compute the inverse of the Hilbert matrix of order `n`. 

 

The entries in the inverse of a Hilbert matrix are integers. When `n` 

is greater than 14, some entries in the inverse exceed the upper limit 

of 64 bit integers. The `exact` argument provides two options for 

dealing with these large integers. 

 

Parameters 

---------- 

n : int 

The order of the Hilbert matrix. 

exact : bool, optional 

If False, the data type of the array that is returned is np.float64, 

and the array is an approximation of the inverse. 

If True, the array is the exact integer inverse array. To represent 

the exact inverse when n > 14, the returned array is an object array 

of long integers. For n <= 14, the exact inverse is returned as an 

array with data type np.int64. 

 

Returns 

------- 

invh : (n, n) ndarray 

The data type of the array is np.float64 if `exact` is False. 

If `exact` is True, the data type is either np.int64 (for n <= 14) 

or object (for n > 14). In the latter case, the objects in the 

array will be long integers. 

 

See Also 

-------- 

hilbert : Create a Hilbert matrix. 

 

Notes 

----- 

.. versionadded:: 0.10.0 

 

Examples 

-------- 

>>> from scipy.linalg import invhilbert 

>>> invhilbert(4) 

array([[ 16., -120., 240., -140.], 

[ -120., 1200., -2700., 1680.], 

[ 240., -2700., 6480., -4200.], 

[ -140., 1680., -4200., 2800.]]) 

>>> invhilbert(4, exact=True) 

array([[ 16, -120, 240, -140], 

[ -120, 1200, -2700, 1680], 

[ 240, -2700, 6480, -4200], 

[ -140, 1680, -4200, 2800]], dtype=int64) 

>>> invhilbert(16)[7,7] 

4.2475099528537506e+19 

>>> invhilbert(16, exact=True)[7,7] 

42475099528537378560L 

 

""" 

from scipy.special import comb 

if exact: 

if n > 14: 

dtype = object 

else: 

dtype = np.int64 

else: 

dtype = np.float64 

invh = np.empty((n, n), dtype=dtype) 

for i in xrange(n): 

for j in xrange(0, i + 1): 

s = i + j 

invh[i, j] = ((-1) ** s * (s + 1) * 

comb(n + i, n - j - 1, exact) * 

comb(n + j, n - i - 1, exact) * 

comb(s, i, exact) ** 2) 

if i != j: 

invh[j, i] = invh[i, j] 

return invh 

 

 

def pascal(n, kind='symmetric', exact=True): 

""" 

Returns the n x n Pascal matrix. 

 

The Pascal matrix is a matrix containing the binomial coefficients as 

its elements. 

 

Parameters 

---------- 

n : int 

The size of the matrix to create; that is, the result is an n x n 

matrix. 

kind : str, optional 

Must be one of 'symmetric', 'lower', or 'upper'. 

Default is 'symmetric'. 

exact : bool, optional 

If `exact` is True, the result is either an array of type 

numpy.uint64 (if n < 35) or an object array of Python long integers. 

If `exact` is False, the coefficients in the matrix are computed using 

`scipy.special.comb` with `exact=False`. The result will be a floating 

point array, and the values in the array will not be the exact 

coefficients, but this version is much faster than `exact=True`. 

 

Returns 

------- 

p : (n, n) ndarray 

The Pascal matrix. 

 

See Also 

-------- 

invpascal 

 

Notes 

----- 

See http://en.wikipedia.org/wiki/Pascal_matrix for more information 

about Pascal matrices. 

 

.. versionadded:: 0.11.0 

 

Examples 

-------- 

>>> from scipy.linalg import pascal 

>>> pascal(4) 

array([[ 1, 1, 1, 1], 

[ 1, 2, 3, 4], 

[ 1, 3, 6, 10], 

[ 1, 4, 10, 20]], dtype=uint64) 

>>> pascal(4, kind='lower') 

array([[1, 0, 0, 0], 

[1, 1, 0, 0], 

[1, 2, 1, 0], 

[1, 3, 3, 1]], dtype=uint64) 

>>> pascal(50)[-1, -1] 

25477612258980856902730428600L 

>>> from scipy.special import comb 

>>> comb(98, 49, exact=True) 

25477612258980856902730428600L 

 

""" 

 

from scipy.special import comb 

if kind not in ['symmetric', 'lower', 'upper']: 

raise ValueError("kind must be 'symmetric', 'lower', or 'upper'") 

 

if exact: 

if n >= 35: 

L_n = np.empty((n, n), dtype=object) 

L_n.fill(0) 

else: 

L_n = np.zeros((n, n), dtype=np.uint64) 

for i in range(n): 

for j in range(i + 1): 

L_n[i, j] = comb(i, j, exact=True) 

else: 

L_n = comb(*np.ogrid[:n, :n]) 

 

if kind == 'lower': 

p = L_n 

elif kind == 'upper': 

p = L_n.T 

else: 

p = np.dot(L_n, L_n.T) 

 

return p 

 

 

def invpascal(n, kind='symmetric', exact=True): 

""" 

Returns the inverse of the n x n Pascal matrix. 

 

The Pascal matrix is a matrix containing the binomial coefficients as 

its elements. 

 

Parameters 

---------- 

n : int 

The size of the matrix to create; that is, the result is an n x n 

matrix. 

kind : str, optional 

Must be one of 'symmetric', 'lower', or 'upper'. 

Default is 'symmetric'. 

exact : bool, optional 

If `exact` is True, the result is either an array of type 

`numpy.int64` (if `n` <= 35) or an object array of Python integers. 

If `exact` is False, the coefficients in the matrix are computed using 

`scipy.special.comb` with `exact=False`. The result will be a floating 

point array, and for large `n`, the values in the array will not be the 

exact coefficients. 

 

Returns 

------- 

invp : (n, n) ndarray 

The inverse of the Pascal matrix. 

 

See Also 

-------- 

pascal 

 

Notes 

----- 

 

.. versionadded:: 0.16.0 

 

References 

---------- 

.. [1] "Pascal matrix", http://en.wikipedia.org/wiki/Pascal_matrix 

.. [2] Cohen, A. M., "The inverse of a Pascal matrix", Mathematical 

Gazette, 59(408), pp. 111-112, 1975. 

 

Examples 

-------- 

>>> from scipy.linalg import invpascal, pascal 

>>> invp = invpascal(5) 

>>> invp 

array([[ 5, -10, 10, -5, 1], 

[-10, 30, -35, 19, -4], 

[ 10, -35, 46, -27, 6], 

[ -5, 19, -27, 17, -4], 

[ 1, -4, 6, -4, 1]]) 

 

>>> p = pascal(5) 

>>> p.dot(invp) 

array([[ 1., 0., 0., 0., 0.], 

[ 0., 1., 0., 0., 0.], 

[ 0., 0., 1., 0., 0.], 

[ 0., 0., 0., 1., 0.], 

[ 0., 0., 0., 0., 1.]]) 

 

An example of the use of `kind` and `exact`: 

 

>>> invpascal(5, kind='lower', exact=False) 

array([[ 1., -0., 0., -0., 0.], 

[-1., 1., -0., 0., -0.], 

[ 1., -2., 1., -0., 0.], 

[-1., 3., -3., 1., -0.], 

[ 1., -4., 6., -4., 1.]]) 

 

""" 

from scipy.special import comb 

 

if kind not in ['symmetric', 'lower', 'upper']: 

raise ValueError("'kind' must be 'symmetric', 'lower' or 'upper'.") 

 

if kind == 'symmetric': 

if exact: 

if n > 34: 

dt = object 

else: 

dt = np.int64 

else: 

dt = np.float64 

invp = np.empty((n, n), dtype=dt) 

for i in range(n): 

for j in range(0, i + 1): 

v = 0 

for k in range(n - i): 

v += comb(i + k, k, exact=exact) * comb(i + k, i + k - j, 

exact=exact) 

invp[i, j] = (-1)**(i - j) * v 

if i != j: 

invp[j, i] = invp[i, j] 

else: 

# For the 'lower' and 'upper' cases, we computer the inverse by 

# changing the sign of every other diagonal of the pascal matrix. 

invp = pascal(n, kind=kind, exact=exact) 

if invp.dtype == np.uint64: 

# This cast from np.uint64 to int64 OK, because if `kind` is not 

# "symmetric", the values in invp are all much less than 2**63. 

invp = invp.view(np.int64) 

 

# The toeplitz matrix has alternating bands of 1 and -1. 

invp *= toeplitz((-1)**np.arange(n)).astype(invp.dtype) 

 

return invp 

 

 

def dft(n, scale=None): 

""" 

Discrete Fourier transform matrix. 

 

Create the matrix that computes the discrete Fourier transform of a 

sequence [1]_. The n-th primitive root of unity used to generate the 

matrix is exp(-2*pi*i/n), where i = sqrt(-1). 

 

Parameters 

---------- 

n : int 

Size the matrix to create. 

scale : str, optional 

Must be None, 'sqrtn', or 'n'. 

If `scale` is 'sqrtn', the matrix is divided by `sqrt(n)`. 

If `scale` is 'n', the matrix is divided by `n`. 

If `scale` is None (the default), the matrix is not normalized, and the 

return value is simply the Vandermonde matrix of the roots of unity. 

 

Returns 

------- 

m : (n, n) ndarray 

The DFT matrix. 

 

Notes 

----- 

When `scale` is None, multiplying a vector by the matrix returned by 

`dft` is mathematically equivalent to (but much less efficient than) 

the calculation performed by `scipy.fftpack.fft`. 

 

.. versionadded:: 0.14.0 

 

References 

---------- 

.. [1] "DFT matrix", http://en.wikipedia.org/wiki/DFT_matrix 

 

Examples 

-------- 

>>> from scipy.linalg import dft 

>>> np.set_printoptions(precision=5, suppress=True) 

>>> x = np.array([1, 2, 3, 0, 3, 2, 1, 0]) 

>>> m = dft(8) 

>>> m.dot(x) # Compute the DFT of x 

array([ 12.+0.j, -2.-2.j, 0.-4.j, -2.+2.j, 4.+0.j, -2.-2.j, 

-0.+4.j, -2.+2.j]) 

 

Verify that ``m.dot(x)`` is the same as ``fft(x)``. 

 

>>> from scipy.fftpack import fft 

>>> fft(x) # Same result as m.dot(x) 

array([ 12.+0.j, -2.-2.j, 0.-4.j, -2.+2.j, 4.+0.j, -2.-2.j, 

0.+4.j, -2.+2.j]) 

""" 

if scale not in [None, 'sqrtn', 'n']: 

raise ValueError("scale must be None, 'sqrtn', or 'n'; " 

"%r is not valid." % (scale,)) 

 

omegas = np.exp(-2j * np.pi * np.arange(n) / n).reshape(-1, 1) 

m = omegas ** np.arange(n) 

if scale == 'sqrtn': 

m /= math.sqrt(n) 

elif scale == 'n': 

m /= n 

return m