1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

""" 

A collection of image utilities using the Python Imaging Library (PIL). 

 

Note that PIL is not a dependency of SciPy and this module is not 

available on systems that don't have PIL installed. 

 

""" 

from __future__ import division, print_function, absolute_import 

 

# Functions which need the PIL 

 

import numpy 

import tempfile 

 

from numpy import (amin, amax, ravel, asarray, arange, ones, newaxis, 

transpose, iscomplexobj, uint8, issubdtype, array) 

 

try: 

from PIL import Image, ImageFilter 

except ImportError: 

import Image 

import ImageFilter 

 

 

if not hasattr(Image, 'frombytes'): 

Image.frombytes = Image.fromstring 

 

__all__ = ['fromimage', 'toimage', 'imsave', 'imread', 'bytescale', 

'imrotate', 'imresize', 'imshow', 'imfilter'] 

 

 

@numpy.deprecate(message="`bytescale` is deprecated in SciPy 1.0.0, " 

"and will be removed in 1.2.0.") 

def bytescale(data, cmin=None, cmax=None, high=255, low=0): 

""" 

Byte scales an array (image). 

 

Byte scaling means converting the input image to uint8 dtype and scaling 

the range to ``(low, high)`` (default 0-255). 

If the input image already has dtype uint8, no scaling is done. 

 

This function is only available if Python Imaging Library (PIL) is installed. 

 

Parameters 

---------- 

data : ndarray 

PIL image data array. 

cmin : scalar, optional 

Bias scaling of small values. Default is ``data.min()``. 

cmax : scalar, optional 

Bias scaling of large values. Default is ``data.max()``. 

high : scalar, optional 

Scale max value to `high`. Default is 255. 

low : scalar, optional 

Scale min value to `low`. Default is 0. 

 

Returns 

------- 

img_array : uint8 ndarray 

The byte-scaled array. 

 

Examples 

-------- 

>>> from scipy.misc import bytescale 

>>> img = np.array([[ 91.06794177, 3.39058326, 84.4221549 ], 

... [ 73.88003259, 80.91433048, 4.88878881], 

... [ 51.53875334, 34.45808177, 27.5873488 ]]) 

>>> bytescale(img) 

array([[255, 0, 236], 

[205, 225, 4], 

[140, 90, 70]], dtype=uint8) 

>>> bytescale(img, high=200, low=100) 

array([[200, 100, 192], 

[180, 188, 102], 

[155, 135, 128]], dtype=uint8) 

>>> bytescale(img, cmin=0, cmax=255) 

array([[91, 3, 84], 

[74, 81, 5], 

[52, 34, 28]], dtype=uint8) 

 

""" 

if data.dtype == uint8: 

return data 

 

if high > 255: 

raise ValueError("`high` should be less than or equal to 255.") 

if low < 0: 

raise ValueError("`low` should be greater than or equal to 0.") 

if high < low: 

raise ValueError("`high` should be greater than or equal to `low`.") 

 

if cmin is None: 

cmin = data.min() 

if cmax is None: 

cmax = data.max() 

 

cscale = cmax - cmin 

if cscale < 0: 

raise ValueError("`cmax` should be larger than `cmin`.") 

elif cscale == 0: 

cscale = 1 

 

scale = float(high - low) / cscale 

bytedata = (data - cmin) * scale + low 

return (bytedata.clip(low, high) + 0.5).astype(uint8) 

 

 

@numpy.deprecate(message="`imread` is deprecated in SciPy 1.0.0, " 

"and will be removed in 1.2.0.\n" 

"Use ``imageio.imread`` instead.") 

def imread(name, flatten=False, mode=None): 

""" 

Read an image from a file as an array. 

 

This function is only available if Python Imaging Library (PIL) is installed. 

 

Parameters 

---------- 

name : str or file object 

The file name or file object to be read. 

flatten : bool, optional 

If True, flattens the color layers into a single gray-scale layer. 

mode : str, optional 

Mode to convert image to, e.g. ``'RGB'``. See the Notes for more 

details. 

 

Returns 

------- 

imread : ndarray 

The array obtained by reading the image. 

 

Notes 

----- 

`imread` uses the Python Imaging Library (PIL) to read an image. 

The following notes are from the PIL documentation. 

 

`mode` can be one of the following strings: 

 

* 'L' (8-bit pixels, black and white) 

* 'P' (8-bit pixels, mapped to any other mode using a color palette) 

* 'RGB' (3x8-bit pixels, true color) 

* 'RGBA' (4x8-bit pixels, true color with transparency mask) 

* 'CMYK' (4x8-bit pixels, color separation) 

* 'YCbCr' (3x8-bit pixels, color video format) 

* 'I' (32-bit signed integer pixels) 

* 'F' (32-bit floating point pixels) 

 

PIL also provides limited support for a few special modes, including 

'LA' ('L' with alpha), 'RGBX' (true color with padding) and 'RGBa' 

(true color with premultiplied alpha). 

 

When translating a color image to black and white (mode 'L', 'I' or 

'F'), the library uses the ITU-R 601-2 luma transform:: 

 

L = R * 299/1000 + G * 587/1000 + B * 114/1000 

 

When `flatten` is True, the image is converted using mode 'F'. 

When `mode` is not None and `flatten` is True, the image is first 

converted according to `mode`, and the result is then flattened using 

mode 'F'. 

 

""" 

 

im = Image.open(name) 

return fromimage(im, flatten=flatten, mode=mode) 

 

 

@numpy.deprecate(message="`imsave` is deprecated in SciPy 1.0.0, " 

"and will be removed in 1.2.0.\n" 

"Use ``imageio.imwrite`` instead.") 

def imsave(name, arr, format=None): 

""" 

Save an array as an image. 

 

This function is only available if Python Imaging Library (PIL) is installed. 

 

.. warning:: 

 

This function uses `bytescale` under the hood to rescale images to use 

the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``. 

It will also cast data for 2-D images to ``uint32`` for ``mode=None`` 

(which is the default). 

 

Parameters 

---------- 

name : str or file object 

Output file name or file object. 

arr : ndarray, MxN or MxNx3 or MxNx4 

Array containing image values. If the shape is ``MxN``, the array 

represents a grey-level image. Shape ``MxNx3`` stores the red, green 

and blue bands along the last dimension. An alpha layer may be 

included, specified as the last colour band of an ``MxNx4`` array. 

format : str 

Image format. If omitted, the format to use is determined from the 

file name extension. If a file object was used instead of a file name, 

this parameter should always be used. 

 

Examples 

-------- 

Construct an array of gradient intensity values and save to file: 

 

>>> from scipy.misc import imsave 

>>> x = np.zeros((255, 255)) 

>>> x = np.zeros((255, 255), dtype=np.uint8) 

>>> x[:] = np.arange(255) 

>>> imsave('gradient.png', x) 

 

Construct an array with three colour bands (R, G, B) and store to file: 

 

>>> rgb = np.zeros((255, 255, 3), dtype=np.uint8) 

>>> rgb[..., 0] = np.arange(255) 

>>> rgb[..., 1] = 55 

>>> rgb[..., 2] = 1 - np.arange(255) 

>>> imsave('rgb_gradient.png', rgb) 

 

""" 

im = toimage(arr, channel_axis=2) 

if format is None: 

im.save(name) 

else: 

im.save(name, format) 

return 

 

 

@numpy.deprecate(message="`fromimage` is deprecated in SciPy 1.0.0. " 

"and will be removed in 1.2.0.\n" 

"Use ``np.asarray(im)`` instead.") 

def fromimage(im, flatten=False, mode=None): 

""" 

Return a copy of a PIL image as a numpy array. 

 

This function is only available if Python Imaging Library (PIL) is installed. 

 

Parameters 

---------- 

im : PIL image 

Input image. 

flatten : bool 

If true, convert the output to grey-scale. 

mode : str, optional 

Mode to convert image to, e.g. ``'RGB'``. See the Notes of the 

`imread` docstring for more details. 

 

Returns 

------- 

fromimage : ndarray 

The different colour bands/channels are stored in the 

third dimension, such that a grey-image is MxN, an 

RGB-image MxNx3 and an RGBA-image MxNx4. 

 

""" 

if not Image.isImageType(im): 

raise TypeError("Input is not a PIL image.") 

 

if mode is not None: 

if mode != im.mode: 

im = im.convert(mode) 

elif im.mode == 'P': 

# Mode 'P' means there is an indexed "palette". If we leave the mode 

# as 'P', then when we do `a = array(im)` below, `a` will be a 2-D 

# containing the indices into the palette, and not a 3-D array 

# containing the RGB or RGBA values. 

if 'transparency' in im.info: 

im = im.convert('RGBA') 

else: 

im = im.convert('RGB') 

 

if flatten: 

im = im.convert('F') 

elif im.mode == '1': 

# Workaround for crash in PIL. When im is 1-bit, the call array(im) 

# can cause a seg. fault, or generate garbage. See 

# https://github.com/scipy/scipy/issues/2138 and 

# https://github.com/python-pillow/Pillow/issues/350. 

# 

# This converts im from a 1-bit image to an 8-bit image. 

im = im.convert('L') 

 

a = array(im) 

return a 

 

 

_errstr = "Mode is unknown or incompatible with input array shape." 

 

 

@numpy.deprecate(message="`toimage` is deprecated in SciPy 1.0.0, " 

"and will be removed in 1.2.0.\n" 

"Use Pillow's ``Image.fromarray`` directly instead.") 

def toimage(arr, high=255, low=0, cmin=None, cmax=None, pal=None, 

mode=None, channel_axis=None): 

"""Takes a numpy array and returns a PIL image. 

 

This function is only available if Python Imaging Library (PIL) is installed. 

 

The mode of the PIL image depends on the array shape and the `pal` and 

`mode` keywords. 

 

For 2-D arrays, if `pal` is a valid (N,3) byte-array giving the RGB values 

(from 0 to 255) then ``mode='P'``, otherwise ``mode='L'``, unless mode 

is given as 'F' or 'I' in which case a float and/or integer array is made. 

 

.. warning:: 

 

This function uses `bytescale` under the hood to rescale images to use 

the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``. 

It will also cast data for 2-D images to ``uint32`` for ``mode=None`` 

(which is the default). 

 

Notes 

----- 

For 3-D arrays, the `channel_axis` argument tells which dimension of the 

array holds the channel data. 

 

For 3-D arrays if one of the dimensions is 3, the mode is 'RGB' 

by default or 'YCbCr' if selected. 

 

The numpy array must be either 2 dimensional or 3 dimensional. 

 

""" 

data = asarray(arr) 

if iscomplexobj(data): 

raise ValueError("Cannot convert a complex-valued array.") 

shape = list(data.shape) 

valid = len(shape) == 2 or ((len(shape) == 3) and 

((3 in shape) or (4 in shape))) 

if not valid: 

raise ValueError("'arr' does not have a suitable array shape for " 

"any mode.") 

if len(shape) == 2: 

shape = (shape[1], shape[0]) # columns show up first 

if mode == 'F': 

data32 = data.astype(numpy.float32) 

image = Image.frombytes(mode, shape, data32.tostring()) 

return image 

if mode in [None, 'L', 'P']: 

bytedata = bytescale(data, high=high, low=low, 

cmin=cmin, cmax=cmax) 

image = Image.frombytes('L', shape, bytedata.tostring()) 

if pal is not None: 

image.putpalette(asarray(pal, dtype=uint8).tostring()) 

# Becomes a mode='P' automagically. 

elif mode == 'P': # default gray-scale 

pal = (arange(0, 256, 1, dtype=uint8)[:, newaxis] * 

ones((3,), dtype=uint8)[newaxis, :]) 

image.putpalette(asarray(pal, dtype=uint8).tostring()) 

return image 

if mode == '1': # high input gives threshold for 1 

bytedata = (data > high) 

image = Image.frombytes('1', shape, bytedata.tostring()) 

return image 

if cmin is None: 

cmin = amin(ravel(data)) 

if cmax is None: 

cmax = amax(ravel(data)) 

data = (data*1.0 - cmin)*(high - low)/(cmax - cmin) + low 

if mode == 'I': 

data32 = data.astype(numpy.uint32) 

image = Image.frombytes(mode, shape, data32.tostring()) 

else: 

raise ValueError(_errstr) 

return image 

 

# if here then 3-d array with a 3 or a 4 in the shape length. 

# Check for 3 in datacube shape --- 'RGB' or 'YCbCr' 

if channel_axis is None: 

if (3 in shape): 

ca = numpy.flatnonzero(asarray(shape) == 3)[0] 

else: 

ca = numpy.flatnonzero(asarray(shape) == 4) 

if len(ca): 

ca = ca[0] 

else: 

raise ValueError("Could not find channel dimension.") 

else: 

ca = channel_axis 

 

numch = shape[ca] 

if numch not in [3, 4]: 

raise ValueError("Channel axis dimension is not valid.") 

 

bytedata = bytescale(data, high=high, low=low, cmin=cmin, cmax=cmax) 

if ca == 2: 

strdata = bytedata.tostring() 

shape = (shape[1], shape[0]) 

elif ca == 1: 

strdata = transpose(bytedata, (0, 2, 1)).tostring() 

shape = (shape[2], shape[0]) 

elif ca == 0: 

strdata = transpose(bytedata, (1, 2, 0)).tostring() 

shape = (shape[2], shape[1]) 

if mode is None: 

if numch == 3: 

mode = 'RGB' 

else: 

mode = 'RGBA' 

 

if mode not in ['RGB', 'RGBA', 'YCbCr', 'CMYK']: 

raise ValueError(_errstr) 

 

if mode in ['RGB', 'YCbCr']: 

if numch != 3: 

raise ValueError("Invalid array shape for mode.") 

if mode in ['RGBA', 'CMYK']: 

if numch != 4: 

raise ValueError("Invalid array shape for mode.") 

 

# Here we know data and mode is correct 

image = Image.frombytes(mode, shape, strdata) 

return image 

 

 

@numpy.deprecate(message="`imrotate` is deprecated in SciPy 1.0.0, " 

"and will be removed in 1.2.0.\n" 

"Use ``skimage.transform.rotate`` instead.") 

def imrotate(arr, angle, interp='bilinear'): 

""" 

Rotate an image counter-clockwise by angle degrees. 

 

This function is only available if Python Imaging Library (PIL) is installed. 

 

.. warning:: 

 

This function uses `bytescale` under the hood to rescale images to use 

the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``. 

It will also cast data for 2-D images to ``uint32`` for ``mode=None`` 

(which is the default). 

 

Parameters 

---------- 

arr : ndarray 

Input array of image to be rotated. 

angle : float 

The angle of rotation. 

interp : str, optional 

Interpolation 

 

- 'nearest' : for nearest neighbor 

- 'bilinear' : for bilinear 

- 'lanczos' : for lanczos 

- 'cubic' : for bicubic 

- 'bicubic' : for bicubic 

 

Returns 

------- 

imrotate : ndarray 

The rotated array of image. 

 

""" 

arr = asarray(arr) 

func = {'nearest': 0, 'lanczos': 1, 'bilinear': 2, 'bicubic': 3, 'cubic': 3} 

im = toimage(arr) 

im = im.rotate(angle, resample=func[interp]) 

return fromimage(im) 

 

 

@numpy.deprecate(message="`imshow` is deprecated in SciPy 1.0.0, " 

"and will be removed in 1.2.0.\n" 

"Use ``matplotlib.pyplot.imshow`` instead.") 

def imshow(arr): 

""" 

Simple showing of an image through an external viewer. 

 

This function is only available if Python Imaging Library (PIL) is installed. 

 

Uses the image viewer specified by the environment variable 

SCIPY_PIL_IMAGE_VIEWER, or if that is not defined then `see`, 

to view a temporary file generated from array data. 

 

.. warning:: 

 

This function uses `bytescale` under the hood to rescale images to use 

the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``. 

It will also cast data for 2-D images to ``uint32`` for ``mode=None`` 

(which is the default). 

 

Parameters 

---------- 

arr : ndarray 

Array of image data to show. 

 

Returns 

------- 

None 

 

Examples 

-------- 

>>> a = np.tile(np.arange(255), (255,1)) 

>>> from scipy import misc 

>>> misc.imshow(a) 

 

""" 

im = toimage(arr) 

fnum, fname = tempfile.mkstemp('.png') 

try: 

im.save(fname) 

except: 

raise RuntimeError("Error saving temporary image data.") 

 

import os 

os.close(fnum) 

 

cmd = os.environ.get('SCIPY_PIL_IMAGE_VIEWER', 'see') 

status = os.system("%s %s" % (cmd, fname)) 

 

os.unlink(fname) 

if status != 0: 

raise RuntimeError('Could not execute image viewer.') 

 

 

@numpy.deprecate(message="`imresize` is deprecated in SciPy 1.0.0, " 

"and will be removed in 1.2.0.\n" 

"Use ``skimage.transform.resize`` instead.") 

def imresize(arr, size, interp='bilinear', mode=None): 

""" 

Resize an image. 

 

This function is only available if Python Imaging Library (PIL) is installed. 

 

.. warning:: 

 

This function uses `bytescale` under the hood to rescale images to use 

the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``. 

It will also cast data for 2-D images to ``uint32`` for ``mode=None`` 

(which is the default). 

 

Parameters 

---------- 

arr : ndarray 

The array of image to be resized. 

size : int, float or tuple 

* int - Percentage of current size. 

* float - Fraction of current size. 

* tuple - Size of the output image (height, width). 

 

interp : str, optional 

Interpolation to use for re-sizing ('nearest', 'lanczos', 'bilinear', 

'bicubic' or 'cubic'). 

mode : str, optional 

The PIL image mode ('P', 'L', etc.) to convert `arr` before resizing. 

If ``mode=None`` (the default), 2-D images will be treated like 

``mode='L'``, i.e. casting to long integer. For 3-D and 4-D arrays, 

`mode` will be set to ``'RGB'`` and ``'RGBA'`` respectively. 

 

Returns 

------- 

imresize : ndarray 

The resized array of image. 

 

See Also 

-------- 

toimage : Implicitly used to convert `arr` according to `mode`. 

scipy.ndimage.zoom : More generic implementation that does not use PIL. 

 

""" 

im = toimage(arr, mode=mode) 

ts = type(size) 

if issubdtype(ts, numpy.signedinteger): 

percent = size / 100.0 

size = tuple((array(im.size)*percent).astype(int)) 

elif issubdtype(type(size), numpy.floating): 

size = tuple((array(im.size)*size).astype(int)) 

else: 

size = (size[1], size[0]) 

func = {'nearest': 0, 'lanczos': 1, 'bilinear': 2, 'bicubic': 3, 'cubic': 3} 

imnew = im.resize(size, resample=func[interp]) 

return fromimage(imnew) 

 

 

@numpy.deprecate(message="`imfilter` is deprecated in SciPy 1.0.0, " 

"and will be removed in 1.2.0.\n" 

"Use Pillow filtering functionality directly.") 

def imfilter(arr, ftype): 

""" 

Simple filtering of an image. 

 

This function is only available if Python Imaging Library (PIL) is installed. 

 

.. warning:: 

 

This function uses `bytescale` under the hood to rescale images to use 

the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``. 

It will also cast data for 2-D images to ``uint32`` for ``mode=None`` 

(which is the default). 

 

Parameters 

---------- 

arr : ndarray 

The array of Image in which the filter is to be applied. 

ftype : str 

The filter that has to be applied. Legal values are: 

'blur', 'contour', 'detail', 'edge_enhance', 'edge_enhance_more', 

'emboss', 'find_edges', 'smooth', 'smooth_more', 'sharpen'. 

 

Returns 

------- 

imfilter : ndarray 

The array with filter applied. 

 

Raises 

------ 

ValueError 

*Unknown filter type.* If the filter you are trying 

to apply is unsupported. 

 

""" 

_tdict = {'blur': ImageFilter.BLUR, 

'contour': ImageFilter.CONTOUR, 

'detail': ImageFilter.DETAIL, 

'edge_enhance': ImageFilter.EDGE_ENHANCE, 

'edge_enhance_more': ImageFilter.EDGE_ENHANCE_MORE, 

'emboss': ImageFilter.EMBOSS, 

'find_edges': ImageFilter.FIND_EDGES, 

'smooth': ImageFilter.SMOOTH, 

'smooth_more': ImageFilter.SMOOTH_MORE, 

'sharpen': ImageFilter.SHARPEN 

} 

 

im = toimage(arr) 

if ftype not in _tdict: 

raise ValueError("Unknown filter type.") 

return fromimage(im.filter(_tdict[ftype]))