1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

# Copyright (C) 2003-2005 Peter J. Verveer 

# 

# Redistribution and use in source and binary forms, with or without 

# modification, are permitted provided that the following conditions 

# are met: 

# 

# 1. Redistributions of source code must retain the above copyright 

# notice, this list of conditions and the following disclaimer. 

# 

# 2. Redistributions in binary form must reproduce the above 

# copyright notice, this list of conditions and the following 

# disclaimer in the documentation and/or other materials provided 

# with the distribution. 

# 

# 3. The name of the author may not be used to endorse or promote 

# products derived from this software without specific prior 

# written permission. 

# 

# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS 

# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 

# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 

# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 

# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 

# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 

# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 

# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 

# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 

# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 

# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

 

from __future__ import division, print_function, absolute_import 

 

import numpy 

import numpy as np 

from . import _ni_support 

from . import _ni_label 

from . import _nd_image 

from . import morphology 

 

__all__ = ['label', 'find_objects', 'labeled_comprehension', 'sum', 'mean', 

'variance', 'standard_deviation', 'minimum', 'maximum', 'median', 

'minimum_position', 'maximum_position', 'extrema', 'center_of_mass', 

'histogram', 'watershed_ift'] 

 

 

def label(input, structure=None, output=None): 

""" 

Label features in an array. 

 

Parameters 

---------- 

input : array_like 

An array-like object to be labeled. Any non-zero values in `input` are 

counted as features and zero values are considered the background. 

structure : array_like, optional 

A structuring element that defines feature connections. 

`structure` must be symmetric. If no structuring element is provided, 

one is automatically generated with a squared connectivity equal to 

one. That is, for a 2-D `input` array, the default structuring element 

is:: 

 

[[0,1,0], 

[1,1,1], 

[0,1,0]] 

 

output : (None, data-type, array_like), optional 

If `output` is a data type, it specifies the type of the resulting 

labeled feature array 

If `output` is an array-like object, then `output` will be updated 

with the labeled features from this function. This function can 

operate in-place, by passing output=input. 

Note that the output must be able to store the largest label, or this 

function will raise an Exception. 

 

Returns 

------- 

label : ndarray or int 

An integer ndarray where each unique feature in `input` has a unique 

label in the returned array. 

num_features : int 

How many objects were found. 

 

If `output` is None, this function returns a tuple of 

(`labeled_array`, `num_features`). 

 

If `output` is a ndarray, then it will be updated with values in 

`labeled_array` and only `num_features` will be returned by this 

function. 

 

See Also 

-------- 

find_objects : generate a list of slices for the labeled features (or 

objects); useful for finding features' position or 

dimensions 

 

Examples 

-------- 

Create an image with some features, then label it using the default 

(cross-shaped) structuring element: 

 

>>> from scipy.ndimage import label, generate_binary_structure 

>>> a = np.array([[0,0,1,1,0,0], 

... [0,0,0,1,0,0], 

... [1,1,0,0,1,0], 

... [0,0,0,1,0,0]]) 

>>> labeled_array, num_features = label(a) 

 

Each of the 4 features are labeled with a different integer: 

 

>>> num_features 

4 

>>> labeled_array 

array([[0, 0, 1, 1, 0, 0], 

[0, 0, 0, 1, 0, 0], 

[2, 2, 0, 0, 3, 0], 

[0, 0, 0, 4, 0, 0]]) 

 

Generate a structuring element that will consider features connected even 

if they touch diagonally: 

 

>>> s = generate_binary_structure(2,2) 

 

or, 

 

>>> s = [[1,1,1], 

... [1,1,1], 

... [1,1,1]] 

 

Label the image using the new structuring element: 

 

>>> labeled_array, num_features = label(a, structure=s) 

 

Show the 2 labeled features (note that features 1, 3, and 4 from above are 

now considered a single feature): 

 

>>> num_features 

2 

>>> labeled_array 

array([[0, 0, 1, 1, 0, 0], 

[0, 0, 0, 1, 0, 0], 

[2, 2, 0, 0, 1, 0], 

[0, 0, 0, 1, 0, 0]]) 

 

""" 

input = numpy.asarray(input) 

if numpy.iscomplexobj(input): 

raise TypeError('Complex type not supported') 

if structure is None: 

structure = morphology.generate_binary_structure(input.ndim, 1) 

structure = numpy.asarray(structure, dtype=bool) 

if structure.ndim != input.ndim: 

raise RuntimeError('structure and input must have equal rank') 

for ii in structure.shape: 

if ii != 3: 

raise ValueError('structure dimensions must be equal to 3') 

 

# Use 32 bits if it's large enough for this image. 

# _ni_label.label() needs two entries for background and 

# foreground tracking 

need_64bits = input.size >= (2**31 - 2) 

 

if isinstance(output, numpy.ndarray): 

if output.shape != input.shape: 

raise ValueError("output shape not correct") 

caller_provided_output = True 

else: 

caller_provided_output = False 

if output is None: 

output = np.empty(input.shape, np.intp if need_64bits else np.int32) 

else: 

output = np.empty(input.shape, output) 

 

# handle scalars, 0-dim arrays 

if input.ndim == 0 or input.size == 0: 

if input.ndim == 0: 

# scalar 

maxlabel = 1 if (input != 0) else 0 

output[...] = maxlabel 

else: 

# 0-dim 

maxlabel = 0 

if caller_provided_output: 

return maxlabel 

else: 

return output, maxlabel 

 

try: 

max_label = _ni_label._label(input, structure, output) 

except _ni_label.NeedMoreBits: 

# Make another attempt with enough bits, then try to cast to the 

# new type. 

tmp_output = np.empty(input.shape, np.intp if need_64bits else np.int32) 

max_label = _ni_label._label(input, structure, tmp_output) 

output[...] = tmp_output[...] 

if not np.all(output == tmp_output): 

# refuse to return bad results 

raise RuntimeError("insufficient bit-depth in requested output type") 

 

if caller_provided_output: 

# result was written in-place 

return max_label 

else: 

return output, max_label 

 

 

def find_objects(input, max_label=0): 

""" 

Find objects in a labeled array. 

 

Parameters 

---------- 

input : ndarray of ints 

Array containing objects defined by different labels. Labels with 

value 0 are ignored. 

max_label : int, optional 

Maximum label to be searched for in `input`. If max_label is not 

given, the positions of all objects are returned. 

 

Returns 

------- 

object_slices : list of tuples 

A list of tuples, with each tuple containing N slices (with N the 

dimension of the input array). Slices correspond to the minimal 

parallelepiped that contains the object. If a number is missing, 

None is returned instead of a slice. 

 

See Also 

-------- 

label, center_of_mass 

 

Notes 

----- 

This function is very useful for isolating a volume of interest inside 

a 3-D array, that cannot be "seen through". 

 

Examples 

-------- 

>>> from scipy import ndimage 

>>> a = np.zeros((6,6), dtype=int) 

>>> a[2:4, 2:4] = 1 

>>> a[4, 4] = 1 

>>> a[:2, :3] = 2 

>>> a[0, 5] = 3 

>>> a 

array([[2, 2, 2, 0, 0, 3], 

[2, 2, 2, 0, 0, 0], 

[0, 0, 1, 1, 0, 0], 

[0, 0, 1, 1, 0, 0], 

[0, 0, 0, 0, 1, 0], 

[0, 0, 0, 0, 0, 0]]) 

>>> ndimage.find_objects(a) 

[(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None)), (slice(0, 1, None), slice(5, 6, None))] 

>>> ndimage.find_objects(a, max_label=2) 

[(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None))] 

>>> ndimage.find_objects(a == 1, max_label=2) 

[(slice(2, 5, None), slice(2, 5, None)), None] 

 

>>> loc = ndimage.find_objects(a)[0] 

>>> a[loc] 

array([[1, 1, 0], 

[1, 1, 0], 

[0, 0, 1]]) 

 

""" 

input = numpy.asarray(input) 

if numpy.iscomplexobj(input): 

raise TypeError('Complex type not supported') 

 

if max_label < 1: 

max_label = input.max() 

 

return _nd_image.find_objects(input, max_label) 

 

 

def labeled_comprehension(input, labels, index, func, out_dtype, default, pass_positions=False): 

""" 

Roughly equivalent to [func(input[labels == i]) for i in index]. 

 

Sequentially applies an arbitrary function (that works on array_like input) 

to subsets of an n-D image array specified by `labels` and `index`. 

The option exists to provide the function with positional parameters as the 

second argument. 

 

Parameters 

---------- 

input : array_like 

Data from which to select `labels` to process. 

labels : array_like or None 

Labels to objects in `input`. 

If not None, array must be same shape as `input`. 

If None, `func` is applied to raveled `input`. 

index : int, sequence of ints or None 

Subset of `labels` to which to apply `func`. 

If a scalar, a single value is returned. 

If None, `func` is applied to all non-zero values of `labels`. 

func : callable 

Python function to apply to `labels` from `input`. 

out_dtype : dtype 

Dtype to use for `result`. 

default : int, float or None 

Default return value when a element of `index` does not exist 

in `labels`. 

pass_positions : bool, optional 

If True, pass linear indices to `func` as a second argument. 

Default is False. 

 

Returns 

------- 

result : ndarray 

Result of applying `func` to each of `labels` to `input` in `index`. 

 

Examples 

-------- 

>>> a = np.array([[1, 2, 0, 0], 

... [5, 3, 0, 4], 

... [0, 0, 0, 7], 

... [9, 3, 0, 0]]) 

>>> from scipy import ndimage 

>>> lbl, nlbl = ndimage.label(a) 

>>> lbls = np.arange(1, nlbl+1) 

>>> ndimage.labeled_comprehension(a, lbl, lbls, np.mean, float, 0) 

array([ 2.75, 5.5 , 6. ]) 

 

Falling back to `default`: 

 

>>> lbls = np.arange(1, nlbl+2) 

>>> ndimage.labeled_comprehension(a, lbl, lbls, np.mean, float, -1) 

array([ 2.75, 5.5 , 6. , -1. ]) 

 

Passing positions: 

 

>>> def fn(val, pos): 

... print("fn says: %s : %s" % (val, pos)) 

... return (val.sum()) if (pos.sum() % 2 == 0) else (-val.sum()) 

... 

>>> ndimage.labeled_comprehension(a, lbl, lbls, fn, float, 0, True) 

fn says: [1 2 5 3] : [0 1 4 5] 

fn says: [4 7] : [ 7 11] 

fn says: [9 3] : [12 13] 

array([ 11., 11., -12., 0.]) 

 

""" 

 

as_scalar = numpy.isscalar(index) 

input = numpy.asarray(input) 

 

if pass_positions: 

positions = numpy.arange(input.size).reshape(input.shape) 

 

if labels is None: 

if index is not None: 

raise ValueError("index without defined labels") 

if not pass_positions: 

return func(input.ravel()) 

else: 

return func(input.ravel(), positions.ravel()) 

 

try: 

input, labels = numpy.broadcast_arrays(input, labels) 

except ValueError: 

raise ValueError("input and labels must have the same shape " 

"(excepting dimensions with width 1)") 

 

if index is None: 

if not pass_positions: 

return func(input[labels > 0]) 

else: 

return func(input[labels > 0], positions[labels > 0]) 

 

index = numpy.atleast_1d(index) 

if np.any(index.astype(labels.dtype).astype(index.dtype) != index): 

raise ValueError("Cannot convert index values from <%s> to <%s> " 

"(labels' type) without loss of precision" % 

(index.dtype, labels.dtype)) 

 

index = index.astype(labels.dtype) 

 

# optimization: find min/max in index, and select those parts of labels, input, and positions 

lo = index.min() 

hi = index.max() 

mask = (labels >= lo) & (labels <= hi) 

 

# this also ravels the arrays 

labels = labels[mask] 

input = input[mask] 

if pass_positions: 

positions = positions[mask] 

 

# sort everything by labels 

label_order = labels.argsort() 

labels = labels[label_order] 

input = input[label_order] 

if pass_positions: 

positions = positions[label_order] 

 

index_order = index.argsort() 

sorted_index = index[index_order] 

 

def do_map(inputs, output): 

"""labels must be sorted""" 

nidx = sorted_index.size 

 

# Find boundaries for each stretch of constant labels 

# This could be faster, but we already paid N log N to sort labels. 

lo = numpy.searchsorted(labels, sorted_index, side='left') 

hi = numpy.searchsorted(labels, sorted_index, side='right') 

 

for i, l, h in zip(range(nidx), lo, hi): 

if l == h: 

continue 

output[i] = func(*[inp[l:h] for inp in inputs]) 

 

temp = numpy.empty(index.shape, out_dtype) 

temp[:] = default 

if not pass_positions: 

do_map([input], temp) 

else: 

do_map([input, positions], temp) 

 

output = numpy.zeros(index.shape, out_dtype) 

output[index_order] = temp 

if as_scalar: 

output = output[0] 

 

return output 

 

 

def _safely_castable_to_int(dt): 

"""Test whether the numpy data type `dt` can be safely cast to an int.""" 

int_size = np.dtype(int).itemsize 

safe = ((np.issubdtype(dt, np.signedinteger) and dt.itemsize <= int_size) or 

(np.issubdtype(dt, np.unsignedinteger) and dt.itemsize < int_size)) 

return safe 

 

 

def _stats(input, labels=None, index=None, centered=False): 

"""Count, sum, and optionally compute (sum - centre)^2 of input by label 

 

Parameters 

---------- 

input : array_like, n-dimensional 

The input data to be analyzed. 

labels : array_like (n-dimensional), optional 

The labels of the data in `input`. This array must be broadcast 

compatible with `input`; typically it is the same shape as `input`. 

If `labels` is None, all nonzero values in `input` are treated as 

the single labeled group. 

index : label or sequence of labels, optional 

These are the labels of the groups for which the stats are computed. 

If `index` is None, the stats are computed for the single group where 

`labels` is greater than 0. 

centered : bool, optional 

If True, the centered sum of squares for each labeled group is 

also returned. Default is False. 

 

Returns 

------- 

counts : int or ndarray of ints 

The number of elements in each labeled group. 

sums : scalar or ndarray of scalars 

The sums of the values in each labeled group. 

sums_c : scalar or ndarray of scalars, optional 

The sums of mean-centered squares of the values in each labeled group. 

This is only returned if `centered` is True. 

 

""" 

def single_group(vals): 

if centered: 

vals_c = vals - vals.mean() 

return vals.size, vals.sum(), (vals_c * vals_c.conjugate()).sum() 

else: 

return vals.size, vals.sum() 

 

if labels is None: 

return single_group(input) 

 

# ensure input and labels match sizes 

input, labels = numpy.broadcast_arrays(input, labels) 

 

if index is None: 

return single_group(input[labels > 0]) 

 

if numpy.isscalar(index): 

return single_group(input[labels == index]) 

 

def _sum_centered(labels): 

# `labels` is expected to be an ndarray with the same shape as `input`. 

# It must contain the label indices (which are not necessarily the labels 

# themselves). 

means = sums / counts 

centered_input = input - means[labels] 

# bincount expects 1d inputs, so we ravel the arguments. 

bc = numpy.bincount(labels.ravel(), 

weights=(centered_input * 

centered_input.conjugate()).ravel()) 

return bc 

 

# Remap labels to unique integers if necessary, or if the largest 

# label is larger than the number of values. 

 

if (not _safely_castable_to_int(labels.dtype) or 

labels.min() < 0 or labels.max() > labels.size): 

# Use numpy.unique to generate the label indices. `new_labels` will 

# be 1-d, but it should be interpreted as the flattened n-d array of 

# label indices. 

unique_labels, new_labels = numpy.unique(labels, return_inverse=True) 

counts = numpy.bincount(new_labels) 

sums = numpy.bincount(new_labels, weights=input.ravel()) 

if centered: 

# Compute the sum of the mean-centered squares. 

# We must reshape new_labels to the n-d shape of `input` before 

# passing it _sum_centered. 

sums_c = _sum_centered(new_labels.reshape(labels.shape)) 

idxs = numpy.searchsorted(unique_labels, index) 

# make all of idxs valid 

idxs[idxs >= unique_labels.size] = 0 

found = (unique_labels[idxs] == index) 

else: 

# labels are an integer type allowed by bincount, and there aren't too 

# many, so call bincount directly. 

counts = numpy.bincount(labels.ravel()) 

sums = numpy.bincount(labels.ravel(), weights=input.ravel()) 

if centered: 

sums_c = _sum_centered(labels) 

# make sure all index values are valid 

idxs = numpy.asanyarray(index, numpy.int).copy() 

found = (idxs >= 0) & (idxs < counts.size) 

idxs[~found] = 0 

 

counts = counts[idxs] 

counts[~found] = 0 

sums = sums[idxs] 

sums[~found] = 0 

 

if not centered: 

return (counts, sums) 

else: 

sums_c = sums_c[idxs] 

sums_c[~found] = 0 

return (counts, sums, sums_c) 

 

 

def sum(input, labels=None, index=None): 

""" 

Calculate the sum of the values of the array. 

 

Parameters 

---------- 

input : array_like 

Values of `input` inside the regions defined by `labels` 

are summed together. 

labels : array_like of ints, optional 

Assign labels to the values of the array. Has to have the same shape as 

`input`. 

index : array_like, optional 

A single label number or a sequence of label numbers of 

the objects to be measured. 

 

Returns 

------- 

sum : ndarray or scalar 

An array of the sums of values of `input` inside the regions defined 

by `labels` with the same shape as `index`. If 'index' is None or scalar, 

a scalar is returned. 

 

See also 

-------- 

mean, median 

 

Examples 

-------- 

>>> from scipy import ndimage 

>>> input = [0,1,2,3] 

>>> labels = [1,1,2,2] 

>>> ndimage.sum(input, labels, index=[1,2]) 

[1.0, 5.0] 

>>> ndimage.sum(input, labels, index=1) 

1 

>>> ndimage.sum(input, labels) 

6 

 

 

""" 

count, sum = _stats(input, labels, index) 

return sum 

 

 

def mean(input, labels=None, index=None): 

""" 

Calculate the mean of the values of an array at labels. 

 

Parameters 

---------- 

input : array_like 

Array on which to compute the mean of elements over distinct 

regions. 

labels : array_like, optional 

Array of labels of same shape, or broadcastable to the same shape as 

`input`. All elements sharing the same label form one region over 

which the mean of the elements is computed. 

index : int or sequence of ints, optional 

Labels of the objects over which the mean is to be computed. 

Default is None, in which case the mean for all values where label is 

greater than 0 is calculated. 

 

Returns 

------- 

out : list 

Sequence of same length as `index`, with the mean of the different 

regions labeled by the labels in `index`. 

 

See also 

-------- 

ndimage.variance, ndimage.standard_deviation, ndimage.minimum, 

ndimage.maximum, ndimage.sum 

ndimage.label 

 

Examples 

-------- 

>>> from scipy import ndimage 

>>> a = np.arange(25).reshape((5,5)) 

>>> labels = np.zeros_like(a) 

>>> labels[3:5,3:5] = 1 

>>> index = np.unique(labels) 

>>> labels 

array([[0, 0, 0, 0, 0], 

[0, 0, 0, 0, 0], 

[0, 0, 0, 0, 0], 

[0, 0, 0, 1, 1], 

[0, 0, 0, 1, 1]]) 

>>> index 

array([0, 1]) 

>>> ndimage.mean(a, labels=labels, index=index) 

[10.285714285714286, 21.0] 

 

""" 

 

count, sum = _stats(input, labels, index) 

return sum / numpy.asanyarray(count).astype(numpy.float) 

 

 

def variance(input, labels=None, index=None): 

""" 

Calculate the variance of the values of an n-D image array, optionally at 

specified sub-regions. 

 

Parameters 

---------- 

input : array_like 

Nd-image data to process. 

labels : array_like, optional 

Labels defining sub-regions in `input`. 

If not None, must be same shape as `input`. 

index : int or sequence of ints, optional 

`labels` to include in output. If None (default), all values where 

`labels` is non-zero are used. 

 

Returns 

------- 

variance : float or ndarray 

Values of variance, for each sub-region if `labels` and `index` are 

specified. 

 

See Also 

-------- 

label, standard_deviation, maximum, minimum, extrema 

 

Examples 

-------- 

>>> a = np.array([[1, 2, 0, 0], 

... [5, 3, 0, 4], 

... [0, 0, 0, 7], 

... [9, 3, 0, 0]]) 

>>> from scipy import ndimage 

>>> ndimage.variance(a) 

7.609375 

 

Features to process can be specified using `labels` and `index`: 

 

>>> lbl, nlbl = ndimage.label(a) 

>>> ndimage.variance(a, lbl, index=np.arange(1, nlbl+1)) 

array([ 2.1875, 2.25 , 9. ]) 

 

If no index is given, all non-zero `labels` are processed: 

 

>>> ndimage.variance(a, lbl) 

6.1875 

 

""" 

count, sum, sum_c_sq = _stats(input, labels, index, centered=True) 

return sum_c_sq / np.asanyarray(count).astype(float) 

 

 

def standard_deviation(input, labels=None, index=None): 

""" 

Calculate the standard deviation of the values of an n-D image array, 

optionally at specified sub-regions. 

 

Parameters 

---------- 

input : array_like 

Nd-image data to process. 

labels : array_like, optional 

Labels to identify sub-regions in `input`. 

If not None, must be same shape as `input`. 

index : int or sequence of ints, optional 

`labels` to include in output. If None (default), all values where 

`labels` is non-zero are used. 

 

Returns 

------- 

standard_deviation : float or ndarray 

Values of standard deviation, for each sub-region if `labels` and 

`index` are specified. 

 

See Also 

-------- 

label, variance, maximum, minimum, extrema 

 

Examples 

-------- 

>>> a = np.array([[1, 2, 0, 0], 

... [5, 3, 0, 4], 

... [0, 0, 0, 7], 

... [9, 3, 0, 0]]) 

>>> from scipy import ndimage 

>>> ndimage.standard_deviation(a) 

2.7585095613392387 

 

Features to process can be specified using `labels` and `index`: 

 

>>> lbl, nlbl = ndimage.label(a) 

>>> ndimage.standard_deviation(a, lbl, index=np.arange(1, nlbl+1)) 

array([ 1.479, 1.5 , 3. ]) 

 

If no index is given, non-zero `labels` are processed: 

 

>>> ndimage.standard_deviation(a, lbl) 

2.4874685927665499 

 

""" 

return numpy.sqrt(variance(input, labels, index)) 

 

 

def _select(input, labels=None, index=None, find_min=False, find_max=False, 

find_min_positions=False, find_max_positions=False, 

find_median=False): 

"""Returns min, max, or both, plus their positions (if requested), and 

median.""" 

 

input = numpy.asanyarray(input) 

 

find_positions = find_min_positions or find_max_positions 

positions = None 

if find_positions: 

positions = numpy.arange(input.size).reshape(input.shape) 

 

def single_group(vals, positions): 

result = [] 

if find_min: 

result += [vals.min()] 

if find_min_positions: 

result += [positions[vals == vals.min()][0]] 

if find_max: 

result += [vals.max()] 

if find_max_positions: 

result += [positions[vals == vals.max()][0]] 

if find_median: 

result += [numpy.median(vals)] 

return result 

 

if labels is None: 

return single_group(input, positions) 

 

# ensure input and labels match sizes 

input, labels = numpy.broadcast_arrays(input, labels) 

 

if index is None: 

mask = (labels > 0) 

masked_positions = None 

if find_positions: 

masked_positions = positions[mask] 

return single_group(input[mask], masked_positions) 

 

if numpy.isscalar(index): 

mask = (labels == index) 

masked_positions = None 

if find_positions: 

masked_positions = positions[mask] 

return single_group(input[mask], masked_positions) 

 

# remap labels to unique integers if necessary, or if the largest 

# label is larger than the number of values. 

if (not _safely_castable_to_int(labels.dtype) or 

labels.min() < 0 or labels.max() > labels.size): 

# remap labels, and indexes 

unique_labels, labels = numpy.unique(labels, return_inverse=True) 

idxs = numpy.searchsorted(unique_labels, index) 

 

# make all of idxs valid 

idxs[idxs >= unique_labels.size] = 0 

found = (unique_labels[idxs] == index) 

else: 

# labels are an integer type, and there aren't too many. 

idxs = numpy.asanyarray(index, numpy.int).copy() 

found = (idxs >= 0) & (idxs <= labels.max()) 

 

idxs[~ found] = labels.max() + 1 

 

if find_median: 

order = numpy.lexsort((input.ravel(), labels.ravel())) 

else: 

order = input.ravel().argsort() 

input = input.ravel()[order] 

labels = labels.ravel()[order] 

if find_positions: 

positions = positions.ravel()[order] 

 

result = [] 

if find_min: 

mins = numpy.zeros(labels.max() + 2, input.dtype) 

mins[labels[::-1]] = input[::-1] 

result += [mins[idxs]] 

if find_min_positions: 

minpos = numpy.zeros(labels.max() + 2, int) 

minpos[labels[::-1]] = positions[::-1] 

result += [minpos[idxs]] 

if find_max: 

maxs = numpy.zeros(labels.max() + 2, input.dtype) 

maxs[labels] = input 

result += [maxs[idxs]] 

if find_max_positions: 

maxpos = numpy.zeros(labels.max() + 2, int) 

maxpos[labels] = positions 

result += [maxpos[idxs]] 

if find_median: 

locs = numpy.arange(len(labels)) 

lo = numpy.zeros(labels.max() + 2, numpy.int) 

lo[labels[::-1]] = locs[::-1] 

hi = numpy.zeros(labels.max() + 2, numpy.int) 

hi[labels] = locs 

lo = lo[idxs] 

hi = hi[idxs] 

# lo is an index to the lowest value in input for each label, 

# hi is an index to the largest value. 

# move them to be either the same ((hi - lo) % 2 == 0) or next 

# to each other ((hi - lo) % 2 == 1), then average. 

step = (hi - lo) // 2 

lo += step 

hi -= step 

result += [(input[lo] + input[hi]) / 2.0] 

 

return result 

 

 

def minimum(input, labels=None, index=None): 

""" 

Calculate the minimum of the values of an array over labeled regions. 

 

Parameters 

---------- 

input : array_like 

Array_like of values. For each region specified by `labels`, the 

minimal values of `input` over the region is computed. 

labels : array_like, optional 

An array_like of integers marking different regions over which the 

minimum value of `input` is to be computed. `labels` must have the 

same shape as `input`. If `labels` is not specified, the minimum 

over the whole array is returned. 

index : array_like, optional 

A list of region labels that are taken into account for computing the 

minima. If index is None, the minimum over all elements where `labels` 

is non-zero is returned. 

 

Returns 

------- 

minimum : float or list of floats 

List of minima of `input` over the regions determined by `labels` and 

whose index is in `index`. If `index` or `labels` are not specified, a 

float is returned: the minimal value of `input` if `labels` is None, 

and the minimal value of elements where `labels` is greater than zero 

if `index` is None. 

 

See also 

-------- 

label, maximum, median, minimum_position, extrema, sum, mean, variance, 

standard_deviation 

 

Notes 

----- 

The function returns a Python list and not a Numpy array, use 

`np.array` to convert the list to an array. 

 

Examples 

-------- 

>>> from scipy import ndimage 

>>> a = np.array([[1, 2, 0, 0], 

... [5, 3, 0, 4], 

... [0, 0, 0, 7], 

... [9, 3, 0, 0]]) 

>>> labels, labels_nb = ndimage.label(a) 

>>> labels 

array([[1, 1, 0, 0], 

[1, 1, 0, 2], 

[0, 0, 0, 2], 

[3, 3, 0, 0]]) 

>>> ndimage.minimum(a, labels=labels, index=np.arange(1, labels_nb + 1)) 

[1.0, 4.0, 3.0] 

>>> ndimage.minimum(a) 

0.0 

>>> ndimage.minimum(a, labels=labels) 

1.0 

 

""" 

return _select(input, labels, index, find_min=True)[0] 

 

 

def maximum(input, labels=None, index=None): 

""" 

Calculate the maximum of the values of an array over labeled regions. 

 

Parameters 

---------- 

input : array_like 

Array_like of values. For each region specified by `labels`, the 

maximal values of `input` over the region is computed. 

labels : array_like, optional 

An array of integers marking different regions over which the 

maximum value of `input` is to be computed. `labels` must have the 

same shape as `input`. If `labels` is not specified, the maximum 

over the whole array is returned. 

index : array_like, optional 

A list of region labels that are taken into account for computing the 

maxima. If index is None, the maximum over all elements where `labels` 

is non-zero is returned. 

 

Returns 

------- 

output : float or list of floats 

List of maxima of `input` over the regions determined by `labels` and 

whose index is in `index`. If `index` or `labels` are not specified, a 

float is returned: the maximal value of `input` if `labels` is None, 

and the maximal value of elements where `labels` is greater than zero 

if `index` is None. 

 

See also 

-------- 

label, minimum, median, maximum_position, extrema, sum, mean, variance, 

standard_deviation 

 

Notes 

----- 

The function returns a Python list and not a Numpy array, use 

`np.array` to convert the list to an array. 

 

Examples 

-------- 

>>> a = np.arange(16).reshape((4,4)) 

>>> a 

array([[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 

[ 8, 9, 10, 11], 

[12, 13, 14, 15]]) 

>>> labels = np.zeros_like(a) 

>>> labels[:2,:2] = 1 

>>> labels[2:, 1:3] = 2 

>>> labels 

array([[1, 1, 0, 0], 

[1, 1, 0, 0], 

[0, 2, 2, 0], 

[0, 2, 2, 0]]) 

>>> from scipy import ndimage 

>>> ndimage.maximum(a) 

15.0 

>>> ndimage.maximum(a, labels=labels, index=[1,2]) 

[5.0, 14.0] 

>>> ndimage.maximum(a, labels=labels) 

14.0 

 

>>> b = np.array([[1, 2, 0, 0], 

... [5, 3, 0, 4], 

... [0, 0, 0, 7], 

... [9, 3, 0, 0]]) 

>>> labels, labels_nb = ndimage.label(b) 

>>> labels 

array([[1, 1, 0, 0], 

[1, 1, 0, 2], 

[0, 0, 0, 2], 

[3, 3, 0, 0]]) 

>>> ndimage.maximum(b, labels=labels, index=np.arange(1, labels_nb + 1)) 

[5.0, 7.0, 9.0] 

 

""" 

return _select(input, labels, index, find_max=True)[0] 

 

 

def median(input, labels=None, index=None): 

""" 

Calculate the median of the values of an array over labeled regions. 

 

Parameters 

---------- 

input : array_like 

Array_like of values. For each region specified by `labels`, the 

median value of `input` over the region is computed. 

labels : array_like, optional 

An array_like of integers marking different regions over which the 

median value of `input` is to be computed. `labels` must have the 

same shape as `input`. If `labels` is not specified, the median 

over the whole array is returned. 

index : array_like, optional 

A list of region labels that are taken into account for computing the 

medians. If index is None, the median over all elements where `labels` 

is non-zero is returned. 

 

Returns 

------- 

median : float or list of floats 

List of medians of `input` over the regions determined by `labels` and 

whose index is in `index`. If `index` or `labels` are not specified, a 

float is returned: the median value of `input` if `labels` is None, 

and the median value of elements where `labels` is greater than zero 

if `index` is None. 

 

See also 

-------- 

label, minimum, maximum, extrema, sum, mean, variance, standard_deviation 

 

Notes 

----- 

The function returns a Python list and not a Numpy array, use 

`np.array` to convert the list to an array. 

 

Examples 

-------- 

>>> from scipy import ndimage 

>>> a = np.array([[1, 2, 0, 1], 

... [5, 3, 0, 4], 

... [0, 0, 0, 7], 

... [9, 3, 0, 0]]) 

>>> labels, labels_nb = ndimage.label(a) 

>>> labels 

array([[1, 1, 0, 2], 

[1, 1, 0, 2], 

[0, 0, 0, 2], 

[3, 3, 0, 0]]) 

>>> ndimage.median(a, labels=labels, index=np.arange(1, labels_nb + 1)) 

[2.5, 4.0, 6.0] 

>>> ndimage.median(a) 

1.0 

>>> ndimage.median(a, labels=labels) 

3.0 

 

""" 

return _select(input, labels, index, find_median=True)[0] 

 

 

def minimum_position(input, labels=None, index=None): 

""" 

Find the positions of the minimums of the values of an array at labels. 

 

Parameters 

---------- 

input : array_like 

Array_like of values. 

labels : array_like, optional 

An array of integers marking different regions over which the 

position of the minimum value of `input` is to be computed. 

`labels` must have the same shape as `input`. If `labels` is not 

specified, the location of the first minimum over the whole 

array is returned. 

 

The `labels` argument only works when `index` is specified. 

index : array_like, optional 

A list of region labels that are taken into account for finding the 

location of the minima. If `index` is None, the ``first`` minimum 

over all elements where `labels` is non-zero is returned. 

 

The `index` argument only works when `labels` is specified. 

 

Returns 

------- 

output : list of tuples of ints 

Tuple of ints or list of tuples of ints that specify the location 

of minima of `input` over the regions determined by `labels` and 

whose index is in `index`. 

 

If `index` or `labels` are not specified, a tuple of ints is 

returned specifying the location of the first minimal value of `input`. 

 

See also 

-------- 

label, minimum, median, maximum_position, extrema, sum, mean, variance, 

standard_deviation 

 

Examples 

-------- 

>>> a = np.array([[10, 20, 30], 

... [40, 80, 100], 

... [1, 100, 200]]) 

>>> b = np.array([[1, 2, 0, 1], 

... [5, 3, 0, 4], 

... [0, 0, 0, 7], 

... [9, 3, 0, 0]]) 

 

>>> from scipy import ndimage 

 

>>> ndimage.minimum_position(a) 

(2, 0) 

>>> ndimage.minimum_position(b) 

(0, 2) 

 

Features to process can be specified using `labels` and `index`: 

 

>>> label, pos = ndimage.label(a) 

>>> ndimage.minimum_position(a, label, index=np.arange(1, pos+1)) 

[(2, 0)] 

 

>>> label, pos = ndimage.label(b) 

>>> ndimage.minimum_position(b, label, index=np.arange(1, pos+1)) 

[(0, 0), (0, 3), (3, 1)] 

 

""" 

dims = numpy.array(numpy.asarray(input).shape) 

# see numpy.unravel_index to understand this line. 

dim_prod = numpy.cumprod([1] + list(dims[:0:-1]))[::-1] 

 

result = _select(input, labels, index, find_min_positions=True)[0] 

 

if numpy.isscalar(result): 

return tuple((result // dim_prod) % dims) 

 

return [tuple(v) for v in (result.reshape(-1, 1) // dim_prod) % dims] 

 

 

def maximum_position(input, labels=None, index=None): 

""" 

Find the positions of the maximums of the values of an array at labels. 

 

For each region specified by `labels`, the position of the maximum 

value of `input` within the region is returned. 

 

Parameters 

---------- 

input : array_like 

Array_like of values. 

labels : array_like, optional 

An array of integers marking different regions over which the 

position of the maximum value of `input` is to be computed. 

`labels` must have the same shape as `input`. If `labels` is not 

specified, the location of the first maximum over the whole 

array is returned. 

 

The `labels` argument only works when `index` is specified. 

index : array_like, optional 

A list of region labels that are taken into account for finding the 

location of the maxima. If `index` is None, the first maximum 

over all elements where `labels` is non-zero is returned. 

 

The `index` argument only works when `labels` is specified. 

 

Returns 

------- 

output : list of tuples of ints 

List of tuples of ints that specify the location of maxima of 

`input` over the regions determined by `labels` and whose index 

is in `index`. 

 

If `index` or `labels` are not specified, a tuple of ints is 

returned specifying the location of the ``first`` maximal value 

of `input`. 

 

See also 

-------- 

label, minimum, median, maximum_position, extrema, sum, mean, variance, 

standard_deviation 

 

""" 

dims = numpy.array(numpy.asarray(input).shape) 

# see numpy.unravel_index to understand this line. 

dim_prod = numpy.cumprod([1] + list(dims[:0:-1]))[::-1] 

 

result = _select(input, labels, index, find_max_positions=True)[0] 

 

if numpy.isscalar(result): 

return tuple((result // dim_prod) % dims) 

 

return [tuple(v) for v in (result.reshape(-1, 1) // dim_prod) % dims] 

 

 

def extrema(input, labels=None, index=None): 

""" 

Calculate the minimums and maximums of the values of an array 

at labels, along with their positions. 

 

Parameters 

---------- 

input : ndarray 

Nd-image data to process. 

labels : ndarray, optional 

Labels of features in input. 

If not None, must be same shape as `input`. 

index : int or sequence of ints, optional 

Labels to include in output. If None (default), all values where 

non-zero `labels` are used. 

 

Returns 

------- 

minimums, maximums : int or ndarray 

Values of minimums and maximums in each feature. 

min_positions, max_positions : tuple or list of tuples 

Each tuple gives the n-D coordinates of the corresponding minimum 

or maximum. 

 

See Also 

-------- 

maximum, minimum, maximum_position, minimum_position, center_of_mass 

 

Examples 

-------- 

>>> a = np.array([[1, 2, 0, 0], 

... [5, 3, 0, 4], 

... [0, 0, 0, 7], 

... [9, 3, 0, 0]]) 

>>> from scipy import ndimage 

>>> ndimage.extrema(a) 

(0, 9, (0, 2), (3, 0)) 

 

Features to process can be specified using `labels` and `index`: 

 

>>> lbl, nlbl = ndimage.label(a) 

>>> ndimage.extrema(a, lbl, index=np.arange(1, nlbl+1)) 

(array([1, 4, 3]), 

array([5, 7, 9]), 

[(0, 0), (1, 3), (3, 1)], 

[(1, 0), (2, 3), (3, 0)]) 

 

If no index is given, non-zero `labels` are processed: 

 

>>> ndimage.extrema(a, lbl) 

(1, 9, (0, 0), (3, 0)) 

 

""" 

dims = numpy.array(numpy.asarray(input).shape) 

# see numpy.unravel_index to understand this line. 

dim_prod = numpy.cumprod([1] + list(dims[:0:-1]))[::-1] 

 

minimums, min_positions, maximums, max_positions = _select(input, labels, 

index, 

find_min=True, 

find_max=True, 

find_min_positions=True, 

find_max_positions=True) 

 

if numpy.isscalar(minimums): 

return (minimums, maximums, tuple((min_positions // dim_prod) % dims), 

tuple((max_positions // dim_prod) % dims)) 

 

min_positions = [tuple(v) for v in (min_positions.reshape(-1, 1) // dim_prod) % dims] 

max_positions = [tuple(v) for v in (max_positions.reshape(-1, 1) // dim_prod) % dims] 

 

return minimums, maximums, min_positions, max_positions 

 

 

def center_of_mass(input, labels=None, index=None): 

""" 

Calculate the center of mass of the values of an array at labels. 

 

Parameters 

---------- 

input : ndarray 

Data from which to calculate center-of-mass. The masses can either 

be positive or negative. 

labels : ndarray, optional 

Labels for objects in `input`, as generated by `ndimage.label`. 

Only used with `index`. Dimensions must be the same as `input`. 

index : int or sequence of ints, optional 

Labels for which to calculate centers-of-mass. If not specified, 

all labels greater than zero are used. Only used with `labels`. 

 

Returns 

------- 

center_of_mass : tuple, or list of tuples 

Coordinates of centers-of-mass. 

 

Examples 

-------- 

>>> a = np.array(([0,0,0,0], 

... [0,1,1,0], 

... [0,1,1,0], 

... [0,1,1,0])) 

>>> from scipy import ndimage 

>>> ndimage.measurements.center_of_mass(a) 

(2.0, 1.5) 

 

Calculation of multiple objects in an image 

 

>>> b = np.array(([0,1,1,0], 

... [0,1,0,0], 

... [0,0,0,0], 

... [0,0,1,1], 

... [0,0,1,1])) 

>>> lbl = ndimage.label(b)[0] 

>>> ndimage.measurements.center_of_mass(b, lbl, [1,2]) 

[(0.33333333333333331, 1.3333333333333333), (3.5, 2.5)] 

 

Negative masses are also accepted, which can occur for example when 

bias is removed from measured data due to random noise. 

 

>>> c = np.array(([-1,0,0,0], 

... [0,-1,-1,0], 

... [0,1,-1,0], 

... [0,1,1,0])) 

>>> ndimage.measurements.center_of_mass(c) 

(-4.0, 1.0) 

 

If there are division by zero issues, the function does not raise an 

error but rather issues a RuntimeWarning before returning inf and/or NaN. 

 

>>> d = np.array([-1, 1]) 

>>> ndimage.measurements.center_of_mass(d) 

(inf,) 

""" 

normalizer = sum(input, labels, index) 

grids = numpy.ogrid[[slice(0, i) for i in input.shape]] 

 

results = [sum(input * grids[dir].astype(float), labels, index) / normalizer 

for dir in range(input.ndim)] 

 

if numpy.isscalar(results[0]): 

return tuple(results) 

 

return [tuple(v) for v in numpy.array(results).T] 

 

 

def histogram(input, min, max, bins, labels=None, index=None): 

""" 

Calculate the histogram of the values of an array, optionally at labels. 

 

Histogram calculates the frequency of values in an array within bins 

determined by `min`, `max`, and `bins`. The `labels` and `index` 

keywords can limit the scope of the histogram to specified sub-regions 

within the array. 

 

Parameters 

---------- 

input : array_like 

Data for which to calculate histogram. 

min, max : int 

Minimum and maximum values of range of histogram bins. 

bins : int 

Number of bins. 

labels : array_like, optional 

Labels for objects in `input`. 

If not None, must be same shape as `input`. 

index : int or sequence of ints, optional 

Label or labels for which to calculate histogram. If None, all values 

where label is greater than zero are used 

 

Returns 

------- 

hist : ndarray 

Histogram counts. 

 

Examples 

-------- 

>>> a = np.array([[ 0. , 0.2146, 0.5962, 0. ], 

... [ 0. , 0.7778, 0. , 0. ], 

... [ 0. , 0. , 0. , 0. ], 

... [ 0. , 0. , 0.7181, 0.2787], 

... [ 0. , 0. , 0.6573, 0.3094]]) 

>>> from scipy import ndimage 

>>> ndimage.measurements.histogram(a, 0, 1, 10) 

array([13, 0, 2, 1, 0, 1, 1, 2, 0, 0]) 

 

With labels and no indices, non-zero elements are counted: 

 

>>> lbl, nlbl = ndimage.label(a) 

>>> ndimage.measurements.histogram(a, 0, 1, 10, lbl) 

array([0, 0, 2, 1, 0, 1, 1, 2, 0, 0]) 

 

Indices can be used to count only certain objects: 

 

>>> ndimage.measurements.histogram(a, 0, 1, 10, lbl, 2) 

array([0, 0, 1, 1, 0, 0, 1, 1, 0, 0]) 

 

""" 

_bins = numpy.linspace(min, max, bins + 1) 

 

def _hist(vals): 

return numpy.histogram(vals, _bins)[0] 

 

return labeled_comprehension(input, labels, index, _hist, object, None, 

pass_positions=False) 

 

 

def watershed_ift(input, markers, structure=None, output=None): 

""" 

Apply watershed from markers using image foresting transform algorithm. 

 

Parameters 

---------- 

input : array_like 

Input. 

markers : array_like 

Markers are points within each watershed that form the beginning 

of the process. Negative markers are considered background markers 

which are processed after the other markers. 

structure : structure element, optional 

A structuring element defining the connectivity of the object can be 

provided. If None, an element is generated with a squared 

connectivity equal to one. 

output : ndarray, optional 

An output array can optionally be provided. The same shape as input. 

 

Returns 

------- 

watershed_ift : ndarray 

Output. Same shape as `input`. 

 

References 

---------- 

.. [1] A.X. Falcao, J. Stolfi and R. de Alencar Lotufo, "The image 

foresting transform: theory, algorithms, and applications", 

Pattern Analysis and Machine Intelligence, vol. 26, pp. 19-29, 2004. 

 

""" 

input = numpy.asarray(input) 

if input.dtype.type not in [numpy.uint8, numpy.uint16]: 

raise TypeError('only 8 and 16 unsigned inputs are supported') 

 

if structure is None: 

structure = morphology.generate_binary_structure(input.ndim, 1) 

structure = numpy.asarray(structure, dtype=bool) 

if structure.ndim != input.ndim: 

raise RuntimeError('structure and input must have equal rank') 

for ii in structure.shape: 

if ii != 3: 

raise RuntimeError('structure dimensions must be equal to 3') 

 

if not structure.flags.contiguous: 

structure = structure.copy() 

markers = numpy.asarray(markers) 

if input.shape != markers.shape: 

raise RuntimeError('input and markers must have equal shape') 

 

integral_types = [numpy.int0, 

numpy.int8, 

numpy.int16, 

numpy.int32, 

numpy.int_, 

numpy.int64, 

numpy.intc, 

numpy.intp] 

 

if markers.dtype.type not in integral_types: 

raise RuntimeError('marker should be of integer type') 

 

if isinstance(output, numpy.ndarray): 

if output.dtype.type not in integral_types: 

raise RuntimeError('output should be of integer type') 

else: 

output = markers.dtype 

 

output = _ni_support._get_output(output, input) 

_nd_image.watershed_ift(input, markers, structure, output) 

return output