1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

"""Constraints definition for minimize.""" 

from __future__ import division, print_function, absolute_import 

import numpy as np 

from ._hessian_update_strategy import BFGS 

from ._differentiable_functions import ( 

VectorFunction, LinearVectorFunction, IdentityVectorFunction) 

 

 

class NonlinearConstraint(object): 

"""Nonlinear constraint on the variables. 

 

The constraint has the general inequality form:: 

 

lb <= fun(x) <= ub 

 

Here the vector of independent variables x is passed as ndarray of shape 

(n,) and ``fun`` returns a vector with m components. 

 

It is possible to use equal bounds to represent an equality constraint or 

infinite bounds to represent a one-sided constraint. 

 

Parameters 

---------- 

fun : callable 

The function defining the constraint. 

The signature is ``fun(x) -> array_like, shape (m,)``. 

lb, ub : array_like 

Lower and upper bounds on the constraint. Each array must have the 

shape (m,) or be a scalar, in the latter case a bound will be the same 

for all components of the constraint. Use ``np.inf`` with an 

appropriate sign to specify a one-sided constraint. 

Set components of `lb` and `ub` equal to represent an equality 

constraint. Note that you can mix constraints of different types: 

interval, one-sided or equality, by setting different components of 

`lb` and `ub` as necessary. 

jac : {callable, '2-point', '3-point', 'cs'}, optional 

Method of computing the Jacobian matrix (an m-by-n matrix, 

where element (i, j) is the partial derivative of f[i] with 

respect to x[j]). The keywords {'2-point', '3-point', 

'cs'} select a finite difference scheme for the numerical estimation. 

A callable must have the following signature: 

``jac(x) -> {ndarray, sparse matrix}, shape (m, n)``. 

Default is '2-point'. 

hess : {callable, '2-point', '3-point', 'cs', HessianUpdateStrategy, None}, optional 

Method for computing the Hessian matrix. The keywords 

{'2-point', '3-point', 'cs'} select a finite difference scheme for 

numerical estimation. Alternatively, objects implementing 

`HessianUpdateStrategy` interface can be used to approximate the 

Hessian. Currently available implementations are: 

 

- `BFGS` (default option) 

- `SR1` 

 

A callable must return the Hessian matrix of ``dot(fun, v)`` and 

must have the following signature: 

``hess(x, v) -> {LinearOperator, sparse matrix, array_like}, shape (n, n)``. 

Here ``v`` is ndarray with shape (m,) containing Lagrange multipliers. 

keep_feasible : array_like of bool, optional 

Whether to keep the constraint components feasible throughout 

iterations. A single value set this property for all components. 

Default is False. Has no effect for equality constraints. 

finite_diff_rel_step: None or array_like, optional 

Relative step size for the finite difference approximation. Default is 

None, which will select a reasonable value automatically depending 

on a finite difference scheme. 

finite_diff_jac_sparsity: {None, array_like, sparse matrix}, optional 

Defines the sparsity structure of the Jacobian matrix for finite 

difference estimation, its shape must be (m, n). If the Jacobian has 

only few non-zero elements in *each* row, providing the sparsity 

structure will greatly speed up the computations. A zero entry means 

that a corresponding element in the Jacobian is identically zero. 

If provided, forces the use of 'lsmr' trust-region solver. 

If None (default) then dense differencing will be used. 

 

Notes 

----- 

Finite difference schemes {'2-point', '3-point', 'cs'} may be used for 

approximating either the Jacobian or the Hessian. We, however, do not allow 

its use for approximating both simultaneously. Hence whenever the Jacobian 

is estimated via finite-differences, we require the Hessian to be estimated 

using one of the quasi-Newton strategies. 

 

The scheme 'cs' is potentially the most accurate, but requires the function 

to correctly handles complex inputs and be analytically continuable to the 

complex plane. The scheme '3-point' is more accurate than '2-point' but 

requires twice as many operations. 

""" 

def __init__(self, fun, lb, ub, jac='2-point', hess=BFGS(), 

keep_feasible=False, finite_diff_rel_step=None, 

finite_diff_jac_sparsity=None): 

self.fun = fun 

self.lb = lb 

self.ub = ub 

self.finite_diff_rel_step = finite_diff_rel_step 

self.finite_diff_jac_sparsity = finite_diff_jac_sparsity 

self.jac = jac 

self.hess = hess 

self.keep_feasible = keep_feasible 

 

 

class LinearConstraint(object): 

"""Linear constraint on the variables. 

 

The constraint has the general inequality form:: 

 

lb <= A.dot(x) <= ub 

 

Here the vector of independent variables x is passed as ndarray of shape 

(n,) and the matrix A has shape (m, n). 

 

It is possible to use equal bounds to represent an equality constraint or 

infinite bounds to represent a one-sided constraint. 

 

Parameters 

---------- 

A : {array_like, sparse matrix}, shape (m, n) 

Matrix defining the constraint. 

lb, ub : array_like 

Lower and upper bounds on the constraint. Each array must have the 

shape (m,) or be a scalar, in the latter case a bound will be the same 

for all components of the constraint. Use ``np.inf`` with an 

appropriate sign to specify a one-sided constraint. 

Set components of `lb` and `ub` equal to represent an equality 

constraint. Note that you can mix constraints of different types: 

interval, one-sided or equality, by setting different components of 

`lb` and `ub` as necessary. 

keep_feasible : array_like of bool, optional 

Whether to keep the constraint components feasible throughout 

iterations. A single value set this property for all components. 

Default is False. Has no effect for equality constraints. 

""" 

def __init__(self, A, lb, ub, keep_feasible=False): 

self.A = A 

self.lb = lb 

self.ub = ub 

self.keep_feasible = keep_feasible 

 

 

class Bounds(object): 

"""Bounds constraint on the variables. 

 

The constraint has the general inequality form:: 

 

lb <= x <= ub 

 

It is possible to use equal bounds to represent an equality constraint or 

infinite bounds to represent a one-sided constraint. 

 

Parameters 

---------- 

lb, ub : array_like, optional 

Lower and upper bounds on independent variables. Each array must 

have the same size as x or be a scalar, in which case a bound will be 

the same for all the variables. Set components of `lb` and `ub` equal 

to fix a variable. Use ``np.inf`` with an appropriate sign to disable 

bounds on all or some variables. Note that you can mix constraints of 

different types: interval, one-sided or equality, by setting different 

components of `lb` and `ub` as necessary. 

keep_feasible : array_like of bool, optional 

Whether to keep the constraint components feasible throughout 

iterations. A single value set this property for all components. 

Default is False. Has no effect for equality constraints. 

""" 

def __init__(self, lb, ub, keep_feasible=False): 

self.lb = lb 

self.ub = ub 

self.keep_feasible = keep_feasible 

 

 

class PreparedConstraint(object): 

"""Constraint prepared from a user defined constraint. 

 

On creation it will check whether a constraint definition is valid and 

the initial point is feasible. If created successfully, it will contain 

the attributes listed below. 

 

Parameters 

---------- 

constraint : {NonlinearConstraint, LinearConstraint`, Bounds} 

Constraint to check and prepare. 

x0 : array_like 

Initial vector of independent variables. 

sparse_jacobian : bool or None, optional 

If bool, then the Jacobian of the constraint will be converted 

to the corresponded format if necessary. If None (default), such 

conversion is not made. 

finite_diff_bounds : 2-tuple, optional 

Lower and upper bounds on the independent variables for the finite 

difference approximation, if applicable. Defaults to no bounds. 

 

Attributes 

---------- 

fun : {VectorFunction, LinearVectorFunction, IdentityVectorFunction} 

Function defining the constraint wrapped by one of the convenience 

classes. 

bounds : 2-tuple 

Contains lower and upper bounds for the constraints --- lb and ub. 

These are converted to ndarray and have a size equal to the number of 

the constraints. 

keep_feasible : ndarray 

Array indicating which components must be kept feasible with a size 

equal to the number of the constraints. 

""" 

def __init__(self, constraint, x0, sparse_jacobian=None, 

finite_diff_bounds=(-np.inf, np.inf)): 

if isinstance(constraint, NonlinearConstraint): 

fun = VectorFunction(constraint.fun, x0, 

constraint.jac, constraint.hess, 

constraint.finite_diff_rel_step, 

constraint.finite_diff_jac_sparsity, 

finite_diff_bounds, sparse_jacobian) 

elif isinstance(constraint, LinearConstraint): 

fun = LinearVectorFunction(constraint.A, x0, sparse_jacobian) 

elif isinstance(constraint, Bounds): 

fun = IdentityVectorFunction(x0, sparse_jacobian) 

else: 

raise ValueError("`constraint` of an unknown type is passed.") 

 

m = fun.m 

lb = np.asarray(constraint.lb, dtype=float) 

ub = np.asarray(constraint.ub, dtype=float) 

if lb.ndim == 0: 

lb = np.resize(lb, m) 

if ub.ndim == 0: 

ub = np.resize(ub, m) 

 

keep_feasible = np.asarray(constraint.keep_feasible, dtype=bool) 

if keep_feasible.ndim == 0: 

keep_feasible = np.resize(keep_feasible, m) 

if keep_feasible.shape != (m,): 

raise ValueError("`keep_feasible` has a wrong shape.") 

 

mask = keep_feasible & (lb != ub) 

f0 = fun.f 

if np.any(f0[mask] < lb[mask]) or np.any(f0[mask] > ub[mask]): 

raise ValueError("`x0` is infeasible with respect to some " 

"inequality constraint with `keep_feasible` " 

"set to True.") 

 

self.fun = fun 

self.bounds = (lb, ub) 

self.keep_feasible = keep_feasible 

 

 

def new_bounds_to_old(lb, ub, n): 

"""Convert the new bounds representation to the old one. 

 

The new representation is a tuple (lb, ub) and the old one is a list 

containing n tuples, i-th containing lower and upper bound on a i-th 

variable. 

""" 

lb = np.asarray(lb) 

ub = np.asarray(ub) 

if lb.ndim == 0: 

lb = np.resize(lb, n) 

if ub.ndim == 0: 

ub = np.resize(ub, n) 

 

lb = [x if x > -np.inf else None for x in lb] 

ub = [x if x < np.inf else None for x in ub] 

 

return list(zip(lb, ub)) 

 

 

def old_bound_to_new(bounds): 

"""Convert the old bounds representation to the new one. 

 

The new representation is a tuple (lb, ub) and the old one is a list 

containing n tuples, i-th containing lower and upper bound on a i-th 

variable. 

""" 

lb, ub = zip(*bounds) 

lb = np.array([x if x is not None else -np.inf for x in lb]) 

ub = np.array([x if x is not None else np.inf for x in ub]) 

return lb, ub 

 

 

def strict_bounds(lb, ub, keep_feasible, n_vars): 

"""Remove bounds which are not asked to be kept feasible.""" 

strict_lb = np.resize(lb, n_vars).astype(float) 

strict_ub = np.resize(ub, n_vars).astype(float) 

keep_feasible = np.resize(keep_feasible, n_vars) 

strict_lb[~keep_feasible] = -np.inf 

strict_ub[~keep_feasible] = np.inf 

return strict_lb, strict_ub