1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

"""Hessian update strategies for quasi-Newton optimization methods.""" 

from __future__ import division, print_function, absolute_import 

import numpy as np 

from numpy.linalg import norm 

from scipy.linalg import get_blas_funcs 

from warnings import warn 

 

 

__all__ = ['HessianUpdateStrategy', 'BFGS', 'SR1'] 

 

 

class HessianUpdateStrategy(object): 

"""Interface for implementing Hessian update strategies. 

 

Many optimization methods make use of Hessian (or inverse Hessian) 

approximations, such as the quasi-Newton methods BFGS, SR1, L-BFGS. 

Some of these approximations, however, do not actually need to store 

the entire matrix or can compute the internal matrix product with a 

given vector in a very efficiently manner. This class serves as an 

abstract interface between the optimization algorithm and the 

quasi-Newton update strategies, giving freedom of implementation 

to store and update the internal matrix as efficiently as possible. 

Different choices of initialization and update procedure will result 

in different quasi-Newton strategies. 

 

Four methods should be implemented in derived classes: ``initialize``, 

``update``, ``dot`` and ``get_matrix``. 

 

Notes 

----- 

Any instance of a class that implements this interface, 

can be accepted by the method ``minimize`` and used by 

the compatible solvers to approximate the Hessian (or 

inverse Hessian) used by the optimization algorithms. 

""" 

 

def initialize(self, n, approx_type): 

"""Initialize internal matrix. 

 

Allocate internal memory for storing and updating 

the Hessian or its inverse. 

 

Parameters 

---------- 

n : int 

Problem dimension. 

approx_type : {'hess', 'inv_hess'} 

Selects either the Hessian or the inverse Hessian. 

When set to 'hess' the Hessian will be stored and updated. 

When set to 'inv_hess' its inverse will be used instead. 

""" 

raise NotImplementedError("The method ``initialize(n, approx_type)``" 

" is not implemented.") 

 

def update(self, delta_x, delta_grad): 

"""Update internal matrix. 

 

Update Hessian matrix or its inverse (depending on how 'approx_type' 

is defined) using information about the last evaluated points. 

 

Parameters 

---------- 

delta_x : ndarray 

The difference between two points the gradient 

function have been evaluated at: ``delta_x = x2 - x1``. 

delta_grad : ndarray 

The difference between the gradients: 

``delta_grad = grad(x2) - grad(x1)``. 

""" 

raise NotImplementedError("The method ``update(delta_x, delta_grad)``" 

" is not implemented.") 

 

def dot(self, p): 

"""Compute the product of the internal matrix with the given vector. 

 

Parameters 

---------- 

p : array_like 

1-d array representing a vector. 

 

Returns 

------- 

Hp : array 

1-d represents the result of multiplying the approximation matrix 

by vector p. 

""" 

raise NotImplementedError("The method ``dot(p)``" 

" is not implemented.") 

 

def get_matrix(self): 

"""Return current internal matrix. 

 

Returns 

------- 

H : ndarray, shape (n, n) 

Dense matrix containing either the Hessian 

or its inverse (depending on how 'approx_type' 

is defined). 

""" 

raise NotImplementedError("The method ``get_matrix(p)``" 

" is not implemented.") 

 

 

class FullHessianUpdateStrategy(HessianUpdateStrategy): 

"""Hessian update strategy with full dimensional internal representation. 

""" 

_syr = get_blas_funcs('syr', dtype='d') # Symmetric rank 1 update 

_syr2 = get_blas_funcs('syr2', dtype='d') # Symmetric rank 2 update 

# Symmetric matrix-vector product 

_symv = get_blas_funcs('symv', dtype='d') 

 

def __init__(self, init_scale='auto'): 

self.init_scale = init_scale 

# Until initialize is called we can't really use the class, 

# so it makes sense to set everything to None. 

self.first_iteration = None 

self.approx_type = None 

self.B = None 

self.H = None 

 

def initialize(self, n, approx_type): 

"""Initialize internal matrix. 

 

Allocate internal memory for storing and updating 

the Hessian or its inverse. 

 

Parameters 

---------- 

n : int 

Problem dimension. 

approx_type : {'hess', 'inv_hess'} 

Selects either the Hessian or the inverse Hessian. 

When set to 'hess' the Hessian will be stored and updated. 

When set to 'inv_hess' its inverse will be used instead. 

""" 

self.first_iteration = True 

self.n = n 

self.approx_type = approx_type 

if approx_type not in ('hess', 'inv_hess'): 

raise ValueError("`approx_type` must be 'hess' or 'inv_hess'.") 

# Create matrix 

if self.approx_type == 'hess': 

self.B = np.eye(n, dtype=float) 

else: 

self.H = np.eye(n, dtype=float) 

 

def _auto_scale(self, delta_x, delta_grad): 

# Heuristic to scale matrix at first iteration. 

# Described in Nocedal and Wright "Numerical Optimization" 

# p.143 formula (6.20). 

s_norm2 = np.dot(delta_x, delta_x) 

y_norm2 = np.dot(delta_grad, delta_grad) 

ys = np.abs(np.dot(delta_grad, delta_x)) 

if ys == 0.0 or y_norm2 == 0 or s_norm2 == 0: 

return 1 

if self.approx_type == 'hess': 

return y_norm2 / ys 

else: 

return ys / y_norm2 

 

def _update_implementation(self, delta_x, delta_grad): 

raise NotImplementedError("The method ``_update_implementation``" 

" is not implemented.") 

 

def update(self, delta_x, delta_grad): 

"""Update internal matrix. 

 

Update Hessian matrix or its inverse (depending on how 'approx_type' 

is defined) using information about the last evaluated points. 

 

Parameters 

---------- 

delta_x : ndarray 

The difference between two points the gradient 

function have been evaluated at: ``delta_x = x2 - x1``. 

delta_grad : ndarray 

The difference between the gradients: 

``delta_grad = grad(x2) - grad(x1)``. 

""" 

if np.all(delta_x == 0.0): 

return 

if np.all(delta_grad == 0.0): 

warn('delta_grad == 0.0. Check if the approximated ' 

'function is linear. If the function is linear ' 

'better results can be obtained by defining the ' 

'Hessian as zero instead of using quasi-Newton ' 

'approximations.', UserWarning) 

return 

if self.first_iteration: 

# Get user specific scale 

if self.init_scale == "auto": 

scale = self._auto_scale(delta_x, delta_grad) 

else: 

scale = float(self.init_scale) 

# Scale initial matrix with ``scale * np.eye(n)`` 

if self.approx_type == 'hess': 

self.B *= scale 

else: 

self.H *= scale 

self.first_iteration = False 

self._update_implementation(delta_x, delta_grad) 

 

def dot(self, p): 

"""Compute the product of the internal matrix with the given vector. 

 

Parameters 

---------- 

p : array_like 

1-d array representing a vector. 

 

Returns 

------- 

Hp : array 

1-d represents the result of multiplying the approximation matrix 

by vector p. 

""" 

if self.approx_type == 'hess': 

return self._symv(1, self.B, p) 

else: 

return self._symv(1, self.H, p) 

 

def get_matrix(self): 

"""Return the current internal matrix. 

 

Returns 

------- 

M : ndarray, shape (n, n) 

Dense matrix containing either the Hessian or its inverse 

(depending on how `approx_type` was defined). 

""" 

if self.approx_type == 'hess': 

M = np.copy(self.B) 

else: 

M = np.copy(self.H) 

li = np.tril_indices_from(M, k=-1) 

M[li] = M.T[li] 

return M 

 

 

class BFGS(FullHessianUpdateStrategy): 

"""Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian update strategy. 

 

Parameters 

---------- 

exception_strategy : {'skip_update', 'damp_update'}, optional 

Define how to proceed when the curvature condition is violated. 

Set it to 'skip_update' to just skip the update. Or, alternatively, 

set it to 'damp_update' to interpolate between the actual BFGS 

result and the unmodified matrix. Both exceptions strategies 

are explained in [1]_, p.536-537. 

min_curvature : float 

This number, scaled by a normalization factor, defines the 

minimum curvature ``dot(delta_grad, delta_x)`` allowed to go 

unaffected by the exception strategy. By default is equal to 

1e-8 when ``exception_strategy = 'skip_update'`` and equal 

to 0.2 when ``exception_strategy = 'damp_update'``. 

init_scale : {float, 'auto'} 

Matrix scale at first iteration. At the first 

iteration the Hessian matrix or its inverse will be initialized 

with ``init_scale*np.eye(n)``, where ``n`` is the problem dimension. 

Set it to 'auto' in order to use an automatic heuristic for choosing 

the initial scale. The heuristic is described in [1]_, p.143. 

By default uses 'auto'. 

 

Notes 

----- 

The update is based on the description in [1]_, p.140. 

 

References 

---------- 

.. [1] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization" 

Second Edition (2006). 

""" 

 

def __init__(self, exception_strategy='skip_update', min_curvature=None, 

init_scale='auto'): 

if exception_strategy == 'skip_update': 

if min_curvature is not None: 

self.min_curvature = min_curvature 

else: 

self.min_curvature = 1e-8 

elif exception_strategy == 'damp_update': 

if min_curvature is not None: 

self.min_curvature = min_curvature 

else: 

self.min_curvature = 0.2 

else: 

raise ValueError("`exception_strategy` must be 'skip_update' " 

"or 'damp_update'.") 

 

super(BFGS, self).__init__(init_scale) 

self.exception_strategy = exception_strategy 

 

def _update_inverse_hessian(self, ys, Hy, yHy, s): 

"""Update the inverse Hessian matrix. 

 

BFGS update using the formula: 

 

``H <- H + ((H*y).T*y + s.T*y)/(s.T*y)^2 * (s*s.T) 

- 1/(s.T*y) * ((H*y)*s.T + s*(H*y).T)`` 

 

where ``s = delta_x`` and ``y = delta_grad``. This formula is 

equivalent to (6.17) in [1]_ written in a more efficient way 

for implementation. 

 

References 

---------- 

.. [1] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization" 

Second Edition (2006). 

""" 

self.H = self._syr2(-1.0 / ys, s, Hy, a=self.H) 

self.H = self._syr((ys+yHy)/ys**2, s, a=self.H) 

 

def _update_hessian(self, ys, Bs, sBs, y): 

"""Update the Hessian matrix. 

 

BFGS update using the formula: 

 

``B <- B - (B*s)*(B*s).T/s.T*(B*s) + y*y^T/s.T*y`` 

 

where ``s`` is short for ``delta_x`` and ``y`` is short 

for ``delta_grad``. Formula (6.19) in [1]_. 

 

References 

---------- 

.. [1] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization" 

Second Edition (2006). 

""" 

self.B = self._syr(1.0 / ys, y, a=self.B) 

self.B = self._syr(-1.0 / sBs, Bs, a=self.B) 

 

def _update_implementation(self, delta_x, delta_grad): 

# Auxiliary variables w and z 

if self.approx_type == 'hess': 

w = delta_x 

z = delta_grad 

else: 

w = delta_grad 

z = delta_x 

# Do some common operations 

wz = np.dot(w, z) 

Mw = self.dot(w) 

wMw = Mw.dot(w) 

# Guarantee that wMw > 0 by reinitializing matrix. 

# While this is always true in exact arithmetics, 

# indefinite matrix may appear due to roundoff errors. 

if wMw <= 0.0: 

scale = self._auto_scale(delta_x, delta_grad) 

# Reinitialize matrix 

if self.approx_type == 'hess': 

self.B = scale * np.eye(self.n, dtype=float) 

else: 

self.H = scale * np.eye(self.n, dtype=float) 

# Do common operations for new matrix 

Mw = self.dot(w) 

wMw = Mw.dot(w) 

# Check if curvature condition is violated 

if wz <= self.min_curvature * wMw: 

# If the option 'skip_update' is set 

# we just skip the update when the condion 

# is violated. 

if self.exception_strategy == 'skip_update': 

return 

# If the option 'damp_update' is set we 

# interpolate between the actual BFGS 

# result and the unmodified matrix. 

elif self.exception_strategy == 'damp_update': 

update_factor = (1-self.min_curvature) / (1 - wz/wMw) 

z = update_factor*z + (1-update_factor)*Mw 

wz = np.dot(w, z) 

# Update matrix 

if self.approx_type == 'hess': 

self._update_hessian(wz, Mw, wMw, z) 

else: 

self._update_inverse_hessian(wz, Mw, wMw, z) 

 

 

class SR1(FullHessianUpdateStrategy): 

"""Symmetric-rank-1 Hessian update strategy. 

 

Parameters 

---------- 

min_denominator : float 

This number, scaled by a normalization factor, 

defines the minimum denominator magnitude allowed 

in the update. When the condition is violated we skip 

the update. By default uses ``1e-8``. 

init_scale : {float, 'auto'}, optional 

Matrix scale at first iteration. At the first 

iteration the Hessian matrix or its inverse will be initialized 

with ``init_scale*np.eye(n)``, where ``n`` is the problem dimension. 

Set it to 'auto' in order to use an automatic heuristic for choosing 

the initial scale. The heuristic is described in [1]_, p.143. 

By default uses 'auto'. 

 

Notes 

----- 

The update is based on the description in [1]_, p.144-146. 

 

References 

---------- 

.. [1] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization" 

Second Edition (2006). 

""" 

 

def __init__(self, min_denominator=1e-8, init_scale='auto'): 

self.min_denominator = min_denominator 

super(SR1, self).__init__(init_scale) 

 

def _update_implementation(self, delta_x, delta_grad): 

# Auxiliary variables w and z 

if self.approx_type == 'hess': 

w = delta_x 

z = delta_grad 

else: 

w = delta_grad 

z = delta_x 

# Do some common operations 

Mw = self.dot(w) 

z_minus_Mw = z - Mw 

denominator = np.dot(w, z_minus_Mw) 

# If the denominator is too small 

# we just skip the update. 

if np.abs(denominator) <= self.min_denominator*norm(w)*norm(z_minus_Mw): 

return 

# Update matrix 

if self.approx_type == 'hess': 

self.B = self._syr(1/denominator, z_minus_Mw, a=self.B) 

else: 

self.H = self._syr(1/denominator, z_minus_Mw, a=self.H)