1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

# Hungarian algorithm (Kuhn-Munkres) for solving the linear sum assignment 

# problem. Taken from scikit-learn. Based on original code by Brian Clapper, 

# adapted to NumPy by Gael Varoquaux. 

# Further improvements by Ben Root, Vlad Niculae and Lars Buitinck. 

# 

# Copyright (c) 2008 Brian M. Clapper <bmc@clapper.org>, Gael Varoquaux 

# Author: Brian M. Clapper, Gael Varoquaux 

# License: 3-clause BSD 

 

import numpy as np 

 

 

def linear_sum_assignment(cost_matrix): 

"""Solve the linear sum assignment problem. 

 

The linear sum assignment problem is also known as minimum weight matching 

in bipartite graphs. A problem instance is described by a matrix C, where 

each C[i,j] is the cost of matching vertex i of the first partite set 

(a "worker") and vertex j of the second set (a "job"). The goal is to find 

a complete assignment of workers to jobs of minimal cost. 

 

Formally, let X be a boolean matrix where :math:`X[i,j] = 1` iff row i is 

assigned to column j. Then the optimal assignment has cost 

 

.. math:: 

\\min \\sum_i \\sum_j C_{i,j} X_{i,j} 

 

s.t. each row is assignment to at most one column, and each column to at 

most one row. 

 

This function can also solve a generalization of the classic assignment 

problem where the cost matrix is rectangular. If it has more rows than 

columns, then not every row needs to be assigned to a column, and vice 

versa. 

 

The method used is the Hungarian algorithm, also known as the Munkres or 

Kuhn-Munkres algorithm. 

 

Parameters 

---------- 

cost_matrix : array 

The cost matrix of the bipartite graph. 

 

Returns 

------- 

row_ind, col_ind : array 

An array of row indices and one of corresponding column indices giving 

the optimal assignment. The cost of the assignment can be computed 

as ``cost_matrix[row_ind, col_ind].sum()``. The row indices will be 

sorted; in the case of a square cost matrix they will be equal to 

``numpy.arange(cost_matrix.shape[0])``. 

 

Notes 

----- 

.. versionadded:: 0.17.0 

 

Examples 

-------- 

>>> cost = np.array([[4, 1, 3], [2, 0, 5], [3, 2, 2]]) 

>>> from scipy.optimize import linear_sum_assignment 

>>> row_ind, col_ind = linear_sum_assignment(cost) 

>>> col_ind 

array([1, 0, 2]) 

>>> cost[row_ind, col_ind].sum() 

5 

 

References 

---------- 

1. http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html 

 

2. Harold W. Kuhn. The Hungarian Method for the assignment problem. 

*Naval Research Logistics Quarterly*, 2:83-97, 1955. 

 

3. Harold W. Kuhn. Variants of the Hungarian method for assignment 

problems. *Naval Research Logistics Quarterly*, 3: 253-258, 1956. 

 

4. Munkres, J. Algorithms for the Assignment and Transportation Problems. 

*J. SIAM*, 5(1):32-38, March, 1957. 

 

5. https://en.wikipedia.org/wiki/Hungarian_algorithm 

""" 

cost_matrix = np.asarray(cost_matrix) 

if len(cost_matrix.shape) != 2: 

raise ValueError("expected a matrix (2-d array), got a %r array" 

% (cost_matrix.shape,)) 

 

if not (np.issubdtype(cost_matrix.dtype, np.number) or 

cost_matrix.dtype == np.dtype(np.bool)): 

raise ValueError("expected a matrix containing numerical entries, got %s" 

% (cost_matrix.dtype,)) 

 

if np.any(np.isinf(cost_matrix) | np.isnan(cost_matrix)): 

raise ValueError("matrix contains invalid numeric entries") 

 

if cost_matrix.dtype == np.dtype(np.bool): 

cost_matrix = cost_matrix.astype(np.int) 

 

# The algorithm expects more columns than rows in the cost matrix. 

if cost_matrix.shape[1] < cost_matrix.shape[0]: 

cost_matrix = cost_matrix.T 

transposed = True 

else: 

transposed = False 

 

state = _Hungary(cost_matrix) 

 

# No need to bother with assignments if one of the dimensions 

# of the cost matrix is zero-length. 

step = None if 0 in cost_matrix.shape else _step1 

 

while step is not None: 

step = step(state) 

 

if transposed: 

marked = state.marked.T 

else: 

marked = state.marked 

return np.where(marked == 1) 

 

 

class _Hungary(object): 

"""State of the Hungarian algorithm. 

 

Parameters 

---------- 

cost_matrix : 2D matrix 

The cost matrix. Must have shape[1] >= shape[0]. 

""" 

 

def __init__(self, cost_matrix): 

self.C = cost_matrix.copy() 

 

n, m = self.C.shape 

self.row_uncovered = np.ones(n, dtype=bool) 

self.col_uncovered = np.ones(m, dtype=bool) 

self.Z0_r = 0 

self.Z0_c = 0 

self.path = np.zeros((n + m, 2), dtype=int) 

self.marked = np.zeros((n, m), dtype=int) 

 

def _clear_covers(self): 

"""Clear all covered matrix cells""" 

self.row_uncovered[:] = True 

self.col_uncovered[:] = True 

 

 

# Individual steps of the algorithm follow, as a state machine: they return 

# the next step to be taken (function to be called), if any. 

 

def _step1(state): 

"""Steps 1 and 2 in the Wikipedia page.""" 

 

# Step 1: For each row of the matrix, find the smallest element and 

# subtract it from every element in its row. 

state.C -= state.C.min(axis=1)[:, np.newaxis] 

# Step 2: Find a zero (Z) in the resulting matrix. If there is no 

# starred zero in its row or column, star Z. Repeat for each element 

# in the matrix. 

for i, j in zip(*np.where(state.C == 0)): 

if state.col_uncovered[j] and state.row_uncovered[i]: 

state.marked[i, j] = 1 

state.col_uncovered[j] = False 

state.row_uncovered[i] = False 

 

state._clear_covers() 

return _step3 

 

 

def _step3(state): 

""" 

Cover each column containing a starred zero. If n columns are covered, 

the starred zeros describe a complete set of unique assignments. 

In this case, Go to DONE, otherwise, Go to Step 4. 

""" 

marked = (state.marked == 1) 

state.col_uncovered[np.any(marked, axis=0)] = False 

 

if marked.sum() < state.C.shape[0]: 

return _step4 

 

 

def _step4(state): 

""" 

Find a noncovered zero and prime it. If there is no starred zero 

in the row containing this primed zero, Go to Step 5. Otherwise, 

cover this row and uncover the column containing the starred 

zero. Continue in this manner until there are no uncovered zeros 

left. Save the smallest uncovered value and Go to Step 6. 

""" 

# We convert to int as numpy operations are faster on int 

C = (state.C == 0).astype(int) 

covered_C = C * state.row_uncovered[:, np.newaxis] 

covered_C *= np.asarray(state.col_uncovered, dtype=int) 

n = state.C.shape[0] 

m = state.C.shape[1] 

 

while True: 

# Find an uncovered zero 

row, col = np.unravel_index(np.argmax(covered_C), (n, m)) 

if covered_C[row, col] == 0: 

return _step6 

else: 

state.marked[row, col] = 2 

# Find the first starred element in the row 

star_col = np.argmax(state.marked[row] == 1) 

if state.marked[row, star_col] != 1: 

# Could not find one 

state.Z0_r = row 

state.Z0_c = col 

return _step5 

else: 

col = star_col 

state.row_uncovered[row] = False 

state.col_uncovered[col] = True 

covered_C[:, col] = C[:, col] * ( 

np.asarray(state.row_uncovered, dtype=int)) 

covered_C[row] = 0 

 

 

def _step5(state): 

""" 

Construct a series of alternating primed and starred zeros as follows. 

Let Z0 represent the uncovered primed zero found in Step 4. 

Let Z1 denote the starred zero in the column of Z0 (if any). 

Let Z2 denote the primed zero in the row of Z1 (there will always be one). 

Continue until the series terminates at a primed zero that has no starred 

zero in its column. Unstar each starred zero of the series, star each 

primed zero of the series, erase all primes and uncover every line in the 

matrix. Return to Step 3 

""" 

count = 0 

path = state.path 

path[count, 0] = state.Z0_r 

path[count, 1] = state.Z0_c 

 

while True: 

# Find the first starred element in the col defined by 

# the path. 

row = np.argmax(state.marked[:, path[count, 1]] == 1) 

if state.marked[row, path[count, 1]] != 1: 

# Could not find one 

break 

else: 

count += 1 

path[count, 0] = row 

path[count, 1] = path[count - 1, 1] 

 

# Find the first prime element in the row defined by the 

# first path step 

col = np.argmax(state.marked[path[count, 0]] == 2) 

if state.marked[row, col] != 2: 

col = -1 

count += 1 

path[count, 0] = path[count - 1, 0] 

path[count, 1] = col 

 

# Convert paths 

for i in range(count + 1): 

if state.marked[path[i, 0], path[i, 1]] == 1: 

state.marked[path[i, 0], path[i, 1]] = 0 

else: 

state.marked[path[i, 0], path[i, 1]] = 1 

 

state._clear_covers() 

# Erase all prime markings 

state.marked[state.marked == 2] = 0 

return _step3 

 

 

def _step6(state): 

""" 

Add the value found in Step 4 to every element of each covered row, 

and subtract it from every element of each uncovered column. 

Return to Step 4 without altering any stars, primes, or covered lines. 

""" 

# the smallest uncovered value in the matrix 

if np.any(state.row_uncovered) and np.any(state.col_uncovered): 

minval = np.min(state.C[state.row_uncovered], axis=0) 

minval = np.min(minval[state.col_uncovered]) 

state.C[~state.row_uncovered] += minval 

state.C[:, state.col_uncovered] -= minval 

return _step4