1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

""" 

An interior-point method for linear programming. 

""" 

# Author: Matt Haberland 

 

from __future__ import print_function, division, absolute_import 

import numpy as np 

import scipy as sp 

import scipy.sparse as sps 

from warnings import warn 

from scipy.linalg import LinAlgError 

from .optimize import OptimizeResult, OptimizeWarning, _check_unknown_options 

from scipy.optimize._remove_redundancy import _remove_redundancy 

from scipy.optimize._remove_redundancy import _remove_redundancy_sparse 

from scipy.optimize._remove_redundancy import _remove_redundancy_dense 

 

 

def _clean_inputs( 

c, 

A_ub=None, 

b_ub=None, 

A_eq=None, 

b_eq=None, 

bounds=None): 

""" 

Given user inputs for a linear programming problem, return the 

objective vector, upper bound constraints, equality constraints, 

and simple bounds in a preferred format. 

 

Parameters 

---------- 

c : array_like 

Coefficients of the linear objective function to be minimized. 

A_ub : array_like, optional 

2-D array which, when matrix-multiplied by ``x``, gives the values of 

the upper-bound inequality constraints at ``x``. 

b_ub : array_like, optional 

1-D array of values representing the upper-bound of each inequality 

constraint (row) in ``A_ub``. 

A_eq : array_like, optional 

2-D array which, when matrix-multiplied by ``x``, gives the values of 

the equality constraints at ``x``. 

b_eq : array_like, optional 

1-D array of values representing the RHS of each equality constraint 

(row) in ``A_eq``. 

bounds : sequence, optional 

``(min, max)`` pairs for each element in ``x``, defining 

the bounds on that parameter. Use None for one of ``min`` or 

``max`` when there is no bound in that direction. By default 

bounds are ``(0, None)`` (non-negative) 

If a sequence containing a single tuple is provided, then ``min`` and 

``max`` will be applied to all variables in the problem. 

 

Returns 

------- 

c : 1-D array 

Coefficients of the linear objective function to be minimized. 

A_ub : 2-D array 

2-D array which, when matrix-multiplied by ``x``, gives the values of 

the upper-bound inequality constraints at ``x``. 

b_ub : 1-D array 

1-D array of values representing the upper-bound of each inequality 

constraint (row) in ``A_ub``. 

A_eq : 2-D array 

2-D array which, when matrix-multiplied by ``x``, gives the values of 

the equality constraints at ``x``. 

b_eq : 1-D array 

1-D array of values representing the RHS of each equality constraint 

(row) in ``A_eq``. 

bounds : sequence of tuples 

``(min, max)`` pairs for each element in ``x``, defining 

the bounds on that parameter. Use None for each of ``min`` or 

``max`` when there is no bound in that direction. By default 

bounds are ``(0, None)`` (non-negative) 

 

""" 

 

try: 

if c is None: 

raise TypeError 

try: 

c = np.asarray(c, dtype=float).copy().squeeze() 

except BaseException: # typically a ValueError and shouldn't be, IMO 

raise TypeError 

if c.size == 1: 

c = c.reshape((-1)) 

n_x = len(c) 

if n_x == 0 or len(c.shape) != 1: 

raise ValueError( 

"Invalid input for linprog: c should be a 1D array; it must " 

"not have more than one non-singleton dimension") 

if not(np.isfinite(c).all()): 

raise ValueError( 

"Invalid input for linprog: c must not contain values " 

"inf, nan, or None") 

except TypeError: 

raise TypeError( 

"Invalid input for linprog: c must be a 1D array of numerical " 

"coefficients") 

 

try: 

try: 

if sps.issparse(A_eq) or sps.issparse(A_ub): 

A_ub = sps.coo_matrix( 

(0, n_x), dtype=float) if A_ub is None else sps.coo_matrix( 

A_ub, dtype=float).copy() 

else: 

A_ub = np.zeros( 

(0, n_x), dtype=float) if A_ub is None else np.asarray( 

A_ub, dtype=float).copy() 

except BaseException: 

raise TypeError 

n_ub = A_ub.shape[0] 

if len(A_ub.shape) != 2 or A_ub.shape[1] != len(c): 

raise ValueError( 

"Invalid input for linprog: A_ub must have exactly two " 

"dimensions, and the number of columns in A_ub must be " 

"equal to the size of c ") 

if (sps.issparse(A_ub) and not np.isfinite(A_ub.data).all() 

or not sps.issparse(A_ub) and not np.isfinite(A_ub).all()): 

raise ValueError( 

"Invalid input for linprog: A_ub must not contain values " 

"inf, nan, or None") 

except TypeError: 

raise TypeError( 

"Invalid input for linprog: A_ub must be a numerical 2D array " 

"with each row representing an upper bound inequality constraint") 

 

try: 

try: 

b_ub = np.array( 

[], dtype=float) if b_ub is None else np.asarray( 

b_ub, dtype=float).copy().squeeze() 

except BaseException: 

raise TypeError 

if b_ub.size == 1: 

b_ub = b_ub.reshape((-1)) 

if len(b_ub.shape) != 1: 

raise ValueError( 

"Invalid input for linprog: b_ub should be a 1D array; it " 

"must not have more than one non-singleton dimension") 

if len(b_ub) != n_ub: 

raise ValueError( 

"Invalid input for linprog: The number of rows in A_ub must " 

"be equal to the number of values in b_ub") 

if not(np.isfinite(b_ub).all()): 

raise ValueError( 

"Invalid input for linprog: b_ub must not contain values " 

"inf, nan, or None") 

except TypeError: 

raise TypeError( 

"Invalid input for linprog: b_ub must be a 1D array of " 

"numerical values, each representing the upper bound of an " 

"inequality constraint (row) in A_ub") 

 

try: 

try: 

if sps.issparse(A_eq) or sps.issparse(A_ub): 

A_eq = sps.coo_matrix( 

(0, n_x), dtype=float) if A_eq is None else sps.coo_matrix( 

A_eq, dtype=float).copy() 

else: 

A_eq = np.zeros( 

(0, n_x), dtype=float) if A_eq is None else np.asarray( 

A_eq, dtype=float).copy() 

except BaseException: 

raise TypeError 

n_eq = A_eq.shape[0] 

if len(A_eq.shape) != 2 or A_eq.shape[1] != len(c): 

raise ValueError( 

"Invalid input for linprog: A_eq must have exactly two " 

"dimensions, and the number of columns in A_eq must be " 

"equal to the size of c ") 

 

if (sps.issparse(A_eq) and not np.isfinite(A_eq.data).all() 

or not sps.issparse(A_eq) and not np.isfinite(A_eq).all()): 

raise ValueError( 

"Invalid input for linprog: A_eq must not contain values " 

"inf, nan, or None") 

except TypeError: 

raise TypeError( 

"Invalid input for linprog: A_eq must be a 2D array with each " 

"row representing an equality constraint") 

 

try: 

try: 

b_eq = np.array( 

[], dtype=float) if b_eq is None else np.asarray( 

b_eq, dtype=float).copy().squeeze() 

except BaseException: 

raise TypeError 

if b_eq.size == 1: 

b_eq = b_eq.reshape((-1)) 

if len(b_eq.shape) != 1: 

raise ValueError( 

"Invalid input for linprog: b_eq should be a 1D array; it " 

"must not have more than one non-singleton dimension") 

if len(b_eq) != n_eq: 

raise ValueError( 

"Invalid input for linprog: the number of rows in A_eq " 

"must be equal to the number of values in b_eq") 

if not(np.isfinite(b_eq).all()): 

raise ValueError( 

"Invalid input for linprog: b_eq must not contain values " 

"inf, nan, or None") 

except TypeError: 

raise TypeError( 

"Invalid input for linprog: b_eq must be a 1D array of " 

"numerical values, each representing the right hand side of an " 

"equality constraints (row) in A_eq") 

 

# "If a sequence containing a single tuple is provided, then min and max 

# will be applied to all variables in the problem." 

# linprog doesn't treat this right: it didn't accept a list with one tuple 

# in it 

try: 

if isinstance(bounds, str): 

raise TypeError 

if bounds is None or len(bounds) == 0: 

bounds = [(0, None)] * n_x 

elif len(bounds) == 1: 

b = bounds[0] 

if len(b) != 2: 

raise ValueError( 

"Invalid input for linprog: exactly one lower bound and " 

"one upper bound must be specified for each element of x") 

bounds = [b] * n_x 

elif len(bounds) == n_x: 

try: 

len(bounds[0]) 

except BaseException: 

bounds = [(bounds[0], bounds[1])] * n_x 

for i, b in enumerate(bounds): 

if len(b) != 2: 

raise ValueError( 

"Invalid input for linprog, bound " + 

str(i) + 

" " + 

str(b) + 

": exactly one lower bound and one upper bound must " 

"be specified for each element of x") 

elif (len(bounds) == 2 and np.isreal(bounds[0]) 

and np.isreal(bounds[1])): 

bounds = [(bounds[0], bounds[1])] * n_x 

else: 

raise ValueError( 

"Invalid input for linprog: exactly one lower bound and one " 

"upper bound must be specified for each element of x") 

 

clean_bounds = [] # also creates a copy so user's object isn't changed 

for i, b in enumerate(bounds): 

if b[0] is not None and b[1] is not None and b[0] > b[1]: 

raise ValueError( 

"Invalid input for linprog, bound " + 

str(i) + 

" " + 

str(b) + 

": a lower bound must be less than or equal to the " 

"corresponding upper bound") 

if b[0] == np.inf: 

raise ValueError( 

"Invalid input for linprog, bound " + 

str(i) + 

" " + 

str(b) + 

": infinity is not a valid lower bound") 

if b[1] == -np.inf: 

raise ValueError( 

"Invalid input for linprog, bound " + 

str(i) + 

" " + 

str(b) + 

": negative infinity is not a valid upper bound") 

lb = float(b[0]) if b[0] is not None and b[0] != -np.inf else None 

ub = float(b[1]) if b[1] is not None and b[1] != np.inf else None 

clean_bounds.append((lb, ub)) 

bounds = clean_bounds 

except ValueError as e: 

if "could not convert string to float" in e.args[0]: 

raise TypeError 

else: 

raise e 

except TypeError as e: 

print(e) 

raise TypeError( 

"Invalid input for linprog: bounds must be a sequence of " 

"(min,max) pairs, each defining bounds on an element of x ") 

 

return c, A_ub, b_ub, A_eq, b_eq, bounds 

 

 

def _presolve(c, A_ub, b_ub, A_eq, b_eq, bounds, rr): 

""" 

Given inputs for a linear programming problem in preferred format, 

presolve the problem: identify trivial infeasibilities, redundancies, 

and unboundedness, tighten bounds where possible, and eliminate fixed 

variables. 

 

Parameters 

---------- 

c : 1-D array 

Coefficients of the linear objective function to be minimized. 

A_ub : 2-D array 

2-D array which, when matrix-multiplied by ``x``, gives the values of 

the upper-bound inequality constraints at ``x``. 

b_ub : 1-D array 

1-D array of values representing the upper-bound of each inequality 

constraint (row) in ``A_ub``. 

A_eq : 2-D array 

2-D array which, when matrix-multiplied by ``x``, gives the values of 

the equality constraints at ``x``. 

b_eq : 1-D array 

1-D array of values representing the RHS of each equality constraint 

(row) in ``A_eq``. 

bounds : sequence of tuples 

``(min, max)`` pairs for each element in ``x``, defining 

the bounds on that parameter. Use None for each of ``min`` or 

``max`` when there is no bound in that direction. 

 

Returns 

------- 

c : 1-D array 

Coefficients of the linear objective function to be minimized. 

c0 : 1-D array 

Constant term in objective function due to fixed (and eliminated) 

variables. 

A_ub : 2-D array 

2-D array which, when matrix-multiplied by ``x``, gives the values of 

the upper-bound inequality constraints at ``x``. Unnecessary 

rows/columns have been removed. 

b_ub : 1-D array 

1-D array of values representing the upper-bound of each inequality 

constraint (row) in ``A_ub``. Unnecessary elements have been removed. 

A_eq : 2-D array 

2-D array which, when matrix-multiplied by ``x``, gives the values of 

the equality constraints at ``x``. Unnecessary rows/columns have been 

removed. 

b_eq : 1-D array 

1-D array of values representing the RHS of each equality constraint 

(row) in ``A_eq``. Unnecessary elements have been removed. 

bounds : sequence of tuples 

``(min, max)`` pairs for each element in ``x``, defining 

the bounds on that parameter. Use None for each of ``min`` or 

``max`` when there is no bound in that direction. Bounds have been 

tightened where possible. 

x : 1-D array 

Solution vector (when the solution is trivial and can be determined 

in presolve) 

undo: list of tuples 

(index, value) pairs that record the original index and fixed value 

for each variable removed from the problem 

complete: bool 

Whether the solution is complete (solved or determined to be infeasible 

or unbounded in presolve) 

status : int 

An integer representing the exit status of the optimization:: 

 

0 : Optimization terminated successfully 

1 : Iteration limit reached 

2 : Problem appears to be infeasible 

3 : Problem appears to be unbounded 

 

message : str 

A string descriptor of the exit status of the optimization. 

 

References 

---------- 

.. [2] Andersen, Erling D. "Finding all linearly dependent rows in 

large-scale linear programming." Optimization Methods and Software 

6.3 (1995): 219-227. 

.. [5] Andersen, Erling D., and Knud D. Andersen. "Presolving in linear 

programming." Mathematical Programming 71.2 (1995): 221-245. 

 

""" 

# ideas from Reference [5] by Andersen and Andersen 

# however, unlike the reference, this is performed before converting 

# problem to standard form 

# There are a few advantages: 

# * artificial variables have not been added, so matrices are smaller 

# * bounds have not been converted to constraints yet. (It is better to 

# do that after presolve because presolve may adjust the simple bounds.) 

# There are many improvements that can be made, namely: 

# * implement remaining checks from [5] 

# * loop presolve until no additional changes are made 

# * implement additional efficiency improvements in redundancy removal [2] 

 

tol = 1e-9 # tolerance for equality. should this be exposed to user? 

 

undo = [] # record of variables eliminated from problem 

# constant term in cost function may be added if variables are eliminated 

c0 = 0 

complete = False # complete is True if detected infeasible/unbounded 

x = np.zeros(c.shape) # this is solution vector if completed in presolve 

 

status = 0 # all OK unless determined otherwise 

message = "" 

 

# Standard form for bounds (from _clean_inputs) is list of tuples 

# but numpy array is more convenient here 

# In retrospect, numpy array should have been the standard 

bounds = np.array(bounds) 

lb = bounds[:, 0] 

ub = bounds[:, 1] 

lb[np.equal(lb, None)] = -np.inf 

ub[np.equal(ub, None)] = np.inf 

bounds = bounds.astype(float) 

lb = lb.astype(float) 

ub = ub.astype(float) 

 

m_eq, n = A_eq.shape 

m_ub, n = A_ub.shape 

 

if (sps.issparse(A_eq)): 

A_eq = A_eq.tolil() 

A_ub = A_ub.tolil() 

 

def where(A): 

return A.nonzero() 

 

vstack = sps.vstack 

else: 

where = np.where 

vstack = np.vstack 

 

# zero row in equality constraints 

zero_row = np.array(np.sum(A_eq != 0, axis=1) == 0).flatten() 

if np.any(zero_row): 

if np.any( 

np.logical_and( 

zero_row, 

np.abs(b_eq) > tol)): # test_zero_row_1 

# infeasible if RHS is not zero 

status = 2 

message = ("The problem is (trivially) infeasible due to a row " 

"of zeros in the equality constraint matrix with a " 

"nonzero corresponding constraint value.") 

complete = True 

return (c, c0, A_ub, b_ub, A_eq, b_eq, bounds, 

x, undo, complete, status, message) 

else: # test_zero_row_2 

# if RHS is zero, we can eliminate this equation entirely 

A_eq = A_eq[np.logical_not(zero_row), :] 

b_eq = b_eq[np.logical_not(zero_row)] 

 

# zero row in inequality constraints 

zero_row = np.array(np.sum(A_ub != 0, axis=1) == 0).flatten() 

if np.any(zero_row): 

if np.any(np.logical_and(zero_row, b_ub < -tol)): # test_zero_row_1 

# infeasible if RHS is less than zero (because LHS is zero) 

status = 2 

message = ("The problem is (trivially) infeasible due to a row " 

"of zeros in the equality constraint matrix with a " 

"nonzero corresponding constraint value.") 

complete = True 

return (c, c0, A_ub, b_ub, A_eq, b_eq, bounds, 

x, undo, complete, status, message) 

else: # test_zero_row_2 

# if LHS is >= 0, we can eliminate this constraint entirely 

A_ub = A_ub[np.logical_not(zero_row), :] 

b_ub = b_ub[np.logical_not(zero_row)] 

 

# zero column in (both) constraints 

# this indicates that a variable isn't constrained and can be removed 

A = vstack((A_eq, A_ub)) 

if A.shape[0] > 0: 

zero_col = np.array(np.sum(A != 0, axis=0) == 0).flatten() 

# variable will be at upper or lower bound, depending on objective 

x[np.logical_and(zero_col, c < 0)] = ub[ 

np.logical_and(zero_col, c < 0)] 

x[np.logical_and(zero_col, c > 0)] = lb[ 

np.logical_and(zero_col, c > 0)] 

if np.any(np.isinf(x)): # if an unconstrained variable has no bound 

status = 3 

message = ("If feasible, the problem is (trivially) unbounded " 

"due to a zero column in the constraint matrices. If " 

"you wish to check whether the problem is infeasible, " 

"turn presolve off.") 

complete = True 

return (c, c0, A_ub, b_ub, A_eq, b_eq, bounds, 

x, undo, complete, status, message) 

# variables will equal upper/lower bounds will be removed later 

lb[np.logical_and(zero_col, c < 0)] = ub[ 

np.logical_and(zero_col, c < 0)] 

ub[np.logical_and(zero_col, c > 0)] = lb[ 

np.logical_and(zero_col, c > 0)] 

 

# row singleton in equality constraints 

# this fixes a variable and removes the constraint 

singleton_row = np.array(np.sum(A_eq != 0, axis=1) == 1).flatten() 

rows = where(singleton_row)[0] 

cols = where(A_eq[rows, :])[1] 

if len(rows) > 0: 

for row, col in zip(rows, cols): 

val = b_eq[row] / A_eq[row, col] 

if not lb[col] - tol <= val <= ub[col] + tol: 

# infeasible if fixed value is not within bounds 

status = 2 

message = ("The problem is (trivially) infeasible because a " 

"singleton row in the equality constraints is " 

"inconsistent with the bounds.") 

complete = True 

return (c, c0, A_ub, b_ub, A_eq, b_eq, bounds, 

x, undo, complete, status, message) 

else: 

# sets upper and lower bounds at that fixed value - variable 

# will be removed later 

lb[col] = val 

ub[col] = val 

A_eq = A_eq[np.logical_not(singleton_row), :] 

b_eq = b_eq[np.logical_not(singleton_row)] 

 

# row singleton in inequality constraints 

# this indicates a simple bound and the constraint can be removed 

# simple bounds may be adjusted here 

# After all of the simple bound information is combined here, get_Abc will 

# turn the simple bounds into constraints 

singleton_row = np.array(np.sum(A_ub != 0, axis=1) == 1).flatten() 

cols = where(A_ub[singleton_row, :])[1] 

rows = where(singleton_row)[0] 

if len(rows) > 0: 

for row, col in zip(rows, cols): 

val = b_ub[row] / A_ub[row, col] 

if A_ub[row, col] > 0: # upper bound 

if val < lb[col] - tol: # infeasible 

complete = True 

elif val < ub[col]: # new upper bound 

ub[col] = val 

else: # lower bound 

if val > ub[col] + tol: # infeasible 

complete = True 

elif val > lb[col]: # new lower bound 

lb[col] = val 

if complete: 

status = 2 

message = ("The problem is (trivially) infeasible because a " 

"singleton row in the upper bound constraints is " 

"inconsistent with the bounds.") 

return (c, c0, A_ub, b_ub, A_eq, b_eq, bounds, 

x, undo, complete, status, message) 

A_ub = A_ub[np.logical_not(singleton_row), :] 

b_ub = b_ub[np.logical_not(singleton_row)] 

 

# identical bounds indicate that variable can be removed 

i_f = np.abs(lb - ub) < tol # indices of "fixed" variables 

i_nf = np.logical_not(i_f) # indices of "not fixed" variables 

 

# test_bounds_equal_but_infeasible 

if np.all(i_f): # if bounds define solution, check for consistency 

residual = b_eq - A_eq.dot(lb) 

slack = b_ub - A_ub.dot(lb) 

if ((A_ub.size > 0 and np.any(slack < 0)) or 

(A_eq.size > 0 and not np.allclose(residual, 0))): 

status = 2 

message = ("The problem is (trivially) infeasible because the " 

"bounds fix all variables to values inconsistent with " 

"the constraints") 

complete = True 

return (c, c0, A_ub, b_ub, A_eq, b_eq, bounds, 

x, undo, complete, status, message) 

 

ub_mod = ub 

lb_mod = lb 

if np.any(i_f): 

c0 += c[i_f].dot(lb[i_f]) 

b_eq = b_eq - A_eq[:, i_f].dot(lb[i_f]) 

b_ub = b_ub - A_ub[:, i_f].dot(lb[i_f]) 

c = c[i_nf] 

x = x[i_nf] 

A_eq = A_eq[:, i_nf] 

A_ub = A_ub[:, i_nf] 

# record of variables to be added back in 

undo = [np.where(i_f)[0], lb[i_f]] 

# don't remove these entries from bounds; they'll be used later. 

# but we _also_ need a version of the bounds with these removed 

lb_mod = lb[i_nf] 

ub_mod = ub[i_nf] 

 

# no constraints indicates that problem is trivial 

if A_eq.size == 0 and A_ub.size == 0: 

b_eq = np.array([]) 

b_ub = np.array([]) 

# test_empty_constraint_1 

if c.size == 0: 

status = 0 

message = ("The solution was determined in presolve as there are " 

"no non-trivial constraints.") 

elif (np.any(np.logical_and(c < 0, ub == np.inf)) or 

np.any(np.logical_and(c > 0, lb == -np.inf))): 

# test_no_constraints() 

status = 3 

message = ("If feasible, the problem is (trivially) unbounded " 

"because there are no constraints and at least one " 

"element of c is negative. If you wish to check " 

"whether the problem is infeasible, turn presolve " 

"off.") 

else: # test_empty_constraint_2 

status = 0 

message = ("The solution was determined in presolve as there are " 

"no non-trivial constraints.") 

complete = True 

x[c < 0] = ub_mod[c < 0] 

x[c > 0] = lb_mod[c > 0] 

# if this is not the last step of presolve, should convert bounds back 

# to array and return here 

 

# *sigh* - convert bounds back to their standard form (list of tuples) 

# again, in retrospect, numpy array would be standard form 

lb[np.equal(lb, -np.inf)] = None 

ub[np.equal(ub, np.inf)] = None 

bounds = np.hstack((lb[:, np.newaxis], ub[:, np.newaxis])) 

bounds = bounds.tolist() 

for i, row in enumerate(bounds): 

for j, col in enumerate(row): 

if str( 

col) == "nan": # comparing col to float("nan") and 

# np.nan doesn't work. should use np.isnan 

bounds[i][j] = None 

 

# remove redundant (linearly dependent) rows from equality constraints 

n_rows_A = A_eq.shape[0] 

redundancy_warning = ("A_eq does not appear to be of full row rank. To " 

"improve performance, check the problem formulation " 

"for redundant equality constraints.") 

if (sps.issparse(A_eq)): 

if rr and A_eq.size > 0: # TODO: Fast sparse rank check? 

A_eq, b_eq, status, message = _remove_redundancy_sparse(A_eq, b_eq) 

if A_eq.shape[0] < n_rows_A: 

warn(redundancy_warning, OptimizeWarning) 

if status != 0: 

complete = True 

return (c, c0, A_ub, b_ub, A_eq, b_eq, bounds, 

x, undo, complete, status, message) 

 

# This is a wild guess for which redundancy removal algorithm will be 

# faster. More testing would be good. 

small_nullspace = 5 

if rr and A_eq.size > 0: 

try: # TODO: instead use results of first SVD in _remove_redundancy 

rank = np.linalg.matrix_rank(A_eq) 

except: # oh well, we'll have to go with _remove_redundancy_dense 

rank = 0 

if rr and A_eq.size > 0 and rank < A_eq.shape[0]: 

warn(redundancy_warning, OptimizeWarning) 

dim_row_nullspace = A_eq.shape[0]-rank 

if dim_row_nullspace <= small_nullspace: 

A_eq, b_eq, status, message = _remove_redundancy(A_eq, b_eq) 

if dim_row_nullspace > small_nullspace or status == 4: 

A_eq, b_eq, status, message = _remove_redundancy_dense(A_eq, b_eq) 

if A_eq.shape[0] < rank: 

message = ("Due to numerical issues, redundant equality " 

"constraints could not be removed automatically. " 

"Try providing your constraint matrices as sparse " 

"matrices to activate sparse presolve, try turning " 

"off redundancy removal, or try turning off presolve " 

"altogether.") 

status = 4 

if status != 0: 

complete = True 

return (c, c0, A_ub, b_ub, A_eq, b_eq, bounds, 

x, undo, complete, status, message) 

 

 

def _get_Abc( 

c, 

c0=0, 

A_ub=None, 

b_ub=None, 

A_eq=None, 

b_eq=None, 

bounds=None, 

undo=[]): 

""" 

Given a linear programming problem of the form: 

 

minimize: c^T * x 

 

subject to: A_ub * x <= b_ub 

A_eq * x == b_eq 

bounds[i][0] < x_i < bounds[i][1] 

 

return the problem in standard form: 

minimize: c'^T * x' 

 

subject to: A * x' == b 

0 < x' < oo 

 

by adding slack variables and making variable substitutions as necessary. 

 

Parameters 

---------- 

c : 1-D array 

Coefficients of the linear objective function to be minimized. 

Components corresponding with fixed variables have been eliminated. 

c0 : float 

Constant term in objective function due to fixed (and eliminated) 

variables. 

A_ub : 2-D array 

2-D array which, when matrix-multiplied by ``x``, gives the values of 

the upper-bound inequality constraints at ``x``. Unnecessary 

rows/columns have been removed. 

b_ub : 1-D array 

1-D array of values representing the upper-bound of each inequality 

constraint (row) in ``A_ub``. Unnecessary elements have been removed. 

A_eq : 2-D array 

2-D array which, when matrix-multiplied by ``x``, gives the values of 

the equality constraints at ``x``. Unnecessary rows/columns have been 

removed. 

b_eq : 1-D array 

1-D array of values representing the RHS of each equality constraint 

(row) in ``A_eq``. Unnecessary elements have been removed. 

bounds : sequence of tuples 

``(min, max)`` pairs for each element in ``x``, defining 

the bounds on that parameter. Use None for each of ``min`` or 

``max`` when there is no bound in that direction. Bounds have been 

tightened where possible. 

undo: list of tuples 

(`index`, `value`) pairs that record the original index and fixed value 

for each variable removed from the problem 

 

Returns 

------- 

A : 2-D array 

2-D array which, when matrix-multiplied by x, gives the values of the 

equality constraints at x (for standard form problem). 

b : 1-D array 

1-D array of values representing the RHS of each equality constraint 

(row) in A (for standard form problem). 

c : 1-D array 

Coefficients of the linear objective function to be minimized (for 

standard form problem). 

c0 : float 

Constant term in objective function due to fixed (and eliminated) 

variables. 

 

References 

---------- 

.. [6] Bertsimas, Dimitris, and J. Tsitsiklis. "Introduction to linear 

programming." Athena Scientific 1 (1997): 997. 

 

""" 

 

if sps.issparse(A_eq): 

sparse = True 

A_eq = sps.lil_matrix(A_eq) 

A_ub = sps.lil_matrix(A_ub) 

 

def hstack(blocks): 

return sps.hstack(blocks, format="lil") 

 

def vstack(blocks): 

return sps.vstack(blocks, format="lil") 

 

zeros = sps.lil_matrix 

eye = sps.eye 

else: 

sparse = False 

hstack = np.hstack 

vstack = np.vstack 

zeros = np.zeros 

eye = np.eye 

 

fixed_x = set() 

if len(undo) > 0: 

# these are indices of variables removed from the problem 

# however, their bounds are still part of the bounds list 

fixed_x = set(undo[0]) 

# they are needed elsewhere, but not here 

bounds = [bounds[i] for i in range(len(bounds)) if i not in fixed_x] 

# in retrospect, the standard form of bounds should have been an n x 2 

# array. maybe change it someday. 

 

# modify problem such that all variables have only non-negativity bounds 

 

bounds = np.array(bounds) 

lbs = bounds[:, 0] 

ubs = bounds[:, 1] 

m_ub, n_ub = A_ub.shape 

 

lb_none = np.equal(lbs, None) 

ub_none = np.equal(ubs, None) 

lb_some = np.logical_not(lb_none) 

ub_some = np.logical_not(ub_none) 

 

# if preprocessing is on, lb == ub can't happen 

# if preprocessing is off, then it would be best to convert that 

# to an equality constraint, but it's tricky to make the other 

# required modifications from inside here. 

 

# unbounded below: substitute xi = -xi' (unbounded above) 

l_nolb_someub = np.logical_and(lb_none, ub_some) 

i_nolb = np.where(l_nolb_someub)[0] 

lbs[l_nolb_someub], ubs[l_nolb_someub] = ( 

-ubs[l_nolb_someub], lbs[l_nolb_someub]) 

lb_none = np.equal(lbs, None) 

ub_none = np.equal(ubs, None) 

lb_some = np.logical_not(lb_none) 

ub_some = np.logical_not(ub_none) 

c[i_nolb] *= -1 

if len(i_nolb) > 0: 

if A_ub.shape[0] > 0: # sometimes needed for sparse arrays... weird 

A_ub[:, i_nolb] *= -1 

if A_eq.shape[0] > 0: 

A_eq[:, i_nolb] *= -1 

 

# upper bound: add inequality constraint 

i_newub = np.where(ub_some)[0] 

ub_newub = ubs[ub_some] 

n_bounds = np.count_nonzero(ub_some) 

A_ub = vstack((A_ub, zeros((n_bounds, A_ub.shape[1])))) 

b_ub = np.concatenate((b_ub, np.zeros(n_bounds))) 

A_ub[range(m_ub, A_ub.shape[0]), i_newub] = 1 

b_ub[m_ub:] = ub_newub 

 

A1 = vstack((A_ub, A_eq)) 

b = np.concatenate((b_ub, b_eq)) 

c = np.concatenate((c, np.zeros((A_ub.shape[0],)))) 

 

# unbounded: substitute xi = xi+ + xi- 

l_free = np.logical_and(lb_none, ub_none) 

i_free = np.where(l_free)[0] 

n_free = len(i_free) 

A1 = hstack((A1, zeros((A1.shape[0], n_free)))) 

c = np.concatenate((c, np.zeros(n_free))) 

A1[:, range(n_ub, A1.shape[1])] = -A1[:, i_free] 

c[np.arange(n_ub, A1.shape[1])] = -c[i_free] 

 

# add slack variables 

A2 = vstack([eye(A_ub.shape[0]), zeros((A_eq.shape[0], A_ub.shape[0]))]) 

A = hstack([A1, A2]) 

 

# lower bound: substitute xi = xi' + lb 

# now there is a constant term in objective 

i_shift = np.where(lb_some)[0] 

lb_shift = lbs[lb_some].astype(float) 

c0 += np.sum(lb_shift * c[i_shift]) 

if sparse: 

b = b.reshape(-1, 1) 

A = A.tocsc() 

b -= (A[:, i_shift] * sps.diags(lb_shift)).sum(axis=1) 

b = b.ravel() 

else: 

b -= (A[:, i_shift] * lb_shift).sum(axis=1) 

 

return A, b, c, c0 

 

 

def _postprocess( 

x, 

c, 

A_ub=None, 

b_ub=None, 

A_eq=None, 

b_eq=None, 

bounds=None, 

complete=False, 

undo=[], 

status=0, 

message="", 

tol=1e-8): 

""" 

Given solution x to presolved, standard form linear program x, add 

fixed variables back into the problem and undo the variable substitutions 

to get solution to original linear program. Also, calculate the objective 

function value, slack in original upper bound constraints, and residuals 

in original equality constraints. 

 

Parameters 

---------- 

x : 1-D array 

Solution vector to the standard-form problem. 

c : 1-D array 

Original coefficients of the linear objective function to be minimized. 

A_ub : 2-D array 

Original upper bound constraint matrix. 

b_ub : 1-D array 

Original upper bound constraint vector. 

A_eq : 2-D array 

Original equality constraint matrix. 

b_eq : 1-D array 

Original equality constraint vector. 

bounds : sequence of tuples 

Bounds, as modified in presolve 

complete : bool 

Whether the solution is was determined in presolve (``True`` if so) 

undo: list of tuples 

(`index`, `value`) pairs that record the original index and fixed value 

for each variable removed from the problem 

status : int 

An integer representing the exit status of the optimization:: 

 

0 : Optimization terminated successfully 

1 : Iteration limit reached 

2 : Problem appears to be infeasible 

3 : Problem appears to be unbounded 

4 : Serious numerical difficulties encountered 

 

message : str 

A string descriptor of the exit status of the optimization. 

tol : float 

Termination tolerance; see [1]_ Section 4.5. 

 

Returns 

------- 

x : 1-D array 

Solution vector to original linear programming problem 

fun: float 

optimal objective value for original problem 

slack: 1-D array 

The (non-negative) slack in the upper bound constraints, that is, 

``b_ub - A_ub * x`` 

con : 1-D array 

The (nominally zero) residuals of the equality constraints, that is, 

``b - A_eq * x`` 

status : int 

An integer representing the exit status of the optimization:: 

 

0 : Optimization terminated successfully 

1 : Iteration limit reached 

2 : Problem appears to be infeasible 

3 : Problem appears to be unbounded 

4 : Serious numerical difficulties encountered 

 

message : str 

A string descriptor of the exit status of the optimization. 

 

""" 

# note that all the inputs are the ORIGINAL, unmodified versions 

# no rows, columns have been removed 

# the only exception is bounds; it has been modified 

# we need these modified values to undo the variable substitutions 

# in retrospect, perhaps this could have been simplified if the "undo" 

# variable also contained information for undoing variable substitutions 

 

n_x = len(c) 

 

# we don't have to undo variable substitutions for fixed variables that 

# were removed from the problem 

no_adjust = set() 

 

# if there were variables removed from the problem, add them back into the 

# solution vector 

if len(undo) > 0: 

no_adjust = set(undo[0]) 

x = x.tolist() 

for i, val in zip(undo[0], undo[1]): 

x.insert(i, val) 

x = np.array(x) 

 

# now undo variable substitutions 

# if "complete", problem was solved in presolve; don't do anything here 

if not complete and bounds is not None: # bounds are never none, probably 

n_unbounded = 0 

for i, b in enumerate(bounds): 

if i in no_adjust: 

continue 

lb, ub = b 

if lb is None and ub is None: 

n_unbounded += 1 

x[i] = x[i] - x[n_x + n_unbounded - 1] 

else: 

if lb is None: 

x[i] = ub - x[i] 

else: 

x[i] += lb 

 

n_x = len(c) 

x = x[:n_x] # all the rest of the variables were artificial 

fun = x.dot(c) 

slack = b_ub - A_ub.dot(x) # report slack for ORIGINAL UB constraints 

# report residuals of ORIGINAL EQ constraints 

con = b_eq - A_eq.dot(x) 

 

# Patch for bug #8664. Detecting this sort of issue earlier 

# (via abnormalities in the indicators) would be better. 

bounds = np.array(bounds) # again, this should have been the standard form 

lb = bounds[:, 0] 

ub = bounds[:, 1] 

lb[np.equal(lb, None)] = -np.inf 

ub[np.equal(ub, None)] = np.inf 

tol = np.sqrt(tol) # Somewhat arbitrary, but status 5 is very unusual 

if status == 0 and ((slack < -tol).any() or (np.abs(con) > tol).any() or 

(x < lb - tol).any() or (x > ub + tol).any()): 

status = 4 

message = ("The solution does not satisfy the constraints, yet " 

"no errors were raised and there is no certificate of " 

"infeasibility or unboundedness. This is known to occur " 

"if the `presolve` option is False and the problem is " 

"infeasible. If you uncounter this under different " 

"circumstances, please submit a bug report. Otherwise, " 

"please enable presolve.") 

elif status == 0 and (np.isnan(x).any() or np.isnan(fun) or 

np.isnan(slack).any() or np.isnan(con).any()): 

status = 4 

message = ("Numerical difficulties were encountered but no errors " 

"were raised. This is known to occur if the 'presolve' " 

"option is False, 'sparse' is True, and A_eq includes " 

"redundant rows. If you encounter this under different " 

"circumstances, please submit a bug report. Otherwise, " 

"remove linearly dependent equations from your equality " 

"constraints or enable presolve.") 

 

return x, fun, slack, con, status, message 

 

 

def _get_solver(sparse=False, lstsq=False, sym_pos=True, cholesky=True): 

""" 

Given solver options, return a handle to the appropriate linear system 

solver. 

 

Parameters 

---------- 

sparse : bool 

True if the system to be solved is sparse. This is typically set 

True when the original ``A_ub`` and ``A_eq`` arrays are sparse. 

lstsq : bool 

True if the system is ill-conditioned and/or (nearly) singular and 

thus a more robust least-squares solver is desired. This is sometimes 

needed as the solution is approached. 

sym_pos : bool 

True if the system matrix is symmetric positive definite 

Sometimes this needs to be set false as the solution is approached, 

even when the system should be symmetric positive definite, due to 

numerical difficulties. 

cholesky : bool 

True if the system is to be solved by Cholesky, rather than LU, 

decomposition. This is typically faster unless the problem is very 

small or prone to numerical difficulties. 

 

Returns 

------- 

solve : function 

Handle to the appropriate solver function 

 

""" 

if sparse: 

if lstsq or not(sym_pos): 

def solve(M, r, sym_pos=False): 

return sps.linalg.lsqr(M, r)[0] 

else: 

# this is not currently used; it is replaced by splu solve 

# TODO: expose use of this as an option 

def solve(M, r): 

return sps.linalg.spsolve(M, r, permc_spec="MMD_AT_PLUS_A") 

 

else: 

if lstsq: # sometimes necessary as solution is approached 

def solve(M, r): 

return sp.linalg.lstsq(M, r)[0] 

elif cholesky: 

solve = sp.linalg.cho_solve 

else: 

# this seems to cache the matrix factorization, so solving 

# with multiple right hand sides is much faster 

def solve(M, r, sym_pos=sym_pos): 

return sp.linalg.solve(M, r, sym_pos=sym_pos) 

 

return solve 

 

 

def _get_delta( 

A, 

b, 

c, 

x, 

y, 

z, 

tau, 

kappa, 

gamma, 

eta, 

sparse=False, 

lstsq=False, 

sym_pos=True, 

cholesky=True, 

pc=True, 

ip=False, 

permc_spec='MMD_AT_PLUS_A'): 

""" 

Given standard form problem defined by ``A``, ``b``, and ``c``; 

current variable estimates ``x``, ``y``, ``z``, ``tau``, and ``kappa``; 

algorithmic parameters ``gamma and ``eta; 

and options ``sparse``, ``lstsq``, ``sym_pos``, ``cholesky``, ``pc`` 

(predictor-corrector), and ``ip`` (initial point improvement), 

get the search direction for increments to the variable estimates. 

 

Parameters 

---------- 

As defined in [1], except: 

sparse : bool 

True if the system to be solved is sparse. This is typically set 

True when the original ``A_ub`` and ``A_eq`` arrays are sparse. 

lstsq : bool 

True if the system is ill-conditioned and/or (nearly) singular and 

thus a more robust least-squares solver is desired. This is sometimes 

needed as the solution is approached. 

sym_pos : bool 

True if the system matrix is symmetric positive definite 

Sometimes this needs to be set false as the solution is approached, 

even when the system should be symmetric positive definite, due to 

numerical difficulties. 

cholesky : bool 

True if the system is to be solved by Cholesky, rather than LU, 

decomposition. This is typically faster unless the problem is very 

small or prone to numerical difficulties. 

pc : bool 

True if the predictor-corrector method of Mehrota is to be used. This 

is almost always (if not always) beneficial. Even though it requires 

the solution of an additional linear system, the factorization 

is typically (implicitly) reused so solution is efficient, and the 

number of algorithm iterations is typically reduced. 

ip : bool 

True if the improved initial point suggestion due to [1] section 4.3 

is desired. It's unclear whether this is beneficial. 

permc_spec : str (default = 'MMD_AT_PLUS_A') 

(Has effect only with ``sparse = True``, ``lstsq = False``, ``sym_pos = 

True``.) A matrix is factorized in each iteration of the algorithm. 

This option specifies how to permute the columns of the matrix for 

sparsity preservation. Acceptable values are: 

 

- ``NATURAL``: natural ordering. 

- ``MMD_ATA``: minimum degree ordering on the structure of A^T A. 

- ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A. 

- ``COLAMD``: approximate minimum degree column ordering. 

 

This option can impact the convergence of the 

interior point algorithm; test different values to determine which 

performs best for your problem. For more information, refer to 

``scipy.sparse.linalg.splu``. 

 

Returns 

------- 

Search directions as defined in [1] 

 

References 

---------- 

.. [1] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point 

optimizer for linear programming: an implementation of the 

homogeneous algorithm." High performance optimization. Springer US, 

2000. 197-232. 

 

""" 

 

if A.shape[0] == 0: 

# If there are no constraints, some solvers fail (understandably) 

# rather than returning empty solution. This gets the job done. 

sparse, lstsq, sym_pos, cholesky = False, False, True, False 

solve = _get_solver(sparse, lstsq, sym_pos, cholesky) 

n_x = len(x) 

 

# [1] Equation 8.8 

r_P = b * tau - A.dot(x) 

r_D = c * tau - A.T.dot(y) - z 

r_G = c.dot(x) - b.transpose().dot(y) + kappa 

mu = (x.dot(z) + tau * kappa) / (n_x + 1) 

 

# Assemble M from [1] Equation 8.31 

Dinv = x / z 

splu = False 

if sparse and not lstsq: 

# sparse requires Dinv to be diag matrix 

M = A.dot(sps.diags(Dinv, 0, format="csc").dot(A.T)) 

try: 

# TODO: should use linalg.factorized instead, but I don't have 

# umfpack and therefore cannot test its performance 

solve = sps.linalg.splu(M, permc_spec=permc_spec).solve 

splu = True 

except: 

lstsq = True 

solve = _get_solver(sparse, lstsq, sym_pos, cholesky) 

else: 

# dense does not; use broadcasting 

M = A.dot(Dinv.reshape(-1, 1) * A.T) 

 

# For some small problems, calling sp.linalg.solve w/ sym_pos = True 

# may be faster. I am pretty certain it caches the factorization for 

# multiple uses and checks the incoming matrix to see if it's the same as 

# the one it already factorized. (I can't explain the speed otherwise.) 

if cholesky: 

try: 

L = sp.linalg.cho_factor(M) 

except: 

cholesky = False 

solve = _get_solver(sparse, lstsq, sym_pos, cholesky) 

 

# pc: "predictor-corrector" [1] Section 4.1 

# In development this option could be turned off 

# but it always seems to improve performance substantially 

n_corrections = 1 if pc else 0 

 

i = 0 

alpha, d_x, d_z, d_tau, d_kappa = 0, 0, 0, 0, 0 

while i <= n_corrections: 

# Reference [1] Eq. 8.6 

rhatp = eta(gamma) * r_P 

rhatd = eta(gamma) * r_D 

rhatg = np.array(eta(gamma) * r_G).reshape((1,)) 

 

# Reference [1] Eq. 8.7 

rhatxs = gamma * mu - x * z 

rhattk = np.array(gamma * mu - tau * kappa).reshape((1,)) 

 

if i == 1: 

if ip: # if the correction is to get "initial point" 

# Reference [1] Eq. 8.23 

rhatxs = ((1 - alpha) * gamma * mu - 

x * z - alpha**2 * d_x * d_z) 

rhattk = np.array( 

(1 - 

alpha) * 

gamma * 

mu - 

tau * 

kappa - 

alpha**2 * 

d_tau * 

d_kappa).reshape( 

(1, 

)) 

else: # if the correction is for "predictor-corrector" 

# Reference [1] Eq. 8.13 

rhatxs -= d_x * d_z 

rhattk -= d_tau * d_kappa 

 

# sometimes numerical difficulties arise as the solution is approached 

# this loop tries to solve the equations using a sequence of functions 

# for solve. For dense systems, the order is: 

# 1. scipy.linalg.cho_factor/scipy.linalg.cho_solve, 

# 2. scipy.linalg.solve w/ sym_pos = True, 

# 3. scipy.linalg.solve w/ sym_pos = False, and if all else fails 

# 4. scipy.linalg.lstsq 

# For sparse systems, the order is: 

# 1. scipy.sparse.linalg.splu 

# 2. scipy.sparse.linalg.lsqr 

# TODO: if umfpack is installed, use factorized instead of splu. 

# Can't do that now because factorized doesn't pass permc_spec 

# to splu if umfpack isn't installed. Also, umfpack not tested. 

solved = False 

while(not solved): 

try: 

solve_this = L if cholesky else M 

# [1] Equation 8.28 

p, q = _sym_solve(Dinv, solve_this, A, c, b, solve, splu) 

# [1] Equation 8.29 

u, v = _sym_solve(Dinv, solve_this, A, rhatd - 

(1 / x) * rhatxs, rhatp, solve, splu) 

if np.any(np.isnan(p)) or np.any(np.isnan(q)): 

raise LinAlgError 

solved = True 

except (LinAlgError, ValueError) as e: 

# Usually this doesn't happen. If it does, it happens when 

# there are redundant constraints or when approaching the 

# solution. If so, change solver. 

cholesky = False 

if not lstsq: 

if sym_pos: 

warn( 

"Solving system with option 'sym_pos':True " 

"failed. It is normal for this to happen " 

"occasionally, especially as the solution is " 

"approached. However, if you see this frequently, " 

"consider setting option 'sym_pos' to False.", 

OptimizeWarning) 

sym_pos = False 

else: 

warn( 

"Solving system with option 'sym_pos':False " 

"failed. This may happen occasionally, " 

"especially as the solution is " 

"approached. However, if you see this frequently, " 

"your problem may be numerically challenging. " 

"If you cannot improve the formulation, consider " 

"setting 'lstsq' to True. Consider also setting " 

"`presolve` to True, if it is not already.", 

OptimizeWarning) 

lstsq = True 

else: 

raise e 

solve = _get_solver(sparse, lstsq, sym_pos) 

# [1] Results after 8.29 

d_tau = ((rhatg + 1 / tau * rhattk - (-c.dot(u) + b.dot(v))) / 

(1 / tau * kappa + (-c.dot(p) + b.dot(q)))) 

d_x = u + p * d_tau 

d_y = v + q * d_tau 

 

# [1] Relations between after 8.25 and 8.26 

d_z = (1 / x) * (rhatxs - z * d_x) 

d_kappa = 1 / tau * (rhattk - kappa * d_tau) 

 

# [1] 8.12 and "Let alpha be the maximal possible step..." before 8.23 

alpha = _get_step(x, d_x, z, d_z, tau, d_tau, kappa, d_kappa, 1) 

if ip: # initial point - see [1] 4.4 

gamma = 10 

else: # predictor-corrector, [1] definition after 8.12 

beta1 = 0.1 # [1] pg. 220 (Table 8.1) 

gamma = (1 - alpha)**2 * min(beta1, (1 - alpha)) 

i += 1 

 

return d_x, d_y, d_z, d_tau, d_kappa 

 

 

def _sym_solve(Dinv, M, A, r1, r2, solve, splu=False): 

""" 

An implementation of [1] equation 8.31 and 8.32 

 

References 

---------- 

.. [1] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point 

optimizer for linear programming: an implementation of the 

homogeneous algorithm." High performance optimization. Springer US, 

2000. 197-232. 

 

""" 

# [1] 8.31 

r = r2 + A.dot(Dinv * r1) 

if splu: 

v = solve(r) 

else: 

v = solve(M, r) 

# [1] 8.32 

u = Dinv * (A.T.dot(v) - r1) 

return u, v 

 

 

def _get_step(x, d_x, z, d_z, tau, d_tau, kappa, d_kappa, alpha0): 

""" 

An implementation of [1] equation 8.21 

 

References 

---------- 

.. [1] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point 

optimizer for linear programming: an implementation of the 

homogeneous algorithm." High performance optimization. Springer US, 

2000. 197-232. 

 

""" 

# [1] 4.3 Equation 8.21, ignoring 8.20 requirement 

# same step is taken in primal and dual spaces 

# alpha0 is basically beta3 from [1] Table 8.1, but instead of beta3 

# the value 1 is used in Mehrota corrector and initial point correction 

i_x = d_x < 0 

i_z = d_z < 0 

alpha_x = alpha0 * np.min(x[i_x] / -d_x[i_x]) if np.any(i_x) else 1 

alpha_tau = alpha0 * tau / -d_tau if d_tau < 0 else 1 

alpha_z = alpha0 * np.min(z[i_z] / -d_z[i_z]) if np.any(i_z) else 1 

alpha_kappa = alpha0 * kappa / -d_kappa if d_kappa < 0 else 1 

alpha = np.min([1, alpha_x, alpha_tau, alpha_z, alpha_kappa]) 

return alpha 

 

 

def _get_message(status): 

""" 

Given problem status code, return a more detailed message. 

 

Parameters 

---------- 

status : int 

An integer representing the exit status of the optimization:: 

 

0 : Optimization terminated successfully 

1 : Iteration limit reached 

2 : Problem appears to be infeasible 

3 : Problem appears to be unbounded 

4 : Serious numerical difficulties encountered. 

 

Returns 

------- 

message : str 

A string descriptor of the exit status of the optimization. 

 

""" 

messages = ( 

["Optimization terminated successfully.", 

"The iteration limit was reached before the algorithm converged.", 

"The algorithm terminated successfully and determined that the " 

"problem is infeasible.", 

"The algorithm terminated successfully and determined that the " 

"problem is unbounded.", 

"Numerical difficulties were encountered before the problem " 

"converged. Please check your problem formulation for errors, " 

"independence of linear equality constraints, and reasonable " 

"scaling and matrix condition numbers. If you continue to " 

"encounter this error, please submit a bug report." 

]) 

return messages[status] 

 

 

def _do_step(x, y, z, tau, kappa, d_x, d_y, d_z, d_tau, d_kappa, alpha): 

""" 

An implementation of [1] Equation 8.9 

 

References 

---------- 

.. [1] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point 

optimizer for linear programming: an implementation of the 

homogeneous algorithm." High performance optimization. Springer US, 

2000. 197-232. 

 

""" 

x = x + alpha * d_x 

tau = tau + alpha * d_tau 

z = z + alpha * d_z 

kappa = kappa + alpha * d_kappa 

y = y + alpha * d_y 

return x, y, z, tau, kappa 

 

 

def _get_blind_start(shape): 

""" 

Return the starting point from [1] 4.4 

 

References 

---------- 

.. [1] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point 

optimizer for linear programming: an implementation of the 

homogeneous algorithm." High performance optimization. Springer US, 

2000. 197-232. 

 

""" 

m, n = shape 

x0 = np.ones(n) 

y0 = np.zeros(m) 

z0 = np.ones(n) 

tau0 = 1 

kappa0 = 1 

return x0, y0, z0, tau0, kappa0 

 

 

def _indicators(A, b, c, c0, x, y, z, tau, kappa): 

""" 

Implementation of several equations from [1] used as indicators of 

the status of optimization. 

 

References 

---------- 

.. [1] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point 

optimizer for linear programming: an implementation of the 

homogeneous algorithm." High performance optimization. Springer US, 

2000. 197-232. 

 

""" 

 

# residuals for termination are relative to initial values 

x0, y0, z0, tau0, kappa0 = _get_blind_start(A.shape) 

 

# See [1], Section 4 - The Homogeneous Algorithm, Equation 8.8 

def r_p(x, tau): 

return b * tau - A.dot(x) 

 

def r_d(y, z, tau): 

return c * tau - A.T.dot(y) - z 

 

def r_g(x, y, kappa): 

return kappa + c.dot(x) - b.dot(y) 

 

# np.dot unpacks if they are arrays of size one 

def mu(x, tau, z, kappa): 

return (x.dot(z) + np.dot(tau, kappa)) / (len(x) + 1) 

 

obj = c.dot(x / tau) + c0 

 

def norm(a): 

return np.linalg.norm(a) 

 

# See [1], Section 4.5 - The Stopping Criteria 

r_p0 = r_p(x0, tau0) 

r_d0 = r_d(y0, z0, tau0) 

r_g0 = r_g(x0, y0, kappa0) 

mu_0 = mu(x0, tau0, z0, kappa0) 

rho_A = norm(c.T.dot(x) - b.T.dot(y)) / (tau + norm(b.T.dot(y))) 

rho_p = norm(r_p(x, tau)) / max(1, norm(r_p0)) 

rho_d = norm(r_d(y, z, tau)) / max(1, norm(r_d0)) 

rho_g = norm(r_g(x, y, kappa)) / max(1, norm(r_g0)) 

rho_mu = mu(x, tau, z, kappa) / mu_0 

return rho_p, rho_d, rho_A, rho_g, rho_mu, obj 

 

 

def _display_iter(rho_p, rho_d, rho_g, alpha, rho_mu, obj, header=False): 

""" 

Print indicators of optimization status to the console. 

 

Parameters 

---------- 

rho_p : float 

The (normalized) primal feasibility, see [1] 4.5 

rho_d : float 

The (normalized) dual feasibility, see [1] 4.5 

rho_g : float 

The (normalized) duality gap, see [1] 4.5 

alpha : float 

The step size, see [1] 4.3 

rho_mu : float 

The (normalized) path parameter, see [1] 4.5 

obj : float 

The objective function value of the current iterate 

header : bool 

True if a header is to be printed 

 

References 

---------- 

.. [1] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point 

optimizer for linear programming: an implementation of the 

homogeneous algorithm." High performance optimization. Springer US, 

2000. 197-232. 

 

""" 

if header: 

print("Primal Feasibility ", 

"Dual Feasibility ", 

"Duality Gap ", 

"Step ", 

"Path Parameter ", 

"Objective ") 

 

# no clue why this works 

fmt = '{0:<20.13}{1:<20.13}{2:<20.13}{3:<17.13}{4:<20.13}{5:<20.13}' 

print(fmt.format( 

rho_p, 

rho_d, 

rho_g, 

alpha, 

rho_mu, 

obj)) 

 

 

def _ip_hsd(A, b, c, c0, alpha0, beta, maxiter, disp, tol, 

sparse, lstsq, sym_pos, cholesky, pc, ip, permc_spec): 

r""" 

Solve a linear programming problem in standard form: 

 

minimize: c'^T * x' 

 

subject to: A * x' == b 

0 < x' < oo 

 

using the interior point method of [1]. 

 

Parameters 

---------- 

A : 2-D array 

2-D array which, when matrix-multiplied by ``x``, gives the values of 

the equality constraints at ``x`` (for standard form problem). 

b : 1-D array 

1-D array of values representing the RHS of each equality constraint 

(row) in ``A`` (for standard form problem). 

c : 1-D array 

Coefficients of the linear objective function to be minimized (for 

standard form problem). 

c0 : float 

Constant term in objective function due to fixed (and eliminated) 

variables. (Purely for display.) 

alpha0 : float 

The maximal step size for Mehrota's predictor-corrector search 

direction; see :math:`\beta_3`of [1] Table 8.1 

beta : float 

The desired reduction of the path parameter :math:`\mu` (see [3]_) 

maxiter : int 

The maximum number of iterations of the algorithm. 

disp : bool 

Set to ``True`` if indicators of optimization status are to be printed 

to the console each iteration. 

tol : float 

Termination tolerance; see [1]_ Section 4.5. 

sparse : bool 

Set to ``True`` if the problem is to be treated as sparse. However, 

the inputs ``A_eq`` and ``A_ub`` should nonetheless be provided as 

(dense) arrays rather than sparse matrices. 

lstsq : bool 

Set to ``True`` if the problem is expected to be very poorly 

conditioned. This should always be left as ``False`` unless severe 

numerical difficulties are frequently encountered, and a better option 

would be to improve the formulation of the problem. 

sym_pos : bool 

Leave ``True`` if the problem is expected to yield a well conditioned 

symmetric positive definite normal equation matrix (almost always). 

cholesky : bool 

Set to ``True`` if the normal equations are to be solved by explicit 

Cholesky decomposition followed by explicit forward/backward 

substitution. This is typically faster for moderate, dense problems 

that are numerically well-behaved. 

pc : bool 

Leave ``True`` if the predictor-corrector method of Mehrota is to be 

used. This is almost always (if not always) beneficial. 

ip : bool 

Set to ``True`` if the improved initial point suggestion due to [1]_ 

Section 4.3 is desired. It's unclear whether this is beneficial. 

permc_spec : str (default = 'MMD_AT_PLUS_A') 

(Has effect only with ``sparse = True``, ``lstsq = False``, ``sym_pos = 

True``.) A matrix is factorized in each iteration of the algorithm. 

This option specifies how to permute the columns of the matrix for 

sparsity preservation. Acceptable values are: 

 

- ``NATURAL``: natural ordering. 

- ``MMD_ATA``: minimum degree ordering on the structure of A^T A. 

- ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A. 

- ``COLAMD``: approximate minimum degree column ordering. 

 

This option can impact the convergence of the 

interior point algorithm; test different values to determine which 

performs best for your problem. For more information, refer to 

``scipy.sparse.linalg.splu``. 

 

Returns 

------- 

x_hat : float 

Solution vector (for standard form problem). 

status : int 

An integer representing the exit status of the optimization:: 

 

0 : Optimization terminated successfully 

1 : Iteration limit reached 

2 : Problem appears to be infeasible 

3 : Problem appears to be unbounded 

4 : Serious numerical difficulties encountered. 

 

message : str 

A string descriptor of the exit status of the optimization. 

iteration : int 

The number of iterations taken to solve the problem 

 

References 

---------- 

.. [1] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point 

optimizer for linear programming: an implementation of the 

homogeneous algorithm." High performance optimization. Springer US, 

2000. 197-232. 

.. [3] Freund, Robert M. "Primal-Dual Interior-Point Methods for Linear 

Programming based on Newton's Method." Unpublished Course Notes, 

March 2004. Available 2/25/2017 at: 

https://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004/lecture-notes/lec14_int_pt_mthd.pdf 

 

""" 

 

iteration = 0 

 

# default initial point 

x, y, z, tau, kappa = _get_blind_start(A.shape) 

 

# first iteration is special improvement of initial point 

ip = ip if pc else False 

 

# [1] 4.5 

rho_p, rho_d, rho_A, rho_g, rho_mu, obj = _indicators( 

A, b, c, c0, x, y, z, tau, kappa) 

go = rho_p > tol or rho_d > tol or rho_A > tol # we might get lucky : ) 

 

if disp: 

_display_iter(rho_p, rho_d, rho_g, "-", rho_mu, obj, header=True) 

 

status = 0 

message = "Optimization terminated successfully." 

 

if sparse: 

A = sps.csc_matrix(A) 

A.T = A.transpose() # A.T is defined for sparse matrices but is slow 

# Redefine it to avoid calculating again 

# This is fine as long as A doesn't change 

 

while go: 

 

iteration += 1 

 

if ip: # initial point 

# [1] Section 4.4 

gamma = 1 

 

def eta(g): 

return 1 

else: 

# gamma = 0 in predictor step according to [1] 4.1 

# if predictor/corrector is off, use mean of complementarity [3] 

# 5.1 / [4] Below Figure 10-4 

gamma = 0 if pc else beta * np.mean(z * x) 

# [1] Section 4.1 

 

def eta(g=gamma): 

return 1 - g 

 

try: 

# Solve [1] 8.6 and 8.7/8.13/8.23 

d_x, d_y, d_z, d_tau, d_kappa = _get_delta( 

A, b, c, x, y, z, tau, kappa, gamma, eta, 

sparse, lstsq, sym_pos, cholesky, pc, ip, permc_spec) 

 

if ip: # initial point 

# [1] 4.4 

# Formula after 8.23 takes a full step regardless if this will 

# take it negative 

alpha = 1.0 

x, y, z, tau, kappa = _do_step( 

x, y, z, tau, kappa, d_x, d_y, 

d_z, d_tau, d_kappa, alpha) 

x[x < 1] = 1 

z[z < 1] = 1 

tau = max(1, tau) 

kappa = max(1, kappa) 

ip = False # done with initial point 

else: 

# [1] Section 4.3 

alpha = _get_step(x, d_x, z, d_z, tau, 

d_tau, kappa, d_kappa, alpha0) 

# [1] Equation 8.9 

x, y, z, tau, kappa = _do_step( 

x, y, z, tau, kappa, d_x, d_y, d_z, d_tau, d_kappa, alpha) 

 

except (LinAlgError, FloatingPointError, 

ValueError, ZeroDivisionError): 

# this can happen when sparse solver is used and presolve 

# is turned off. Also observed ValueError in AppVeyor Python 3.6 

# Win32 build (PR #8676). I've never seen it otherwise. 

status = 4 

message = _get_message(status) 

break 

 

# [1] 4.5 

rho_p, rho_d, rho_A, rho_g, rho_mu, obj = _indicators( 

A, b, c, c0, x, y, z, tau, kappa) 

go = rho_p > tol or rho_d > tol or rho_A > tol 

 

if disp: 

_display_iter(rho_p, rho_d, rho_g, alpha, float(rho_mu), obj) 

 

# [1] 4.5 

inf1 = (rho_p < tol and rho_d < tol and rho_g < tol and tau < tol * 

max(1, kappa)) 

inf2 = rho_mu < tol and tau < tol * min(1, kappa) 

if inf1 or inf2: 

# [1] Lemma 8.4 / Theorem 8.3 

if b.transpose().dot(y) > tol: 

status = 2 

else: # elif c.T.dot(x) < tol: ? Probably not necessary. 

status = 3 

message = _get_message(status) 

break 

elif iteration >= maxiter: 

status = 1 

message = _get_message(status) 

break 

 

if disp: 

print(message) 

 

x_hat = x / tau 

# [1] Statement after Theorem 8.2 

return x_hat, status, message, iteration 

 

 

def _linprog_ip( 

c, 

A_ub=None, 

b_ub=None, 

A_eq=None, 

b_eq=None, 

bounds=None, 

callback=None, 

alpha0=.99995, 

beta=0.1, 

maxiter=1000, 

disp=False, 

tol=1e-8, 

sparse=False, 

lstsq=False, 

sym_pos=True, 

cholesky=None, 

pc=True, 

ip=False, 

presolve=True, 

permc_spec='MMD_AT_PLUS_A', 

rr=True, 

_sparse_presolve=False, 

**unknown_options): 

r""" 

Minimize a linear objective function subject to linear 

equality constraints, linear inequality constraints, and simple bounds 

using the interior point method of [1]_. 

 

Linear programming is intended to solve problems of the following form:: 

 

Minimize: c^T * x 

 

Subject to: A_ub * x <= b_ub 

A_eq * x == b_eq 

bounds[i][0] < x_i < bounds[i][1] 

 

Parameters 

---------- 

c : array_like 

Coefficients of the linear objective function to be minimized. 

A_ub : array_like, optional 

2-D array which, when matrix-multiplied by ``x``, gives the values of 

the upper-bound inequality constraints at ``x``. 

b_ub : array_like, optional 

1-D array of values representing the upper-bound of each inequality 

constraint (row) in ``A_ub``. 

A_eq : array_like, optional 

2-D array which, when matrix-multiplied by ``x``, gives the values of 

the equality constraints at ``x``. 

b_eq : array_like, optional 

1-D array of values representing the right hand side of each equality 

constraint (row) in ``A_eq``. 

bounds : sequence, optional 

``(min, max)`` pairs for each element in ``x``, defining 

the bounds on that parameter. Use ``None`` for one of ``min`` or 

``max`` when there is no bound in that direction. By default 

bounds are ``(0, None)`` (non-negative). 

If a sequence containing a single tuple is provided, then ``min`` and 

``max`` will be applied to all variables in the problem. 

 

Options 

------- 

maxiter : int (default = 1000) 

The maximum number of iterations of the algorithm. 

disp : bool (default = False) 

Set to ``True`` if indicators of optimization status are to be printed 

to the console each iteration. 

tol : float (default = 1e-8) 

Termination tolerance to be used for all termination criteria; 

see [1]_ Section 4.5. 

alpha0 : float (default = 0.99995) 

The maximal step size for Mehrota's predictor-corrector search 

direction; see :math:`\beta_{3}` of [1]_ Table 8.1. 

beta : float (default = 0.1) 

The desired reduction of the path parameter :math:`\mu` (see [3]_) 

when Mehrota's predictor-corrector is not in use (uncommon). 

sparse : bool (default = False) 

Set to ``True`` if the problem is to be treated as sparse after 

presolve. If either ``A_eq`` or ``A_ub`` is a sparse matrix, 

this option will automatically be set ``True``, and the problem 

will be treated as sparse even during presolve. If your constraint 

matrices contain mostly zeros and the problem is not very small (less 

than about 100 constraints or variables), consider setting ``True`` 

or providing ``A_eq`` and ``A_ub`` as sparse matrices. 

lstsq : bool (default = False) 

Set to ``True`` if the problem is expected to be very poorly 

conditioned. This should always be left ``False`` unless severe 

numerical difficulties are encountered. Leave this at the default 

unless you receive a warning message suggesting otherwise. 

sym_pos : bool (default = True) 

Leave ``True`` if the problem is expected to yield a well conditioned 

symmetric positive definite normal equation matrix 

(almost always). Leave this at the default unless you receive 

a warning message suggesting otherwise. 

cholesky : bool (default = True) 

Set to ``True`` if the normal equations are to be solved by explicit 

Cholesky decomposition followed by explicit forward/backward 

substitution. This is typically faster for moderate, dense problems 

that are numerically well-behaved. 

pc : bool (default = True) 

Leave ``True`` if the predictor-corrector method of Mehrota is to be 

used. This is almost always (if not always) beneficial. 

ip : bool (default = False) 

Set to ``True`` if the improved initial point suggestion due to [1]_ 

Section 4.3 is desired. Whether this is beneficial or not 

depends on the problem. 

presolve : bool (default = True) 

Leave ``True`` if presolve routine should be run. The presolve routine 

is almost always useful because it can detect trivial infeasibilities 

and unboundedness, eliminate fixed variables, and remove redundancies. 

One circumstance in which it might be turned off (set ``False``) is 

when it detects that the problem is trivially unbounded; it is possible 

that that the problem is truly infeasibile but this has not been 

detected. 

rr : bool (default = True) 

Default ``True`` attempts to eliminate any redundant rows in ``A_eq``. 

Set ``False`` if ``A_eq`` is known to be of full row rank, or if you 

are looking for a potential speedup (at the expense of reliability). 

permc_spec : str (default = 'MMD_AT_PLUS_A') 

(Has effect only with ``sparse = True``, ``lstsq = False``, ``sym_pos = 

True``.) A matrix is factorized in each iteration of the algorithm. 

This option specifies how to permute the columns of the matrix for 

sparsity preservation. Acceptable values are: 

 

- ``NATURAL``: natural ordering. 

- ``MMD_ATA``: minimum degree ordering on the structure of A^T A. 

- ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A. 

- ``COLAMD``: approximate minimum degree column ordering. 

 

This option can impact the convergence of the 

interior point algorithm; test different values to determine which 

performs best for your problem. For more information, refer to 

``scipy.sparse.linalg.splu``. 

 

Returns 

------- 

A ``scipy.optimize.OptimizeResult`` consisting of the following fields: 

 

x : ndarray 

The independent variable vector which optimizes the linear 

programming problem. 

fun : float 

The optimal value of the objective function 

con : float 

The residuals of the equality constraints (nominally zero). 

slack : ndarray 

The values of the slack variables. Each slack variable corresponds 

to an inequality constraint. If the slack is zero, then the 

corresponding constraint is active. 

success : bool 

Returns True if the algorithm succeeded in finding an optimal 

solution. 

status : int 

An integer representing the exit status of the optimization:: 

 

0 : Optimization terminated successfully 

1 : Iteration limit reached 

2 : Problem appears to be infeasible 

3 : Problem appears to be unbounded 

4 : Serious numerical difficulties encountered 

 

nit : int 

The number of iterations performed. 

message : str 

A string descriptor of the exit status of the optimization. 

 

Notes 

----- 

 

This method implements the algorithm outlined in [1]_ with ideas from [5]_ 

and a structure inspired by the simpler methods of [3]_ and [4]_. 

 

First, a presolve procedure based on [5]_ attempts to identify trivial 

infeasibilities, trivial unboundedness, and potential problem 

simplifications. Specifically, it checks for: 

 

- rows of zeros in ``A_eq`` or ``A_ub``, representing trivial constraints; 

- columns of zeros in ``A_eq`` `and` ``A_ub``, representing unconstrained 

variables; 

- column singletons in ``A_eq``, representing fixed variables; and 

- column singletons in ``A_ub``, representing simple bounds. 

 

If presolve reveals that the problem is unbounded (e.g. an unconstrained 

and unbounded variable has negative cost) or infeasible (e.g. a row of 

zeros in ``A_eq`` corresponds with a nonzero in ``b_eq``), the solver 

terminates with the appropriate status code. Note that presolve terminates 

as soon as any sign of unboundedness is detected; consequently, a problem 

may be reported as unbounded when in reality the problem is infeasible 

(but infeasibility has not been detected yet). Therefore, if the output 

message states that unboundedness is detected in presolve and it is 

necessary to know whether the problem is actually infeasible, set option 

``presolve=False``. 

 

If neither infeasibility nor unboundedness are detected in a single pass 

of the presolve check, bounds are tightened where possible and fixed 

variables are removed from the problem. Then, linearly dependent rows 

of the ``A_eq`` matrix are removed, (unless they represent an 

infeasibility) to avoid numerical difficulties in the primary solve 

routine. Note that rows that are nearly linearly dependent (within a 

prescibed tolerance) may also be removed, which can change the optimal 

solution in rare cases. If this is a concern, eliminate redundancy from 

your problem formulation and run with option ``rr=False`` or 

``presolve=False``. 

 

Several potential improvements can be made here: additional presolve 

checks outlined in [5]_ should be implemented, the presolve routine should 

be run multiple times (until no further simplifications can be made), and 

more of the efficiency improvements from [2]_ should be implemented in the 

redundancy removal routines. 

 

After presolve, the problem is transformed to standard form by converting 

the (tightened) simple bounds to upper bound constraints, introducing 

non-negative slack variables for inequality constraints, and expressing 

unbounded variables as the difference between two non-negative variables. 

 

The primal-dual path following method begins with initial 'guesses' of 

the primal and dual variables of the standard form problem and iteratively 

attempts to solve the (nonlinear) Karush-Kuhn-Tucker conditions for the 

problem with a gradually reduced logarithmic barrier term added to the 

objective. This particular implementation uses a homogeneous self-dual 

formulation, which provides certificates of infeasibility or unboundedness 

where applicable. 

 

The default initial point for the primal and dual variables is that 

defined in [1]_ Section 4.4 Equation 8.22. Optionally (by setting initial 

point option ``ip=True``), an alternate (potentially improved) starting 

point can be calculated according to the additional recommendations of 

[1]_ Section 4.4. 

 

A search direction is calculated using the predictor-corrector method 

(single correction) proposed by Mehrota and detailed in [1]_ Section 4.1. 

(A potential improvement would be to implement the method of multiple 

corrections described in [1]_ Section 4.2.) In practice, this is 

accomplished by solving the normal equations, [1]_ Section 5.1 Equations 

8.31 and 8.32, derived from the Newton equations [1]_ Section 5 Equations 

8.25 (compare to [1]_ Section 4 Equations 8.6-8.8). The advantage of 

solving the normal equations rather than 8.25 directly is that the 

matrices involved are symmetric positive definite, so Cholesky 

decomposition can be used rather than the more expensive LU factorization. 

 

With the default ``cholesky=True``, this is accomplished using 

``scipy.linalg.cho_factor`` followed by forward/backward substitutions 

via ``scipy.linalg.cho_solve``. With ``cholesky=False`` and 

``sym_pos=True``, Cholesky decomposition is performed instead by 

``scipy.linalg.solve``. Based on speed tests, this also appears to retain 

the Cholesky decomposition of the matrix for later use, which is beneficial 

as the same system is solved four times with different right hand sides 

in each iteration of the algorithm. 

 

In problems with redundancy (e.g. if presolve is turned off with option 

``presolve=False``) or if the matrices become ill-conditioned (e.g. as the 

solution is approached and some decision variables approach zero), 

Cholesky decomposition can fail. Should this occur, successively more 

robust solvers (``scipy.linalg.solve`` with ``sym_pos=False`` then 

``scipy.linalg.lstsq``) are tried, at the cost of computational efficiency. 

These solvers can be used from the outset by setting the options 

``sym_pos=False`` and ``lstsq=True``, respectively. 

 

Note that with the option ``sparse=True``, the normal equations are solved 

using ``scipy.sparse.linalg.spsolve``. Unfortunately, this uses the more 

expensive LU decomposition from the outset, but for large, sparse problems, 

the use of sparse linear algebra techniques improves the solve speed 

despite the use of LU rather than Cholesky decomposition. A simple 

improvement would be to use the sparse Cholesky decomposition of 

``CHOLMOD`` via ``scikit-sparse`` when available. 

 

Other potential improvements for combatting issues associated with dense 

columns in otherwise sparse problems are outlined in [1]_ Section 5.3 and 

[7]_ Section 4.1-4.2; the latter also discusses the alleviation of 

accuracy issues associated with the substitution approach to free 

variables. 

 

After calculating the search direction, the maximum possible step size 

that does not activate the non-negativity constraints is calculated, and 

the smaller of this step size and unity is applied (as in [1]_ Section 

4.1.) [1]_ Section 4.3 suggests improvements for choosing the step size. 

 

The new point is tested according to the termination conditions of [1]_ 

Section 4.5. The same tolerance, which can be set using the ``tol`` option, 

is used for all checks. (A potential improvement would be to expose 

the different tolerances to be set independently.) If optimality, 

unboundedness, or infeasibility is detected, the solve procedure 

terminates; otherwise it repeats. 

 

If optimality is achieved, a postsolve procedure undoes transformations 

associated with presolve and converting to standard form. It then 

calculates the residuals (equality constraint violations, which should 

be very small) and slacks (difference between the left and right hand 

sides of the upper bound constraints) of the original problem, which are 

returned with the solution in an ``OptimizeResult`` object. 

 

References 

---------- 

.. [1] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point 

optimizer for linear programming: an implementation of the 

homogeneous algorithm." High performance optimization. Springer US, 

2000. 197-232. 

.. [2] Andersen, Erling D. "Finding all linearly dependent rows in 

large-scale linear programming." Optimization Methods and Software 

6.3 (1995): 219-227. 

.. [3] Freund, Robert M. "Primal-Dual Interior-Point Methods for Linear 

Programming based on Newton's Method." Unpublished Course Notes, 

March 2004. Available 2/25/2017 at 

https://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004/lecture-notes/lec14_int_pt_mthd.pdf 

.. [4] Fourer, Robert. "Solving Linear Programs by Interior-Point Methods." 

Unpublished Course Notes, August 26, 2005. Available 2/25/2017 at 

http://www.4er.org/CourseNotes/Book%20B/B-III.pdf 

.. [5] Andersen, Erling D., and Knud D. Andersen. "Presolving in linear 

programming." Mathematical Programming 71.2 (1995): 221-245. 

.. [6] Bertsimas, Dimitris, and J. Tsitsiklis. "Introduction to linear 

programming." Athena Scientific 1 (1997): 997. 

.. [7] Andersen, Erling D., et al. Implementation of interior point methods 

for large scale linear programming. HEC/Universite de Geneve, 1996. 

 

""" 

 

_check_unknown_options(unknown_options) 

 

if callback is not None: 

raise NotImplementedError("method 'interior-point' does not support " 

"callback functions.") 

 

# This is an undocumented option for unit testing sparse presolve 

if _sparse_presolve and A_eq is not None: 

A_eq = sp.sparse.coo_matrix(A_eq) 

if _sparse_presolve and A_ub is not None: 

A_ub = sp.sparse.coo_matrix(A_ub) 

 

# These should be warnings, not errors 

if not sparse and (sp.sparse.issparse(A_eq) or sp.sparse.issparse(A_ub)): 

sparse = True 

warn("Sparse constraint matrix detected; setting 'sparse':True.", 

OptimizeWarning) 

 

if sparse and lstsq: 

warn("Invalid option combination 'sparse':True " 

"and 'lstsq':True; Sparse least squares is not recommended.", 

OptimizeWarning) 

 

if sparse and not sym_pos: 

warn("Invalid option combination 'sparse':True " 

"and 'sym_pos':False; the effect is the same as sparse least " 

"squares, which is not recommended.", 

OptimizeWarning) 

 

if sparse and cholesky: 

# Cholesky decomposition is not available for sparse problems 

warn("Invalid option combination 'sparse':True " 

"and 'cholesky':True; sparse Colesky decomposition is not " 

"available.", 

OptimizeWarning) 

 

if lstsq and cholesky: 

warn("Invalid option combination 'lstsq':True " 

"and 'cholesky':True; option 'cholesky' has no effect when " 

"'lstsq' is set True.", 

OptimizeWarning) 

 

valid_permc_spec = ('NATURAL', 'MMD_ATA', 'MMD_AT_PLUS_A', 'COLAMD') 

if permc_spec.upper() not in valid_permc_spec: 

warn("Invalid permc_spec option: '" + str(permc_spec) + "'. " 

"Acceptable values are 'NATURAL', 'MMD_ATA', 'MMD_AT_PLUS_A', " 

"and 'COLAMD'. Reverting to default.", 

OptimizeWarning) 

permc_spec = 'MMD_AT_PLUS_A' 

 

# This can be an error 

if not sym_pos and cholesky: 

raise ValueError( 

"Invalid option combination 'sym_pos':False " 

"and 'cholesky':True: Cholesky decomposition is only possible " 

"for symmetric positive definite matrices.") 

 

cholesky = cholesky is None and sym_pos and not sparse and not lstsq 

 

iteration = 0 

complete = False # will become True if solved in presolve 

undo = [] 

 

# Convert lists to numpy arrays, etc... 

c, A_ub, b_ub, A_eq, b_eq, bounds = _clean_inputs( 

c, A_ub, b_ub, A_eq, b_eq, bounds) 

 

# Keep the original arrays to calculate slack/residuals for original 

# problem. 

c_o, A_ub_o, b_ub_o, A_eq_o, b_eq_o = c.copy( 

), A_ub.copy(), b_ub.copy(), A_eq.copy(), b_eq.copy() 

 

# Solve trivial problem, eliminate variables, tighten bounds, etc... 

c0 = 0 # we might get a constant term in the objective 

if presolve is True: 

(c, c0, A_ub, b_ub, A_eq, b_eq, bounds, x, undo, complete, status, 

message) = _presolve(c, A_ub, b_ub, A_eq, b_eq, bounds, rr) 

 

# If not solved in presolve, solve it 

if not complete: 

# Convert problem to standard form 

A, b, c, c0 = _get_Abc(c, c0, A_ub, b_ub, A_eq, b_eq, bounds, undo) 

# Solve the problem 

x, status, message, iteration = _ip_hsd(A, b, c, c0, alpha0, beta, 

maxiter, disp, tol, sparse, 

lstsq, sym_pos, cholesky, 

pc, ip, permc_spec) 

 

# Eliminate artificial variables, re-introduce presolved variables, etc... 

# need modified bounds here to translate variables appropriately 

x, fun, slack, con, status, message = _postprocess( 

x, c_o, A_ub_o, b_ub_o, A_eq_o, b_eq_o, 

bounds, complete, undo, status, message, tol) 

 

sol = { 

'x': x, 

'fun': fun, 

'slack': slack, 

'con': con, 

'status': status, 

'message': message, 

'nit': iteration, 

"success": status == 0} 

 

return OptimizeResult(sol)