1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

"""Basic linear factorizations needed by the solver.""" 

 

from __future__ import division, print_function, absolute_import 

from scipy.sparse import (bmat, csc_matrix, eye, issparse) 

from scipy.sparse.linalg import LinearOperator 

import scipy.linalg 

import scipy.sparse.linalg 

try: 

from sksparse.cholmod import cholesky_AAt 

sksparse_available = True 

except ImportError: 

import warnings 

sksparse_available = False 

import numpy as np 

from warnings import warn 

 

__all__ = [ 

'orthogonality', 

'projections', 

] 

 

 

def orthogonality(A, g): 

"""Measure orthogonality between a vector and the null space of a matrix. 

 

Compute a measure of orthogonality between the null space 

of the (possibly sparse) matrix ``A`` and a given vector ``g``. 

 

The formula is a simplified (and cheaper) version of formula (3.13) 

from [1]_. 

``orth = norm(A g, ord=2)/(norm(A, ord='fro')*norm(g, ord=2))``. 

 

References 

---------- 

.. [1] Gould, Nicholas IM, Mary E. Hribar, and Jorge Nocedal. 

"On the solution of equality constrained quadratic 

programming problems arising in optimization." 

SIAM Journal on Scientific Computing 23.4 (2001): 1376-1395. 

""" 

# Compute vector norms 

norm_g = np.linalg.norm(g) 

# Compute Frobenius norm of the matrix A 

if issparse(A): 

norm_A = scipy.sparse.linalg.norm(A, ord='fro') 

else: 

norm_A = np.linalg.norm(A, ord='fro') 

 

# Check if norms are zero 

if norm_g == 0 or norm_A == 0: 

return 0 

 

norm_A_g = np.linalg.norm(A.dot(g)) 

# Orthogonality measure 

orth = norm_A_g / (norm_A*norm_g) 

return orth 

 

 

def normal_equation_projections(A, m, n, orth_tol, max_refin, tol): 

"""Return linear operators for matrix A using ``NormalEquation`` approach. 

""" 

# Cholesky factorization 

factor = cholesky_AAt(A) 

 

# z = x - A.T inv(A A.T) A x 

def null_space(x): 

v = factor(A.dot(x)) 

z = x - A.T.dot(v) 

 

# Iterative refinement to improve roundoff 

# errors described in [2]_, algorithm 5.1. 

k = 0 

while orthogonality(A, z) > orth_tol: 

if k >= max_refin: 

break 

# z_next = z - A.T inv(A A.T) A z 

v = factor(A.dot(z)) 

z = z - A.T.dot(v) 

k += 1 

 

return z 

 

# z = inv(A A.T) A x 

def least_squares(x): 

return factor(A.dot(x)) 

 

# z = A.T inv(A A.T) x 

def row_space(x): 

return A.T.dot(factor(x)) 

 

return null_space, least_squares, row_space 

 

 

def augmented_system_projections(A, m, n, orth_tol, max_refin, tol): 

"""Return linear operators for matrix A - ``AugmentedSystem``.""" 

# Form augmented system 

K = csc_matrix(bmat([[eye(n), A.T], [A, None]])) 

# LU factorization 

# TODO: Use a symmetric indefinite factorization 

# to solve the system twice as fast (because 

# of the symmetry). 

try: 

solve = scipy.sparse.linalg.factorized(K) 

except RuntimeError: 

warn("Singular Jacobian matrix. Using dense SVD decomposition to " 

"perform the factorizations.") 

return svd_factorization_projections(A.toarray(), 

m, n, orth_tol, 

max_refin, tol) 

 

# z = x - A.T inv(A A.T) A x 

# is computed solving the extended system: 

# [I A.T] * [ z ] = [x] 

# [A O ] [aux] [0] 

def null_space(x): 

# v = [x] 

# [0] 

v = np.hstack([x, np.zeros(m)]) 

# lu_sol = [ z ] 

# [aux] 

lu_sol = solve(v) 

z = lu_sol[:n] 

 

# Iterative refinement to improve roundoff 

# errors described in [2]_, algorithm 5.2. 

k = 0 

while orthogonality(A, z) > orth_tol: 

if k >= max_refin: 

break 

# new_v = [x] - [I A.T] * [ z ] 

# [0] [A O ] [aux] 

new_v = v - K.dot(lu_sol) 

# [I A.T] * [delta z ] = new_v 

# [A O ] [delta aux] 

lu_update = solve(new_v) 

# [ z ] += [delta z ] 

# [aux] [delta aux] 

lu_sol += lu_update 

z = lu_sol[:n] 

k += 1 

 

# return z = x - A.T inv(A A.T) A x 

return z 

 

# z = inv(A A.T) A x 

# is computed solving the extended system: 

# [I A.T] * [aux] = [x] 

# [A O ] [ z ] [0] 

def least_squares(x): 

# v = [x] 

# [0] 

v = np.hstack([x, np.zeros(m)]) 

# lu_sol = [aux] 

# [ z ] 

lu_sol = solve(v) 

# return z = inv(A A.T) A x 

return lu_sol[n:m+n] 

 

# z = A.T inv(A A.T) x 

# is computed solving the extended system: 

# [I A.T] * [ z ] = [0] 

# [A O ] [aux] [x] 

def row_space(x): 

# v = [0] 

# [x] 

v = np.hstack([np.zeros(n), x]) 

# lu_sol = [ z ] 

# [aux] 

lu_sol = solve(v) 

# return z = A.T inv(A A.T) x 

return lu_sol[:n] 

 

return null_space, least_squares, row_space 

 

 

def qr_factorization_projections(A, m, n, orth_tol, max_refin, tol): 

"""Return linear operators for matrix A using ``QRFactorization`` approach. 

""" 

# QRFactorization 

Q, R, P = scipy.linalg.qr(A.T, pivoting=True, mode='economic') 

 

if np.linalg.norm(R[-1, :], np.inf) < tol: 

warn('Singular Jacobian matrix. Using SVD decomposition to ' + 

'perform the factorizations.') 

return svd_factorization_projections(A, m, n, 

orth_tol, 

max_refin, 

tol) 

 

# z = x - A.T inv(A A.T) A x 

def null_space(x): 

# v = P inv(R) Q.T x 

aux1 = Q.T.dot(x) 

aux2 = scipy.linalg.solve_triangular(R, aux1, lower=False) 

v = np.zeros(m) 

v[P] = aux2 

z = x - A.T.dot(v) 

 

# Iterative refinement to improve roundoff 

# errors described in [2]_, algorithm 5.1. 

k = 0 

while orthogonality(A, z) > orth_tol: 

if k >= max_refin: 

break 

# v = P inv(R) Q.T x 

aux1 = Q.T.dot(z) 

aux2 = scipy.linalg.solve_triangular(R, aux1, lower=False) 

v[P] = aux2 

# z_next = z - A.T v 

z = z - A.T.dot(v) 

k += 1 

 

return z 

 

# z = inv(A A.T) A x 

def least_squares(x): 

# z = P inv(R) Q.T x 

aux1 = Q.T.dot(x) 

aux2 = scipy.linalg.solve_triangular(R, aux1, lower=False) 

z = np.zeros(m) 

z[P] = aux2 

return z 

 

# z = A.T inv(A A.T) x 

def row_space(x): 

# z = Q inv(R.T) P.T x 

aux1 = x[P] 

aux2 = scipy.linalg.solve_triangular(R, aux1, 

lower=False, 

trans='T') 

z = Q.dot(aux2) 

return z 

 

return null_space, least_squares, row_space 

 

 

def svd_factorization_projections(A, m, n, orth_tol, max_refin, tol): 

"""Return linear operators for matrix A using ``SVDFactorization`` approach. 

""" 

# SVD Factorization 

U, s, Vt = scipy.linalg.svd(A, full_matrices=False) 

 

# Remove dimensions related with very small singular values 

U = U[:, s > tol] 

Vt = Vt[s > tol, :] 

s = s[s > tol] 

 

# z = x - A.T inv(A A.T) A x 

def null_space(x): 

# v = U 1/s V.T x = inv(A A.T) A x 

aux1 = Vt.dot(x) 

aux2 = 1/s*aux1 

v = U.dot(aux2) 

z = x - A.T.dot(v) 

 

# Iterative refinement to improve roundoff 

# errors described in [2]_, algorithm 5.1. 

k = 0 

while orthogonality(A, z) > orth_tol: 

if k >= max_refin: 

break 

# v = U 1/s V.T x = inv(A A.T) A x 

aux1 = Vt.dot(z) 

aux2 = 1/s*aux1 

v = U.dot(aux2) 

# z_next = z - A.T v 

z = z - A.T.dot(v) 

k += 1 

 

return z 

 

# z = inv(A A.T) A x 

def least_squares(x): 

# z = U 1/s V.T x = inv(A A.T) A x 

aux1 = Vt.dot(x) 

aux2 = 1/s*aux1 

z = U.dot(aux2) 

return z 

 

# z = A.T inv(A A.T) x 

def row_space(x): 

# z = V 1/s U.T x 

aux1 = U.T.dot(x) 

aux2 = 1/s*aux1 

z = Vt.T.dot(aux2) 

return z 

 

return null_space, least_squares, row_space 

 

 

def projections(A, method=None, orth_tol=1e-12, max_refin=3, tol=1e-15): 

"""Return three linear operators related with a given matrix A. 

 

Parameters 

---------- 

A : sparse matrix (or ndarray), shape (m, n) 

Matrix ``A`` used in the projection. 

method : string, optional 

Method used for compute the given linear 

operators. Should be one of: 

 

- 'NormalEquation': The operators 

will be computed using the 

so-called normal equation approach 

explained in [1]_. In order to do 

so the Cholesky factorization of 

``(A A.T)`` is computed. Exclusive 

for sparse matrices. 

- 'AugmentedSystem': The operators 

will be computed using the 

so-called augmented system approach 

explained in [1]_. Exclusive 

for sparse matrices. 

- 'QRFactorization': Compute projections 

using QR factorization. Exclusive for 

dense matrices. 

- 'SVDFactorization': Compute projections 

using SVD factorization. Exclusive for 

dense matrices. 

 

orth_tol : float, optional 

Tolerance for iterative refinements. 

max_refin : int, optional 

Maximum number of iterative refinements 

tol : float, optional 

Tolerance for singular values 

 

Returns 

------- 

Z : LinearOperator, shape (n, n) 

Null-space operator. For a given vector ``x``, 

the null space operator is equivalent to apply 

a projection matrix ``P = I - A.T inv(A A.T) A`` 

to the vector. It can be shown that this is 

equivalent to project ``x`` into the null space 

of A. 

LS : LinearOperator, shape (m, n) 

Least-Square operator. For a given vector ``x``, 

the least-square operator is equivalent to apply a 

pseudoinverse matrix ``pinv(A.T) = inv(A A.T) A`` 

to the vector. It can be shown that this vector 

``pinv(A.T) x`` is the least_square solution to 

``A.T y = x``. 

Y : LinearOperator, shape (n, m) 

Row-space operator. For a given vector ``x``, 

the row-space operator is equivalent to apply a 

projection matrix ``Q = A.T inv(A A.T)`` 

to the vector. It can be shown that this 

vector ``y = Q x`` the minimum norm solution 

of ``A y = x``. 

 

Notes 

----- 

Uses iterative refinements described in [1] 

during the computation of ``Z`` in order to 

cope with the possibility of large roundoff errors. 

 

References 

---------- 

.. [1] Gould, Nicholas IM, Mary E. Hribar, and Jorge Nocedal. 

"On the solution of equality constrained quadratic 

programming problems arising in optimization." 

SIAM Journal on Scientific Computing 23.4 (2001): 1376-1395. 

""" 

m, n = np.shape(A) 

 

# The factorization of an empty matrix 

# only works for the sparse representation. 

if m*n == 0: 

A = csc_matrix(A) 

 

# Check Argument 

if issparse(A): 

if method is None: 

method = "AugmentedSystem" 

if method not in ("NormalEquation", "AugmentedSystem"): 

raise ValueError("Method not allowed for sparse matrix.") 

if method == "NormalEquation" and not sksparse_available: 

warnings.warn(("Only accepts 'NormalEquation' option when" 

" scikit-sparse is available. Using " 

"'AugmentedSystem' option instead."), 

ImportWarning) 

method = 'AugmentedSystem' 

else: 

if method is None: 

method = "QRFactorization" 

if method not in ("QRFactorization", "SVDFactorization"): 

raise ValueError("Method not allowed for dense array.") 

 

if method == 'NormalEquation': 

null_space, least_squares, row_space \ 

= normal_equation_projections(A, m, n, orth_tol, max_refin, tol) 

elif method == 'AugmentedSystem': 

null_space, least_squares, row_space \ 

= augmented_system_projections(A, m, n, orth_tol, max_refin, tol) 

elif method == "QRFactorization": 

null_space, least_squares, row_space \ 

= qr_factorization_projections(A, m, n, orth_tol, max_refin, tol) 

elif method == "SVDFactorization": 

null_space, least_squares, row_space \ 

= svd_factorization_projections(A, m, n, orth_tol, max_refin, tol) 

 

Z = LinearOperator((n, n), null_space) 

LS = LinearOperator((m, n), least_squares) 

Y = LinearOperator((n, m), row_space) 

 

return Z, LS, Y