""" Functions --------- .. autosummary:: :toctree: generated/
line_search_armijo line_search_wolfe1 line_search_wolfe2 scalar_search_wolfe1 scalar_search_wolfe2
"""
'scalar_search_wolfe1', 'scalar_search_wolfe2', 'line_search_armijo']
#------------------------------------------------------------------------------ # Minpack's Wolfe line and scalar searches #------------------------------------------------------------------------------
old_fval=None, old_old_fval=None, args=(), c1=1e-4, c2=0.9, amax=50, amin=1e-8, xtol=1e-14): """ As `scalar_search_wolfe1` but do a line search to direction `pk`
Parameters ---------- f : callable Function `f(x)` fprime : callable Gradient of `f` xk : array_like Current point pk : array_like Search direction
gfk : array_like, optional Gradient of `f` at point `xk` old_fval : float, optional Value of `f` at point `xk` old_old_fval : float, optional Value of `f` at point preceding `xk`
The rest of the parameters are the same as for `scalar_search_wolfe1`.
Returns ------- stp, f_count, g_count, fval, old_fval As in `line_search_wolfe1` gval : array Gradient of `f` at the final point
""" if gfk is None: gfk = fprime(xk)
if isinstance(fprime, tuple): eps = fprime[1] fprime = fprime[0] newargs = (f, eps) + args gradient = False else: newargs = args gradient = True
gval = [gfk] gc = [0] fc = [0]
def phi(s): fc[0] += 1 return f(xk + s*pk, *args)
def derphi(s): gval[0] = fprime(xk + s*pk, *newargs) if gradient: gc[0] += 1 else: fc[0] += len(xk) + 1 return np.dot(gval[0], pk)
derphi0 = np.dot(gfk, pk)
stp, fval, old_fval = scalar_search_wolfe1( phi, derphi, old_fval, old_old_fval, derphi0, c1=c1, c2=c2, amax=amax, amin=amin, xtol=xtol)
return stp, fc[0], gc[0], fval, old_fval, gval[0]
c1=1e-4, c2=0.9, amax=50, amin=1e-8, xtol=1e-14): """ Scalar function search for alpha that satisfies strong Wolfe conditions
alpha > 0 is assumed to be a descent direction.
Parameters ---------- phi : callable phi(alpha) Function at point `alpha` derphi : callable dphi(alpha) Derivative `d phi(alpha)/ds`. Returns a scalar.
phi0 : float, optional Value of `f` at 0 old_phi0 : float, optional Value of `f` at the previous point derphi0 : float, optional Value `derphi` at 0 c1, c2 : float, optional Wolfe parameters amax, amin : float, optional Maximum and minimum step size xtol : float, optional Relative tolerance for an acceptable step.
Returns ------- alpha : float Step size, or None if no suitable step was found phi : float Value of `phi` at the new point `alpha` phi0 : float Value of `phi` at `alpha=0`
Notes ----- Uses routine DCSRCH from MINPACK.
"""
if phi0 is None: phi0 = phi(0.) if derphi0 is None: derphi0 = derphi(0.)
if old_phi0 is not None and derphi0 != 0: alpha1 = min(1.0, 1.01*2*(phi0 - old_phi0)/derphi0) if alpha1 < 0: alpha1 = 1.0 else: alpha1 = 1.0
phi1 = phi0 derphi1 = derphi0 isave = np.zeros((2,), np.intc) dsave = np.zeros((13,), float) task = b'START'
maxiter = 100 for i in xrange(maxiter): stp, phi1, derphi1, task = minpack2.dcsrch(alpha1, phi1, derphi1, c1, c2, xtol, task, amin, amax, isave, dsave) if task[:2] == b'FG': alpha1 = stp phi1 = phi(stp) derphi1 = derphi(stp) else: break else: # maxiter reached, the line search did not converge stp = None
if task[:5] == b'ERROR' or task[:4] == b'WARN': stp = None # failed
return stp, phi1, phi0
#------------------------------------------------------------------------------ # Pure-Python Wolfe line and scalar searches #------------------------------------------------------------------------------
old_old_fval=None, args=(), c1=1e-4, c2=0.9, amax=None, extra_condition=None, maxiter=10): """Find alpha that satisfies strong Wolfe conditions.
Parameters ---------- f : callable f(x,*args) Objective function. myfprime : callable f'(x,*args) Objective function gradient. xk : ndarray Starting point. pk : ndarray Search direction. gfk : ndarray, optional Gradient value for x=xk (xk being the current parameter estimate). Will be recomputed if omitted. old_fval : float, optional Function value for x=xk. Will be recomputed if omitted. old_old_fval : float, optional Function value for the point preceding x=xk args : tuple, optional Additional arguments passed to objective function. c1 : float, optional Parameter for Armijo condition rule. c2 : float, optional Parameter for curvature condition rule. amax : float, optional Maximum step size extra_condition : callable, optional A callable of the form ``extra_condition(alpha, x, f, g)`` returning a boolean. Arguments are the proposed step ``alpha`` and the corresponding ``x``, ``f`` and ``g`` values. The line search accepts the value of ``alpha`` only if this callable returns ``True``. If the callable returns ``False`` for the step length, the algorithm will continue with new iterates. The callable is only called for iterates satisfying the strong Wolfe conditions. maxiter : int, optional Maximum number of iterations to perform
Returns ------- alpha : float or None Alpha for which ``x_new = x0 + alpha * pk``, or None if the line search algorithm did not converge. fc : int Number of function evaluations made. gc : int Number of gradient evaluations made. new_fval : float or None New function value ``f(x_new)=f(x0+alpha*pk)``, or None if the line search algorithm did not converge. old_fval : float Old function value ``f(x0)``. new_slope : float or None The local slope along the search direction at the new value ``<myfprime(x_new), pk>``, or None if the line search algorithm did not converge.
Notes ----- Uses the line search algorithm to enforce strong Wolfe conditions. See Wright and Nocedal, 'Numerical Optimization', 1999, pg. 59-60.
For the zoom phase it uses an algorithm by [...].
""" fc = [0] gc = [0] gval = [None] gval_alpha = [None]
def phi(alpha): fc[0] += 1 return f(xk + alpha * pk, *args)
if isinstance(myfprime, tuple): def derphi(alpha): fc[0] += len(xk) + 1 eps = myfprime[1] fprime = myfprime[0] newargs = (f, eps) + args gval[0] = fprime(xk + alpha * pk, *newargs) # store for later use gval_alpha[0] = alpha return np.dot(gval[0], pk) else: fprime = myfprime
def derphi(alpha): gc[0] += 1 gval[0] = fprime(xk + alpha * pk, *args) # store for later use gval_alpha[0] = alpha return np.dot(gval[0], pk)
if gfk is None: gfk = fprime(xk, *args) derphi0 = np.dot(gfk, pk)
if extra_condition is not None: # Add the current gradient as argument, to avoid needless # re-evaluation def extra_condition2(alpha, phi): if gval_alpha[0] != alpha: derphi(alpha) x = xk + alpha * pk return extra_condition(alpha, x, phi, gval[0]) else: extra_condition2 = None
alpha_star, phi_star, old_fval, derphi_star = scalar_search_wolfe2( phi, derphi, old_fval, old_old_fval, derphi0, c1, c2, amax, extra_condition2, maxiter=maxiter)
if derphi_star is None: warn('The line search algorithm did not converge', LineSearchWarning) else: # derphi_star is a number (derphi) -- so use the most recently # calculated gradient used in computing it derphi = gfk*pk # this is the gradient at the next step no need to compute it # again in the outer loop. derphi_star = gval[0]
return alpha_star, fc[0], gc[0], phi_star, old_fval, derphi_star
old_phi0=None, derphi0=None, c1=1e-4, c2=0.9, amax=None, extra_condition=None, maxiter=10): """Find alpha that satisfies strong Wolfe conditions.
alpha > 0 is assumed to be a descent direction.
Parameters ---------- phi : callable f(x) Objective scalar function. derphi : callable f'(x), optional Objective function derivative (can be None) phi0 : float, optional Value of phi at s=0 old_phi0 : float, optional Value of phi at previous point derphi0 : float, optional Value of derphi at s=0 c1 : float, optional Parameter for Armijo condition rule. c2 : float, optional Parameter for curvature condition rule. amax : float, optional Maximum step size extra_condition : callable, optional A callable of the form ``extra_condition(alpha, phi_value)`` returning a boolean. The line search accepts the value of ``alpha`` only if this callable returns ``True``. If the callable returns ``False`` for the step length, the algorithm will continue with new iterates. The callable is only called for iterates satisfying the strong Wolfe conditions. maxiter : int, optional Maximum number of iterations to perform
Returns ------- alpha_star : float or None Best alpha, or None if the line search algorithm did not converge. phi_star : float phi at alpha_star phi0 : float phi at 0 derphi_star : float or None derphi at alpha_star, or None if the line search algorithm did not converge.
Notes ----- Uses the line search algorithm to enforce strong Wolfe conditions. See Wright and Nocedal, 'Numerical Optimization', 1999, pg. 59-60.
For the zoom phase it uses an algorithm by [...].
"""
if phi0 is None: phi0 = phi(0.)
if derphi0 is None and derphi is not None: derphi0 = derphi(0.)
alpha0 = 0 if old_phi0 is not None and derphi0 != 0: alpha1 = min(1.0, 1.01*2*(phi0 - old_phi0)/derphi0) else: alpha1 = 1.0
if alpha1 < 0: alpha1 = 1.0
phi_a1 = phi(alpha1) #derphi_a1 = derphi(alpha1) evaluated below
phi_a0 = phi0 derphi_a0 = derphi0
if extra_condition is None: extra_condition = lambda alpha, phi: True
for i in xrange(maxiter): if alpha1 == 0 or (amax is not None and alpha0 == amax): # alpha1 == 0: This shouldn't happen. Perhaps the increment has # slipped below machine precision? alpha_star = None phi_star = phi0 phi0 = old_phi0 derphi_star = None
if alpha1 == 0: msg = 'Rounding errors prevent the line search from converging' else: msg = "The line search algorithm could not find a solution " + \ "less than or equal to amax: %s" % amax
warn(msg, LineSearchWarning) break
if (phi_a1 > phi0 + c1 * alpha1 * derphi0) or \ ((phi_a1 >= phi_a0) and (i > 1)): alpha_star, phi_star, derphi_star = \ _zoom(alpha0, alpha1, phi_a0, phi_a1, derphi_a0, phi, derphi, phi0, derphi0, c1, c2, extra_condition) break
derphi_a1 = derphi(alpha1) if (abs(derphi_a1) <= -c2*derphi0): if extra_condition(alpha1, phi_a1): alpha_star = alpha1 phi_star = phi_a1 derphi_star = derphi_a1 break
if (derphi_a1 >= 0): alpha_star, phi_star, derphi_star = \ _zoom(alpha1, alpha0, phi_a1, phi_a0, derphi_a1, phi, derphi, phi0, derphi0, c1, c2, extra_condition) break
alpha2 = 2 * alpha1 # increase by factor of two on each iteration if amax is not None: alpha2 = min(alpha2, amax) alpha0 = alpha1 alpha1 = alpha2 phi_a0 = phi_a1 phi_a1 = phi(alpha1) derphi_a0 = derphi_a1
else: # stopping test maxiter reached alpha_star = alpha1 phi_star = phi_a1 derphi_star = None warn('The line search algorithm did not converge', LineSearchWarning)
return alpha_star, phi_star, phi0, derphi_star
""" Finds the minimizer for a cubic polynomial that goes through the points (a,fa), (b,fb), and (c,fc) with derivative at a of fpa.
If no minimizer can be found return None
""" # f(x) = A *(x-a)^3 + B*(x-a)^2 + C*(x-a) + D
with np.errstate(divide='raise', over='raise', invalid='raise'): try: C = fpa db = b - a dc = c - a denom = (db * dc) ** 2 * (db - dc) d1 = np.empty((2, 2)) d1[0, 0] = dc ** 2 d1[0, 1] = -db ** 2 d1[1, 0] = -dc ** 3 d1[1, 1] = db ** 3 [A, B] = np.dot(d1, np.asarray([fb - fa - C * db, fc - fa - C * dc]).flatten()) A /= denom B /= denom radical = B * B - 3 * A * C xmin = a + (-B + np.sqrt(radical)) / (3 * A) except ArithmeticError: return None if not np.isfinite(xmin): return None return xmin
""" Finds the minimizer for a quadratic polynomial that goes through the points (a,fa), (b,fb) with derivative at a of fpa,
""" # f(x) = B*(x-a)^2 + C*(x-a) + D with np.errstate(divide='raise', over='raise', invalid='raise'): try: D = fa C = fpa db = b - a * 1.0 B = (fb - D - C * db) / (db * db) xmin = a - C / (2.0 * B) except ArithmeticError: return None if not np.isfinite(xmin): return None return xmin
phi, derphi, phi0, derphi0, c1, c2, extra_condition): """ Part of the optimization algorithm in `scalar_search_wolfe2`. """
maxiter = 10 i = 0 delta1 = 0.2 # cubic interpolant check delta2 = 0.1 # quadratic interpolant check phi_rec = phi0 a_rec = 0 while True: # interpolate to find a trial step length between a_lo and # a_hi Need to choose interpolation here. Use cubic # interpolation and then if the result is within delta * # dalpha or outside of the interval bounded by a_lo or a_hi # then use quadratic interpolation, if the result is still too # close, then use bisection
dalpha = a_hi - a_lo if dalpha < 0: a, b = a_hi, a_lo else: a, b = a_lo, a_hi
# minimizer of cubic interpolant # (uses phi_lo, derphi_lo, phi_hi, and the most recent value of phi) # # if the result is too close to the end points (or out of the # interval) then use quadratic interpolation with phi_lo, # derphi_lo and phi_hi if the result is still too close to the # end points (or out of the interval) then use bisection
if (i > 0): cchk = delta1 * dalpha a_j = _cubicmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi, a_rec, phi_rec) if (i == 0) or (a_j is None) or (a_j > b - cchk) or (a_j < a + cchk): qchk = delta2 * dalpha a_j = _quadmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi) if (a_j is None) or (a_j > b-qchk) or (a_j < a+qchk): a_j = a_lo + 0.5*dalpha
# Check new value of a_j
phi_aj = phi(a_j) if (phi_aj > phi0 + c1*a_j*derphi0) or (phi_aj >= phi_lo): phi_rec = phi_hi a_rec = a_hi a_hi = a_j phi_hi = phi_aj else: derphi_aj = derphi(a_j) if abs(derphi_aj) <= -c2*derphi0 and extra_condition(a_j, phi_aj): a_star = a_j val_star = phi_aj valprime_star = derphi_aj break if derphi_aj*(a_hi - a_lo) >= 0: phi_rec = phi_hi a_rec = a_hi a_hi = a_lo phi_hi = phi_lo else: phi_rec = phi_lo a_rec = a_lo a_lo = a_j phi_lo = phi_aj derphi_lo = derphi_aj i += 1 if (i > maxiter): # Failed to find a conforming step size a_star = None val_star = None valprime_star = None break return a_star, val_star, valprime_star
#------------------------------------------------------------------------------ # Armijo line and scalar searches #------------------------------------------------------------------------------
"""Minimize over alpha, the function ``f(xk+alpha pk)``.
Parameters ---------- f : callable Function to be minimized. xk : array_like Current point. pk : array_like Search direction. gfk : array_like Gradient of `f` at point `xk`. old_fval : float Value of `f` at point `xk`. args : tuple, optional Optional arguments. c1 : float, optional Value to control stopping criterion. alpha0 : scalar, optional Value of `alpha` at start of the optimization.
Returns ------- alpha f_count f_val_at_alpha
Notes ----- Uses the interpolation algorithm (Armijo backtracking) as suggested by Wright and Nocedal in 'Numerical Optimization', 1999, pg. 56-57
""" xk = np.atleast_1d(xk) fc = [0]
def phi(alpha1): fc[0] += 1 return f(xk + alpha1*pk, *args)
if old_fval is None: phi0 = phi(0.) else: phi0 = old_fval # compute f(xk) -- done in past loop
derphi0 = np.dot(gfk, pk) alpha, phi1 = scalar_search_armijo(phi, phi0, derphi0, c1=c1, alpha0=alpha0) return alpha, fc[0], phi1
""" Compatibility wrapper for `line_search_armijo` """ r = line_search_armijo(f, xk, pk, gfk, old_fval, args=args, c1=c1, alpha0=alpha0) return r[0], r[1], 0, r[2]
"""Minimize over alpha, the function ``phi(alpha)``.
Uses the interpolation algorithm (Armijo backtracking) as suggested by Wright and Nocedal in 'Numerical Optimization', 1999, pg. 56-57
alpha > 0 is assumed to be a descent direction.
Returns ------- alpha phi1
""" phi_a0 = phi(alpha0) if phi_a0 <= phi0 + c1*alpha0*derphi0: return alpha0, phi_a0
# Otherwise compute the minimizer of a quadratic interpolant:
alpha1 = -(derphi0) * alpha0**2 / 2.0 / (phi_a0 - phi0 - derphi0 * alpha0) phi_a1 = phi(alpha1)
if (phi_a1 <= phi0 + c1*alpha1*derphi0): return alpha1, phi_a1
# Otherwise loop with cubic interpolation until we find an alpha which # satisfies the first Wolfe condition (since we are backtracking, we will # assume that the value of alpha is not too small and satisfies the second # condition.
while alpha1 > amin: # we are assuming alpha>0 is a descent direction factor = alpha0**2 * alpha1**2 * (alpha1-alpha0) a = alpha0**2 * (phi_a1 - phi0 - derphi0*alpha1) - \ alpha1**2 * (phi_a0 - phi0 - derphi0*alpha0) a = a / factor b = -alpha0**3 * (phi_a1 - phi0 - derphi0*alpha1) + \ alpha1**3 * (phi_a0 - phi0 - derphi0*alpha0) b = b / factor
alpha2 = (-b + np.sqrt(abs(b**2 - 3 * a * derphi0))) / (3.0*a) phi_a2 = phi(alpha2)
if (phi_a2 <= phi0 + c1*alpha2*derphi0): return alpha2, phi_a2
if (alpha1 - alpha2) > alpha1 / 2.0 or (1 - alpha2/alpha1) < 0.96: alpha2 = alpha1 / 2.0
alpha0 = alpha1 alpha1 = alpha2 phi_a0 = phi_a1 phi_a1 = phi_a2
# Failed to find a suitable step length return None, phi_a1
#------------------------------------------------------------------------------ # Non-monotone line search for DF-SANE #------------------------------------------------------------------------------
gamma=1e-4, tau_min=0.1, tau_max=0.5): """ Nonmonotone backtracking line search as described in [1]_
Parameters ---------- f : callable Function returning a tuple ``(f, F)`` where ``f`` is the value of a merit function and ``F`` the residual. x_k : ndarray Initial position d : ndarray Search direction prev_fs : float List of previous merit function values. Should have ``len(prev_fs) <= M`` where ``M`` is the nonmonotonicity window parameter. eta : float Allowed merit function increase, see [1]_ gamma, tau_min, tau_max : float, optional Search parameters, see [1]_
Returns ------- alpha : float Step length xp : ndarray Next position fp : float Merit function value at next position Fp : ndarray Residual at next position
References ---------- [1] "Spectral residual method without gradient information for solving large-scale nonlinear systems of equations." W. La Cruz, J.M. Martinez, M. Raydan. Math. Comp. **75**, 1429 (2006).
""" f_k = prev_fs[-1] f_bar = max(prev_fs)
alpha_p = 1 alpha_m = 1 alpha = 1
while True: xp = x_k + alpha_p * d fp, Fp = f(xp)
if fp <= f_bar + eta - gamma * alpha_p**2 * f_k: alpha = alpha_p break
alpha_tp = alpha_p**2 * f_k / (fp + (2*alpha_p - 1)*f_k)
xp = x_k - alpha_m * d fp, Fp = f(xp)
if fp <= f_bar + eta - gamma * alpha_m**2 * f_k: alpha = -alpha_m break
alpha_tm = alpha_m**2 * f_k / (fp + (2*alpha_m - 1)*f_k)
alpha_p = np.clip(alpha_tp, tau_min * alpha_p, tau_max * alpha_p) alpha_m = np.clip(alpha_tm, tau_min * alpha_m, tau_max * alpha_m)
return alpha, xp, fp, Fp
gamma=1e-4, tau_min=0.1, tau_max=0.5, nu=0.85): """ Nonmonotone line search from [1]
Parameters ---------- f : callable Function returning a tuple ``(f, F)`` where ``f`` is the value of a merit function and ``F`` the residual. x_k : ndarray Initial position d : ndarray Search direction f_k : float Initial merit function value C, Q : float Control parameters. On the first iteration, give values Q=1.0, C=f_k eta : float Allowed merit function increase, see [1]_ nu, gamma, tau_min, tau_max : float, optional Search parameters, see [1]_
Returns ------- alpha : float Step length xp : ndarray Next position fp : float Merit function value at next position Fp : ndarray Residual at next position C : float New value for the control parameter C Q : float New value for the control parameter Q
References ---------- .. [1] W. Cheng & D.-H. Li, ''A derivative-free nonmonotone line search and its application to the spectral residual method'', IMA J. Numer. Anal. 29, 814 (2009).
""" alpha_p = 1 alpha_m = 1 alpha = 1
while True: xp = x_k + alpha_p * d fp, Fp = f(xp)
if fp <= C + eta - gamma * alpha_p**2 * f_k: alpha = alpha_p break
alpha_tp = alpha_p**2 * f_k / (fp + (2*alpha_p - 1)*f_k)
xp = x_k - alpha_m * d fp, Fp = f(xp)
if fp <= C + eta - gamma * alpha_m**2 * f_k: alpha = -alpha_m break
alpha_tm = alpha_m**2 * f_k / (fp + (2*alpha_m - 1)*f_k)
alpha_p = np.clip(alpha_tp, tau_min * alpha_p, tau_max * alpha_p) alpha_m = np.clip(alpha_tm, tau_min * alpha_m, tau_max * alpha_m)
# Update C and Q Q_next = nu * Q + 1 C = (nu * Q * (C + eta) + fp) / Q_next Q = Q_next
return alpha, xp, fp, Fp, C, Q |