1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

""" 

Functions 

--------- 

.. autosummary:: 

:toctree: generated/ 

 

line_search_armijo 

line_search_wolfe1 

line_search_wolfe2 

scalar_search_wolfe1 

scalar_search_wolfe2 

 

""" 

from __future__ import division, print_function, absolute_import 

 

from warnings import warn 

 

from scipy.optimize import minpack2 

import numpy as np 

from scipy._lib.six import xrange 

 

__all__ = ['LineSearchWarning', 'line_search_wolfe1', 'line_search_wolfe2', 

'scalar_search_wolfe1', 'scalar_search_wolfe2', 

'line_search_armijo'] 

 

class LineSearchWarning(RuntimeWarning): 

pass 

 

 

#------------------------------------------------------------------------------ 

# Minpack's Wolfe line and scalar searches 

#------------------------------------------------------------------------------ 

 

def line_search_wolfe1(f, fprime, xk, pk, gfk=None, 

old_fval=None, old_old_fval=None, 

args=(), c1=1e-4, c2=0.9, amax=50, amin=1e-8, 

xtol=1e-14): 

""" 

As `scalar_search_wolfe1` but do a line search to direction `pk` 

 

Parameters 

---------- 

f : callable 

Function `f(x)` 

fprime : callable 

Gradient of `f` 

xk : array_like 

Current point 

pk : array_like 

Search direction 

 

gfk : array_like, optional 

Gradient of `f` at point `xk` 

old_fval : float, optional 

Value of `f` at point `xk` 

old_old_fval : float, optional 

Value of `f` at point preceding `xk` 

 

The rest of the parameters are the same as for `scalar_search_wolfe1`. 

 

Returns 

------- 

stp, f_count, g_count, fval, old_fval 

As in `line_search_wolfe1` 

gval : array 

Gradient of `f` at the final point 

 

""" 

if gfk is None: 

gfk = fprime(xk) 

 

if isinstance(fprime, tuple): 

eps = fprime[1] 

fprime = fprime[0] 

newargs = (f, eps) + args 

gradient = False 

else: 

newargs = args 

gradient = True 

 

gval = [gfk] 

gc = [0] 

fc = [0] 

 

def phi(s): 

fc[0] += 1 

return f(xk + s*pk, *args) 

 

def derphi(s): 

gval[0] = fprime(xk + s*pk, *newargs) 

if gradient: 

gc[0] += 1 

else: 

fc[0] += len(xk) + 1 

return np.dot(gval[0], pk) 

 

derphi0 = np.dot(gfk, pk) 

 

stp, fval, old_fval = scalar_search_wolfe1( 

phi, derphi, old_fval, old_old_fval, derphi0, 

c1=c1, c2=c2, amax=amax, amin=amin, xtol=xtol) 

 

return stp, fc[0], gc[0], fval, old_fval, gval[0] 

 

 

def scalar_search_wolfe1(phi, derphi, phi0=None, old_phi0=None, derphi0=None, 

c1=1e-4, c2=0.9, 

amax=50, amin=1e-8, xtol=1e-14): 

""" 

Scalar function search for alpha that satisfies strong Wolfe conditions 

 

alpha > 0 is assumed to be a descent direction. 

 

Parameters 

---------- 

phi : callable phi(alpha) 

Function at point `alpha` 

derphi : callable dphi(alpha) 

Derivative `d phi(alpha)/ds`. Returns a scalar. 

 

phi0 : float, optional 

Value of `f` at 0 

old_phi0 : float, optional 

Value of `f` at the previous point 

derphi0 : float, optional 

Value `derphi` at 0 

c1, c2 : float, optional 

Wolfe parameters 

amax, amin : float, optional 

Maximum and minimum step size 

xtol : float, optional 

Relative tolerance for an acceptable step. 

 

Returns 

------- 

alpha : float 

Step size, or None if no suitable step was found 

phi : float 

Value of `phi` at the new point `alpha` 

phi0 : float 

Value of `phi` at `alpha=0` 

 

Notes 

----- 

Uses routine DCSRCH from MINPACK. 

 

""" 

 

if phi0 is None: 

phi0 = phi(0.) 

if derphi0 is None: 

derphi0 = derphi(0.) 

 

if old_phi0 is not None and derphi0 != 0: 

alpha1 = min(1.0, 1.01*2*(phi0 - old_phi0)/derphi0) 

if alpha1 < 0: 

alpha1 = 1.0 

else: 

alpha1 = 1.0 

 

phi1 = phi0 

derphi1 = derphi0 

isave = np.zeros((2,), np.intc) 

dsave = np.zeros((13,), float) 

task = b'START' 

 

maxiter = 100 

for i in xrange(maxiter): 

stp, phi1, derphi1, task = minpack2.dcsrch(alpha1, phi1, derphi1, 

c1, c2, xtol, task, 

amin, amax, isave, dsave) 

if task[:2] == b'FG': 

alpha1 = stp 

phi1 = phi(stp) 

derphi1 = derphi(stp) 

else: 

break 

else: 

# maxiter reached, the line search did not converge 

stp = None 

 

if task[:5] == b'ERROR' or task[:4] == b'WARN': 

stp = None # failed 

 

return stp, phi1, phi0 

 

 

line_search = line_search_wolfe1 

 

 

#------------------------------------------------------------------------------ 

# Pure-Python Wolfe line and scalar searches 

#------------------------------------------------------------------------------ 

 

def line_search_wolfe2(f, myfprime, xk, pk, gfk=None, old_fval=None, 

old_old_fval=None, args=(), c1=1e-4, c2=0.9, amax=None, 

extra_condition=None, maxiter=10): 

"""Find alpha that satisfies strong Wolfe conditions. 

 

Parameters 

---------- 

f : callable f(x,*args) 

Objective function. 

myfprime : callable f'(x,*args) 

Objective function gradient. 

xk : ndarray 

Starting point. 

pk : ndarray 

Search direction. 

gfk : ndarray, optional 

Gradient value for x=xk (xk being the current parameter 

estimate). Will be recomputed if omitted. 

old_fval : float, optional 

Function value for x=xk. Will be recomputed if omitted. 

old_old_fval : float, optional 

Function value for the point preceding x=xk 

args : tuple, optional 

Additional arguments passed to objective function. 

c1 : float, optional 

Parameter for Armijo condition rule. 

c2 : float, optional 

Parameter for curvature condition rule. 

amax : float, optional 

Maximum step size 

extra_condition : callable, optional 

A callable of the form ``extra_condition(alpha, x, f, g)`` 

returning a boolean. Arguments are the proposed step ``alpha`` 

and the corresponding ``x``, ``f`` and ``g`` values. The line search  

accepts the value of ``alpha`` only if this  

callable returns ``True``. If the callable returns ``False``  

for the step length, the algorithm will continue with  

new iterates. The callable is only called for iterates  

satisfying the strong Wolfe conditions. 

maxiter : int, optional 

Maximum number of iterations to perform 

 

Returns 

------- 

alpha : float or None 

Alpha for which ``x_new = x0 + alpha * pk``, 

or None if the line search algorithm did not converge. 

fc : int 

Number of function evaluations made. 

gc : int 

Number of gradient evaluations made. 

new_fval : float or None 

New function value ``f(x_new)=f(x0+alpha*pk)``, 

or None if the line search algorithm did not converge. 

old_fval : float 

Old function value ``f(x0)``. 

new_slope : float or None 

The local slope along the search direction at the 

new value ``<myfprime(x_new), pk>``, 

or None if the line search algorithm did not converge. 

 

 

Notes 

----- 

Uses the line search algorithm to enforce strong Wolfe 

conditions. See Wright and Nocedal, 'Numerical Optimization', 

1999, pg. 59-60. 

 

For the zoom phase it uses an algorithm by [...]. 

 

""" 

fc = [0] 

gc = [0] 

gval = [None] 

gval_alpha = [None] 

 

def phi(alpha): 

fc[0] += 1 

return f(xk + alpha * pk, *args) 

 

if isinstance(myfprime, tuple): 

def derphi(alpha): 

fc[0] += len(xk) + 1 

eps = myfprime[1] 

fprime = myfprime[0] 

newargs = (f, eps) + args 

gval[0] = fprime(xk + alpha * pk, *newargs) # store for later use 

gval_alpha[0] = alpha 

return np.dot(gval[0], pk) 

else: 

fprime = myfprime 

 

def derphi(alpha): 

gc[0] += 1 

gval[0] = fprime(xk + alpha * pk, *args) # store for later use 

gval_alpha[0] = alpha 

return np.dot(gval[0], pk) 

 

if gfk is None: 

gfk = fprime(xk, *args) 

derphi0 = np.dot(gfk, pk) 

 

if extra_condition is not None: 

# Add the current gradient as argument, to avoid needless 

# re-evaluation 

def extra_condition2(alpha, phi): 

if gval_alpha[0] != alpha: 

derphi(alpha) 

x = xk + alpha * pk 

return extra_condition(alpha, x, phi, gval[0]) 

else: 

extra_condition2 = None 

 

alpha_star, phi_star, old_fval, derphi_star = scalar_search_wolfe2( 

phi, derphi, old_fval, old_old_fval, derphi0, c1, c2, amax, 

extra_condition2, maxiter=maxiter) 

 

if derphi_star is None: 

warn('The line search algorithm did not converge', LineSearchWarning) 

else: 

# derphi_star is a number (derphi) -- so use the most recently 

# calculated gradient used in computing it derphi = gfk*pk 

# this is the gradient at the next step no need to compute it 

# again in the outer loop. 

derphi_star = gval[0] 

 

return alpha_star, fc[0], gc[0], phi_star, old_fval, derphi_star 

 

 

def scalar_search_wolfe2(phi, derphi=None, phi0=None, 

old_phi0=None, derphi0=None, 

c1=1e-4, c2=0.9, amax=None, 

extra_condition=None, maxiter=10): 

"""Find alpha that satisfies strong Wolfe conditions. 

 

alpha > 0 is assumed to be a descent direction. 

 

Parameters 

---------- 

phi : callable f(x) 

Objective scalar function. 

derphi : callable f'(x), optional 

Objective function derivative (can be None) 

phi0 : float, optional 

Value of phi at s=0 

old_phi0 : float, optional 

Value of phi at previous point 

derphi0 : float, optional 

Value of derphi at s=0 

c1 : float, optional 

Parameter for Armijo condition rule. 

c2 : float, optional 

Parameter for curvature condition rule. 

amax : float, optional 

Maximum step size 

extra_condition : callable, optional 

A callable of the form ``extra_condition(alpha, phi_value)`` 

returning a boolean. The line search accepts the value 

of ``alpha`` only if this callable returns ``True``. 

If the callable returns ``False`` for the step length, 

the algorithm will continue with new iterates. 

The callable is only called for iterates satisfying 

the strong Wolfe conditions. 

maxiter : int, optional 

Maximum number of iterations to perform 

 

Returns 

------- 

alpha_star : float or None 

Best alpha, or None if the line search algorithm did not converge. 

phi_star : float 

phi at alpha_star 

phi0 : float 

phi at 0 

derphi_star : float or None 

derphi at alpha_star, or None if the line search algorithm 

did not converge. 

 

Notes 

----- 

Uses the line search algorithm to enforce strong Wolfe 

conditions. See Wright and Nocedal, 'Numerical Optimization', 

1999, pg. 59-60. 

 

For the zoom phase it uses an algorithm by [...]. 

 

""" 

 

if phi0 is None: 

phi0 = phi(0.) 

 

if derphi0 is None and derphi is not None: 

derphi0 = derphi(0.) 

 

alpha0 = 0 

if old_phi0 is not None and derphi0 != 0: 

alpha1 = min(1.0, 1.01*2*(phi0 - old_phi0)/derphi0) 

else: 

alpha1 = 1.0 

 

if alpha1 < 0: 

alpha1 = 1.0 

 

phi_a1 = phi(alpha1) 

#derphi_a1 = derphi(alpha1) evaluated below 

 

phi_a0 = phi0 

derphi_a0 = derphi0 

 

if extra_condition is None: 

extra_condition = lambda alpha, phi: True 

 

for i in xrange(maxiter): 

if alpha1 == 0 or (amax is not None and alpha0 == amax): 

# alpha1 == 0: This shouldn't happen. Perhaps the increment has 

# slipped below machine precision? 

alpha_star = None 

phi_star = phi0 

phi0 = old_phi0 

derphi_star = None 

 

if alpha1 == 0: 

msg = 'Rounding errors prevent the line search from converging' 

else: 

msg = "The line search algorithm could not find a solution " + \ 

"less than or equal to amax: %s" % amax 

 

warn(msg, LineSearchWarning) 

break 

 

if (phi_a1 > phi0 + c1 * alpha1 * derphi0) or \ 

((phi_a1 >= phi_a0) and (i > 1)): 

alpha_star, phi_star, derphi_star = \ 

_zoom(alpha0, alpha1, phi_a0, 

phi_a1, derphi_a0, phi, derphi, 

phi0, derphi0, c1, c2, extra_condition) 

break 

 

derphi_a1 = derphi(alpha1) 

if (abs(derphi_a1) <= -c2*derphi0): 

if extra_condition(alpha1, phi_a1): 

alpha_star = alpha1 

phi_star = phi_a1 

derphi_star = derphi_a1 

break 

 

if (derphi_a1 >= 0): 

alpha_star, phi_star, derphi_star = \ 

_zoom(alpha1, alpha0, phi_a1, 

phi_a0, derphi_a1, phi, derphi, 

phi0, derphi0, c1, c2, extra_condition) 

break 

 

alpha2 = 2 * alpha1 # increase by factor of two on each iteration 

if amax is not None: 

alpha2 = min(alpha2, amax) 

alpha0 = alpha1 

alpha1 = alpha2 

phi_a0 = phi_a1 

phi_a1 = phi(alpha1) 

derphi_a0 = derphi_a1 

 

else: 

# stopping test maxiter reached 

alpha_star = alpha1 

phi_star = phi_a1 

derphi_star = None 

warn('The line search algorithm did not converge', LineSearchWarning) 

 

return alpha_star, phi_star, phi0, derphi_star 

 

 

def _cubicmin(a, fa, fpa, b, fb, c, fc): 

""" 

Finds the minimizer for a cubic polynomial that goes through the 

points (a,fa), (b,fb), and (c,fc) with derivative at a of fpa. 

 

If no minimizer can be found return None 

 

""" 

# f(x) = A *(x-a)^3 + B*(x-a)^2 + C*(x-a) + D 

 

with np.errstate(divide='raise', over='raise', invalid='raise'): 

try: 

C = fpa 

db = b - a 

dc = c - a 

denom = (db * dc) ** 2 * (db - dc) 

d1 = np.empty((2, 2)) 

d1[0, 0] = dc ** 2 

d1[0, 1] = -db ** 2 

d1[1, 0] = -dc ** 3 

d1[1, 1] = db ** 3 

[A, B] = np.dot(d1, np.asarray([fb - fa - C * db, 

fc - fa - C * dc]).flatten()) 

A /= denom 

B /= denom 

radical = B * B - 3 * A * C 

xmin = a + (-B + np.sqrt(radical)) / (3 * A) 

except ArithmeticError: 

return None 

if not np.isfinite(xmin): 

return None 

return xmin 

 

 

def _quadmin(a, fa, fpa, b, fb): 

""" 

Finds the minimizer for a quadratic polynomial that goes through 

the points (a,fa), (b,fb) with derivative at a of fpa, 

 

""" 

# f(x) = B*(x-a)^2 + C*(x-a) + D 

with np.errstate(divide='raise', over='raise', invalid='raise'): 

try: 

D = fa 

C = fpa 

db = b - a * 1.0 

B = (fb - D - C * db) / (db * db) 

xmin = a - C / (2.0 * B) 

except ArithmeticError: 

return None 

if not np.isfinite(xmin): 

return None 

return xmin 

 

 

def _zoom(a_lo, a_hi, phi_lo, phi_hi, derphi_lo, 

phi, derphi, phi0, derphi0, c1, c2, extra_condition): 

""" 

Part of the optimization algorithm in `scalar_search_wolfe2`. 

""" 

 

maxiter = 10 

i = 0 

delta1 = 0.2 # cubic interpolant check 

delta2 = 0.1 # quadratic interpolant check 

phi_rec = phi0 

a_rec = 0 

while True: 

# interpolate to find a trial step length between a_lo and 

# a_hi Need to choose interpolation here. Use cubic 

# interpolation and then if the result is within delta * 

# dalpha or outside of the interval bounded by a_lo or a_hi 

# then use quadratic interpolation, if the result is still too 

# close, then use bisection 

 

dalpha = a_hi - a_lo 

if dalpha < 0: 

a, b = a_hi, a_lo 

else: 

a, b = a_lo, a_hi 

 

# minimizer of cubic interpolant 

# (uses phi_lo, derphi_lo, phi_hi, and the most recent value of phi) 

# 

# if the result is too close to the end points (or out of the 

# interval) then use quadratic interpolation with phi_lo, 

# derphi_lo and phi_hi if the result is still too close to the 

# end points (or out of the interval) then use bisection 

 

if (i > 0): 

cchk = delta1 * dalpha 

a_j = _cubicmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi, 

a_rec, phi_rec) 

if (i == 0) or (a_j is None) or (a_j > b - cchk) or (a_j < a + cchk): 

qchk = delta2 * dalpha 

a_j = _quadmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi) 

if (a_j is None) or (a_j > b-qchk) or (a_j < a+qchk): 

a_j = a_lo + 0.5*dalpha 

 

# Check new value of a_j 

 

phi_aj = phi(a_j) 

if (phi_aj > phi0 + c1*a_j*derphi0) or (phi_aj >= phi_lo): 

phi_rec = phi_hi 

a_rec = a_hi 

a_hi = a_j 

phi_hi = phi_aj 

else: 

derphi_aj = derphi(a_j) 

if abs(derphi_aj) <= -c2*derphi0 and extra_condition(a_j, phi_aj): 

a_star = a_j 

val_star = phi_aj 

valprime_star = derphi_aj 

break 

if derphi_aj*(a_hi - a_lo) >= 0: 

phi_rec = phi_hi 

a_rec = a_hi 

a_hi = a_lo 

phi_hi = phi_lo 

else: 

phi_rec = phi_lo 

a_rec = a_lo 

a_lo = a_j 

phi_lo = phi_aj 

derphi_lo = derphi_aj 

i += 1 

if (i > maxiter): 

# Failed to find a conforming step size 

a_star = None 

val_star = None 

valprime_star = None 

break 

return a_star, val_star, valprime_star 

 

 

#------------------------------------------------------------------------------ 

# Armijo line and scalar searches 

#------------------------------------------------------------------------------ 

 

def line_search_armijo(f, xk, pk, gfk, old_fval, args=(), c1=1e-4, alpha0=1): 

"""Minimize over alpha, the function ``f(xk+alpha pk)``. 

 

Parameters 

---------- 

f : callable 

Function to be minimized. 

xk : array_like 

Current point. 

pk : array_like 

Search direction. 

gfk : array_like 

Gradient of `f` at point `xk`. 

old_fval : float 

Value of `f` at point `xk`. 

args : tuple, optional 

Optional arguments. 

c1 : float, optional 

Value to control stopping criterion. 

alpha0 : scalar, optional 

Value of `alpha` at start of the optimization. 

 

Returns 

------- 

alpha 

f_count 

f_val_at_alpha 

 

Notes 

----- 

Uses the interpolation algorithm (Armijo backtracking) as suggested by 

Wright and Nocedal in 'Numerical Optimization', 1999, pg. 56-57 

 

""" 

xk = np.atleast_1d(xk) 

fc = [0] 

 

def phi(alpha1): 

fc[0] += 1 

return f(xk + alpha1*pk, *args) 

 

if old_fval is None: 

phi0 = phi(0.) 

else: 

phi0 = old_fval # compute f(xk) -- done in past loop 

 

derphi0 = np.dot(gfk, pk) 

alpha, phi1 = scalar_search_armijo(phi, phi0, derphi0, c1=c1, 

alpha0=alpha0) 

return alpha, fc[0], phi1 

 

 

def line_search_BFGS(f, xk, pk, gfk, old_fval, args=(), c1=1e-4, alpha0=1): 

""" 

Compatibility wrapper for `line_search_armijo` 

""" 

r = line_search_armijo(f, xk, pk, gfk, old_fval, args=args, c1=c1, 

alpha0=alpha0) 

return r[0], r[1], 0, r[2] 

 

 

def scalar_search_armijo(phi, phi0, derphi0, c1=1e-4, alpha0=1, amin=0): 

"""Minimize over alpha, the function ``phi(alpha)``. 

 

Uses the interpolation algorithm (Armijo backtracking) as suggested by 

Wright and Nocedal in 'Numerical Optimization', 1999, pg. 56-57 

 

alpha > 0 is assumed to be a descent direction. 

 

Returns 

------- 

alpha 

phi1 

 

""" 

phi_a0 = phi(alpha0) 

if phi_a0 <= phi0 + c1*alpha0*derphi0: 

return alpha0, phi_a0 

 

# Otherwise compute the minimizer of a quadratic interpolant: 

 

alpha1 = -(derphi0) * alpha0**2 / 2.0 / (phi_a0 - phi0 - derphi0 * alpha0) 

phi_a1 = phi(alpha1) 

 

if (phi_a1 <= phi0 + c1*alpha1*derphi0): 

return alpha1, phi_a1 

 

# Otherwise loop with cubic interpolation until we find an alpha which 

# satisfies the first Wolfe condition (since we are backtracking, we will 

# assume that the value of alpha is not too small and satisfies the second 

# condition. 

 

while alpha1 > amin: # we are assuming alpha>0 is a descent direction 

factor = alpha0**2 * alpha1**2 * (alpha1-alpha0) 

a = alpha0**2 * (phi_a1 - phi0 - derphi0*alpha1) - \ 

alpha1**2 * (phi_a0 - phi0 - derphi0*alpha0) 

a = a / factor 

b = -alpha0**3 * (phi_a1 - phi0 - derphi0*alpha1) + \ 

alpha1**3 * (phi_a0 - phi0 - derphi0*alpha0) 

b = b / factor 

 

alpha2 = (-b + np.sqrt(abs(b**2 - 3 * a * derphi0))) / (3.0*a) 

phi_a2 = phi(alpha2) 

 

if (phi_a2 <= phi0 + c1*alpha2*derphi0): 

return alpha2, phi_a2 

 

if (alpha1 - alpha2) > alpha1 / 2.0 or (1 - alpha2/alpha1) < 0.96: 

alpha2 = alpha1 / 2.0 

 

alpha0 = alpha1 

alpha1 = alpha2 

phi_a0 = phi_a1 

phi_a1 = phi_a2 

 

# Failed to find a suitable step length 

return None, phi_a1 

 

 

#------------------------------------------------------------------------------ 

# Non-monotone line search for DF-SANE 

#------------------------------------------------------------------------------ 

 

def _nonmonotone_line_search_cruz(f, x_k, d, prev_fs, eta, 

gamma=1e-4, tau_min=0.1, tau_max=0.5): 

""" 

Nonmonotone backtracking line search as described in [1]_ 

 

Parameters 

---------- 

f : callable 

Function returning a tuple ``(f, F)`` where ``f`` is the value 

of a merit function and ``F`` the residual. 

x_k : ndarray 

Initial position 

d : ndarray 

Search direction 

prev_fs : float 

List of previous merit function values. Should have ``len(prev_fs) <= M`` 

where ``M`` is the nonmonotonicity window parameter. 

eta : float 

Allowed merit function increase, see [1]_ 

gamma, tau_min, tau_max : float, optional 

Search parameters, see [1]_ 

 

Returns 

------- 

alpha : float 

Step length 

xp : ndarray 

Next position 

fp : float 

Merit function value at next position 

Fp : ndarray 

Residual at next position 

 

References 

---------- 

[1] "Spectral residual method without gradient information for solving 

large-scale nonlinear systems of equations." W. La Cruz, 

J.M. Martinez, M. Raydan. Math. Comp. **75**, 1429 (2006). 

 

""" 

f_k = prev_fs[-1] 

f_bar = max(prev_fs) 

 

alpha_p = 1 

alpha_m = 1 

alpha = 1 

 

while True: 

xp = x_k + alpha_p * d 

fp, Fp = f(xp) 

 

if fp <= f_bar + eta - gamma * alpha_p**2 * f_k: 

alpha = alpha_p 

break 

 

alpha_tp = alpha_p**2 * f_k / (fp + (2*alpha_p - 1)*f_k) 

 

xp = x_k - alpha_m * d 

fp, Fp = f(xp) 

 

if fp <= f_bar + eta - gamma * alpha_m**2 * f_k: 

alpha = -alpha_m 

break 

 

alpha_tm = alpha_m**2 * f_k / (fp + (2*alpha_m - 1)*f_k) 

 

alpha_p = np.clip(alpha_tp, tau_min * alpha_p, tau_max * alpha_p) 

alpha_m = np.clip(alpha_tm, tau_min * alpha_m, tau_max * alpha_m) 

 

return alpha, xp, fp, Fp 

 

 

def _nonmonotone_line_search_cheng(f, x_k, d, f_k, C, Q, eta, 

gamma=1e-4, tau_min=0.1, tau_max=0.5, 

nu=0.85): 

""" 

Nonmonotone line search from [1] 

 

Parameters 

---------- 

f : callable 

Function returning a tuple ``(f, F)`` where ``f`` is the value 

of a merit function and ``F`` the residual. 

x_k : ndarray 

Initial position 

d : ndarray 

Search direction 

f_k : float 

Initial merit function value 

C, Q : float 

Control parameters. On the first iteration, give values 

Q=1.0, C=f_k 

eta : float 

Allowed merit function increase, see [1]_ 

nu, gamma, tau_min, tau_max : float, optional 

Search parameters, see [1]_ 

 

Returns 

------- 

alpha : float 

Step length 

xp : ndarray 

Next position 

fp : float 

Merit function value at next position 

Fp : ndarray 

Residual at next position 

C : float 

New value for the control parameter C 

Q : float 

New value for the control parameter Q 

 

References 

---------- 

.. [1] W. Cheng & D.-H. Li, ''A derivative-free nonmonotone line 

search and its application to the spectral residual 

method'', IMA J. Numer. Anal. 29, 814 (2009). 

 

""" 

alpha_p = 1 

alpha_m = 1 

alpha = 1 

 

while True: 

xp = x_k + alpha_p * d 

fp, Fp = f(xp) 

 

if fp <= C + eta - gamma * alpha_p**2 * f_k: 

alpha = alpha_p 

break 

 

alpha_tp = alpha_p**2 * f_k / (fp + (2*alpha_p - 1)*f_k) 

 

xp = x_k - alpha_m * d 

fp, Fp = f(xp) 

 

if fp <= C + eta - gamma * alpha_m**2 * f_k: 

alpha = -alpha_m 

break 

 

alpha_tm = alpha_m**2 * f_k / (fp + (2*alpha_m - 1)*f_k) 

 

alpha_p = np.clip(alpha_tp, tau_min * alpha_p, tau_max * alpha_p) 

alpha_m = np.clip(alpha_tm, tau_min * alpha_m, tau_max * alpha_m) 

 

# Update C and Q 

Q_next = nu * Q + 1 

C = (nu * Q * (C + eta) + fp) / Q_next 

Q = Q_next 

 

return alpha, xp, fp, Fp, C, Q