1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

from __future__ import division, print_function, absolute_import 

 

from . import _nnls 

from numpy import asarray_chkfinite, zeros, double 

 

__all__ = ['nnls'] 

 

 

def nnls(A, b, maxiter=None): 

""" 

Solve ``argmin_x || Ax - b ||_2`` for ``x>=0``. This is a wrapper 

for a FORTRAN non-negative least squares solver. 

 

Parameters 

---------- 

A : ndarray 

Matrix ``A`` as shown above. 

b : ndarray 

Right-hand side vector. 

maxiter: int, optional 

Maximum number of iterations, optional. 

Default is ``3 * A.shape[1]``. 

 

Returns 

------- 

x : ndarray 

Solution vector. 

rnorm : float 

The residual, ``|| Ax-b ||_2``. 

 

Notes 

----- 

The FORTRAN code was published in the book below. The algorithm 

is an active set method. It solves the KKT (Karush-Kuhn-Tucker) 

conditions for the non-negative least squares problem. 

 

References 

---------- 

Lawson C., Hanson R.J., (1987) Solving Least Squares Problems, SIAM 

 

""" 

 

A, b = map(asarray_chkfinite, (A, b)) 

 

if len(A.shape) != 2: 

raise ValueError("expected matrix") 

if len(b.shape) != 1: 

raise ValueError("expected vector") 

 

m, n = A.shape 

 

if m != b.shape[0]: 

raise ValueError("incompatible dimensions") 

 

maxiter = -1 if maxiter is None else int(maxiter) 

 

w = zeros((n,), dtype=double) 

zz = zeros((m,), dtype=double) 

index = zeros((n,), dtype=int) 

 

x, rnorm, mode = _nnls.nnls(A, m, n, b, w, zz, index, maxiter) 

if mode != 1: 

raise RuntimeError("too many iterations") 

 

return x, rnorm