1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

r""" 

 

Nonlinear solvers 

----------------- 

 

.. currentmodule:: scipy.optimize 

 

This is a collection of general-purpose nonlinear multidimensional 

solvers. These solvers find *x* for which *F(x) = 0*. Both *x* 

and *F* can be multidimensional. 

 

Routines 

~~~~~~~~ 

 

Large-scale nonlinear solvers: 

 

.. autosummary:: 

 

newton_krylov 

anderson 

 

General nonlinear solvers: 

 

.. autosummary:: 

 

broyden1 

broyden2 

 

Simple iterations: 

 

.. autosummary:: 

 

excitingmixing 

linearmixing 

diagbroyden 

 

 

Examples 

~~~~~~~~ 

 

**Small problem** 

 

>>> def F(x): 

... return np.cos(x) + x[::-1] - [1, 2, 3, 4] 

>>> import scipy.optimize 

>>> x = scipy.optimize.broyden1(F, [1,1,1,1], f_tol=1e-14) 

>>> x 

array([ 4.04674914, 3.91158389, 2.71791677, 1.61756251]) 

>>> np.cos(x) + x[::-1] 

array([ 1., 2., 3., 4.]) 

 

 

**Large problem** 

 

Suppose that we needed to solve the following integrodifferential 

equation on the square :math:`[0,1]\times[0,1]`: 

 

.. math:: 

 

\nabla^2 P = 10 \left(\int_0^1\int_0^1\cosh(P)\,dx\,dy\right)^2 

 

with :math:`P(x,1) = 1` and :math:`P=0` elsewhere on the boundary of 

the square. 

 

The solution can be found using the `newton_krylov` solver: 

 

.. plot:: 

 

import numpy as np 

from scipy.optimize import newton_krylov 

from numpy import cosh, zeros_like, mgrid, zeros 

 

# parameters 

nx, ny = 75, 75 

hx, hy = 1./(nx-1), 1./(ny-1) 

 

P_left, P_right = 0, 0 

P_top, P_bottom = 1, 0 

 

def residual(P): 

d2x = zeros_like(P) 

d2y = zeros_like(P) 

 

d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2]) / hx/hx 

d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx 

d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx 

 

d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy 

d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom)/hy/hy 

d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy 

 

return d2x + d2y - 10*cosh(P).mean()**2 

 

# solve 

guess = zeros((nx, ny), float) 

sol = newton_krylov(residual, guess, method='lgmres', verbose=1) 

print('Residual: %g' % abs(residual(sol)).max()) 

 

# visualize 

import matplotlib.pyplot as plt 

x, y = mgrid[0:1:(nx*1j), 0:1:(ny*1j)] 

plt.pcolor(x, y, sol) 

plt.colorbar() 

plt.show() 

 

""" 

# Copyright (C) 2009, Pauli Virtanen <pav@iki.fi> 

# Distributed under the same license as Scipy. 

 

from __future__ import division, print_function, absolute_import 

 

import sys 

import numpy as np 

from scipy._lib.six import callable, exec_, xrange 

from scipy.linalg import norm, solve, inv, qr, svd, LinAlgError 

from numpy import asarray, dot, vdot 

import scipy.sparse.linalg 

import scipy.sparse 

from scipy.linalg import get_blas_funcs 

import inspect 

from scipy._lib._util import getargspec_no_self as _getargspec 

from .linesearch import scalar_search_wolfe1, scalar_search_armijo 

 

 

__all__ = [ 

'broyden1', 'broyden2', 'anderson', 'linearmixing', 

'diagbroyden', 'excitingmixing', 'newton_krylov'] 

 

#------------------------------------------------------------------------------ 

# Utility functions 

#------------------------------------------------------------------------------ 

 

 

class NoConvergence(Exception): 

pass 

 

 

def maxnorm(x): 

return np.absolute(x).max() 

 

 

def _as_inexact(x): 

"""Return `x` as an array, of either floats or complex floats""" 

x = asarray(x) 

if not np.issubdtype(x.dtype, np.inexact): 

return asarray(x, dtype=np.float_) 

return x 

 

 

def _array_like(x, x0): 

"""Return ndarray `x` as same array subclass and shape as `x0`""" 

x = np.reshape(x, np.shape(x0)) 

wrap = getattr(x0, '__array_wrap__', x.__array_wrap__) 

return wrap(x) 

 

 

def _safe_norm(v): 

if not np.isfinite(v).all(): 

return np.array(np.inf) 

return norm(v) 

 

#------------------------------------------------------------------------------ 

# Generic nonlinear solver machinery 

#------------------------------------------------------------------------------ 

 

 

_doc_parts = dict( 

params_basic=""" 

F : function(x) -> f 

Function whose root to find; should take and return an array-like 

object. 

xin : array_like 

Initial guess for the solution 

""".strip(), 

params_extra=""" 

iter : int, optional 

Number of iterations to make. If omitted (default), make as many 

as required to meet tolerances. 

verbose : bool, optional 

Print status to stdout on every iteration. 

maxiter : int, optional 

Maximum number of iterations to make. If more are needed to 

meet convergence, `NoConvergence` is raised. 

f_tol : float, optional 

Absolute tolerance (in max-norm) for the residual. 

If omitted, default is 6e-6. 

f_rtol : float, optional 

Relative tolerance for the residual. If omitted, not used. 

x_tol : float, optional 

Absolute minimum step size, as determined from the Jacobian 

approximation. If the step size is smaller than this, optimization 

is terminated as successful. If omitted, not used. 

x_rtol : float, optional 

Relative minimum step size. If omitted, not used. 

tol_norm : function(vector) -> scalar, optional 

Norm to use in convergence check. Default is the maximum norm. 

line_search : {None, 'armijo' (default), 'wolfe'}, optional 

Which type of a line search to use to determine the step size in the 

direction given by the Jacobian approximation. Defaults to 'armijo'. 

callback : function, optional 

Optional callback function. It is called on every iteration as 

``callback(x, f)`` where `x` is the current solution and `f` 

the corresponding residual. 

 

Returns 

------- 

sol : ndarray 

An array (of similar array type as `x0`) containing the final solution. 

 

Raises 

------ 

NoConvergence 

When a solution was not found. 

 

""".strip() 

) 

 

 

def _set_doc(obj): 

if obj.__doc__: 

obj.__doc__ = obj.__doc__ % _doc_parts 

 

 

def nonlin_solve(F, x0, jacobian='krylov', iter=None, verbose=False, 

maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, 

tol_norm=None, line_search='armijo', callback=None, 

full_output=False, raise_exception=True): 

""" 

Find a root of a function, in a way suitable for large-scale problems. 

 

Parameters 

---------- 

%(params_basic)s 

jacobian : Jacobian 

A Jacobian approximation: `Jacobian` object or something that 

`asjacobian` can transform to one. Alternatively, a string specifying 

which of the builtin Jacobian approximations to use: 

 

krylov, broyden1, broyden2, anderson 

diagbroyden, linearmixing, excitingmixing 

 

%(params_extra)s 

full_output : bool 

If true, returns a dictionary `info` containing convergence 

information. 

raise_exception : bool 

If True, a `NoConvergence` exception is raise if no solution is found. 

 

See Also 

-------- 

asjacobian, Jacobian 

 

Notes 

----- 

This algorithm implements the inexact Newton method, with 

backtracking or full line searches. Several Jacobian 

approximations are available, including Krylov and Quasi-Newton 

methods. 

 

References 

---------- 

.. [KIM] C. T. Kelley, \"Iterative Methods for Linear and Nonlinear 

Equations\". Society for Industrial and Applied Mathematics. (1995) 

http://www.siam.org/books/kelley/fr16/index.php 

 

""" 

 

condition = TerminationCondition(f_tol=f_tol, f_rtol=f_rtol, 

x_tol=x_tol, x_rtol=x_rtol, 

iter=iter, norm=tol_norm) 

 

x0 = _as_inexact(x0) 

func = lambda z: _as_inexact(F(_array_like(z, x0))).flatten() 

x = x0.flatten() 

 

dx = np.inf 

Fx = func(x) 

Fx_norm = norm(Fx) 

 

jacobian = asjacobian(jacobian) 

jacobian.setup(x.copy(), Fx, func) 

 

if maxiter is None: 

if iter is not None: 

maxiter = iter + 1 

else: 

maxiter = 100*(x.size+1) 

 

if line_search is True: 

line_search = 'armijo' 

elif line_search is False: 

line_search = None 

 

if line_search not in (None, 'armijo', 'wolfe'): 

raise ValueError("Invalid line search") 

 

# Solver tolerance selection 

gamma = 0.9 

eta_max = 0.9999 

eta_treshold = 0.1 

eta = 1e-3 

 

for n in xrange(maxiter): 

status = condition.check(Fx, x, dx) 

if status: 

break 

 

# The tolerance, as computed for scipy.sparse.linalg.* routines 

tol = min(eta, eta*Fx_norm) 

dx = -jacobian.solve(Fx, tol=tol) 

 

if norm(dx) == 0: 

raise ValueError("Jacobian inversion yielded zero vector. " 

"This indicates a bug in the Jacobian " 

"approximation.") 

 

# Line search, or Newton step 

if line_search: 

s, x, Fx, Fx_norm_new = _nonlin_line_search(func, x, Fx, dx, 

line_search) 

else: 

s = 1.0 

x = x + dx 

Fx = func(x) 

Fx_norm_new = norm(Fx) 

 

jacobian.update(x.copy(), Fx) 

 

if callback: 

callback(x, Fx) 

 

# Adjust forcing parameters for inexact methods 

eta_A = gamma * Fx_norm_new**2 / Fx_norm**2 

if gamma * eta**2 < eta_treshold: 

eta = min(eta_max, eta_A) 

else: 

eta = min(eta_max, max(eta_A, gamma*eta**2)) 

 

Fx_norm = Fx_norm_new 

 

# Print status 

if verbose: 

sys.stdout.write("%d: |F(x)| = %g; step %g; tol %g\n" % ( 

n, norm(Fx), s, eta)) 

sys.stdout.flush() 

else: 

if raise_exception: 

raise NoConvergence(_array_like(x, x0)) 

else: 

status = 2 

 

if full_output: 

info = {'nit': condition.iteration, 

'fun': Fx, 

'status': status, 

'success': status == 1, 

'message': {1: 'A solution was found at the specified ' 

'tolerance.', 

2: 'The maximum number of iterations allowed ' 

'has been reached.' 

}[status] 

} 

return _array_like(x, x0), info 

else: 

return _array_like(x, x0) 

 

 

_set_doc(nonlin_solve) 

 

 

def _nonlin_line_search(func, x, Fx, dx, search_type='armijo', rdiff=1e-8, 

smin=1e-2): 

tmp_s = [0] 

tmp_Fx = [Fx] 

tmp_phi = [norm(Fx)**2] 

s_norm = norm(x) / norm(dx) 

 

def phi(s, store=True): 

if s == tmp_s[0]: 

return tmp_phi[0] 

xt = x + s*dx 

v = func(xt) 

p = _safe_norm(v)**2 

if store: 

tmp_s[0] = s 

tmp_phi[0] = p 

tmp_Fx[0] = v 

return p 

 

def derphi(s): 

ds = (abs(s) + s_norm + 1) * rdiff 

return (phi(s+ds, store=False) - phi(s)) / ds 

 

if search_type == 'wolfe': 

s, phi1, phi0 = scalar_search_wolfe1(phi, derphi, tmp_phi[0], 

xtol=1e-2, amin=smin) 

elif search_type == 'armijo': 

s, phi1 = scalar_search_armijo(phi, tmp_phi[0], -tmp_phi[0], 

amin=smin) 

 

if s is None: 

# XXX: No suitable step length found. Take the full Newton step, 

# and hope for the best. 

s = 1.0 

 

x = x + s*dx 

if s == tmp_s[0]: 

Fx = tmp_Fx[0] 

else: 

Fx = func(x) 

Fx_norm = norm(Fx) 

 

return s, x, Fx, Fx_norm 

 

 

class TerminationCondition(object): 

""" 

Termination condition for an iteration. It is terminated if 

 

- |F| < f_rtol*|F_0|, AND 

- |F| < f_tol 

 

AND 

 

- |dx| < x_rtol*|x|, AND 

- |dx| < x_tol 

 

""" 

def __init__(self, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, 

iter=None, norm=maxnorm): 

 

if f_tol is None: 

f_tol = np.finfo(np.float_).eps ** (1./3) 

if f_rtol is None: 

f_rtol = np.inf 

if x_tol is None: 

x_tol = np.inf 

if x_rtol is None: 

x_rtol = np.inf 

 

self.x_tol = x_tol 

self.x_rtol = x_rtol 

self.f_tol = f_tol 

self.f_rtol = f_rtol 

 

if norm is None: 

self.norm = maxnorm 

else: 

self.norm = norm 

 

self.iter = iter 

 

self.f0_norm = None 

self.iteration = 0 

 

def check(self, f, x, dx): 

self.iteration += 1 

f_norm = self.norm(f) 

x_norm = self.norm(x) 

dx_norm = self.norm(dx) 

 

if self.f0_norm is None: 

self.f0_norm = f_norm 

 

if f_norm == 0: 

return 1 

 

if self.iter is not None: 

# backwards compatibility with Scipy 0.6.0 

return 2 * (self.iteration > self.iter) 

 

# NB: condition must succeed for rtol=inf even if norm == 0 

return int((f_norm <= self.f_tol 

and f_norm/self.f_rtol <= self.f0_norm) 

and (dx_norm <= self.x_tol 

and dx_norm/self.x_rtol <= x_norm)) 

 

 

#------------------------------------------------------------------------------ 

# Generic Jacobian approximation 

#------------------------------------------------------------------------------ 

 

class Jacobian(object): 

""" 

Common interface for Jacobians or Jacobian approximations. 

 

The optional methods come useful when implementing trust region 

etc. algorithms that often require evaluating transposes of the 

Jacobian. 

 

Methods 

------- 

solve 

Returns J^-1 * v 

update 

Updates Jacobian to point `x` (where the function has residual `Fx`) 

 

matvec : optional 

Returns J * v 

rmatvec : optional 

Returns A^H * v 

rsolve : optional 

Returns A^-H * v 

matmat : optional 

Returns A * V, where V is a dense matrix with dimensions (N,K). 

todense : optional 

Form the dense Jacobian matrix. Necessary for dense trust region 

algorithms, and useful for testing. 

 

Attributes 

---------- 

shape 

Matrix dimensions (M, N) 

dtype 

Data type of the matrix. 

func : callable, optional 

Function the Jacobian corresponds to 

 

""" 

 

def __init__(self, **kw): 

names = ["solve", "update", "matvec", "rmatvec", "rsolve", 

"matmat", "todense", "shape", "dtype"] 

for name, value in kw.items(): 

if name not in names: 

raise ValueError("Unknown keyword argument %s" % name) 

if value is not None: 

setattr(self, name, kw[name]) 

 

if hasattr(self, 'todense'): 

self.__array__ = lambda: self.todense() 

 

def aspreconditioner(self): 

return InverseJacobian(self) 

 

def solve(self, v, tol=0): 

raise NotImplementedError 

 

def update(self, x, F): 

pass 

 

def setup(self, x, F, func): 

self.func = func 

self.shape = (F.size, x.size) 

self.dtype = F.dtype 

if self.__class__.setup is Jacobian.setup: 

# Call on the first point unless overridden 

self.update(x, F) 

 

 

class InverseJacobian(object): 

def __init__(self, jacobian): 

self.jacobian = jacobian 

self.matvec = jacobian.solve 

self.update = jacobian.update 

if hasattr(jacobian, 'setup'): 

self.setup = jacobian.setup 

if hasattr(jacobian, 'rsolve'): 

self.rmatvec = jacobian.rsolve 

 

@property 

def shape(self): 

return self.jacobian.shape 

 

@property 

def dtype(self): 

return self.jacobian.dtype 

 

 

def asjacobian(J): 

""" 

Convert given object to one suitable for use as a Jacobian. 

""" 

spsolve = scipy.sparse.linalg.spsolve 

if isinstance(J, Jacobian): 

return J 

elif inspect.isclass(J) and issubclass(J, Jacobian): 

return J() 

elif isinstance(J, np.ndarray): 

if J.ndim > 2: 

raise ValueError('array must have rank <= 2') 

J = np.atleast_2d(np.asarray(J)) 

if J.shape[0] != J.shape[1]: 

raise ValueError('array must be square') 

 

return Jacobian(matvec=lambda v: dot(J, v), 

rmatvec=lambda v: dot(J.conj().T, v), 

solve=lambda v: solve(J, v), 

rsolve=lambda v: solve(J.conj().T, v), 

dtype=J.dtype, shape=J.shape) 

elif scipy.sparse.isspmatrix(J): 

if J.shape[0] != J.shape[1]: 

raise ValueError('matrix must be square') 

return Jacobian(matvec=lambda v: J*v, 

rmatvec=lambda v: J.conj().T * v, 

solve=lambda v: spsolve(J, v), 

rsolve=lambda v: spsolve(J.conj().T, v), 

dtype=J.dtype, shape=J.shape) 

elif hasattr(J, 'shape') and hasattr(J, 'dtype') and hasattr(J, 'solve'): 

return Jacobian(matvec=getattr(J, 'matvec'), 

rmatvec=getattr(J, 'rmatvec'), 

solve=J.solve, 

rsolve=getattr(J, 'rsolve'), 

update=getattr(J, 'update'), 

setup=getattr(J, 'setup'), 

dtype=J.dtype, 

shape=J.shape) 

elif callable(J): 

# Assume it's a function J(x) that returns the Jacobian 

class Jac(Jacobian): 

def update(self, x, F): 

self.x = x 

 

def solve(self, v, tol=0): 

m = J(self.x) 

if isinstance(m, np.ndarray): 

return solve(m, v) 

elif scipy.sparse.isspmatrix(m): 

return spsolve(m, v) 

else: 

raise ValueError("Unknown matrix type") 

 

def matvec(self, v): 

m = J(self.x) 

if isinstance(m, np.ndarray): 

return dot(m, v) 

elif scipy.sparse.isspmatrix(m): 

return m*v 

else: 

raise ValueError("Unknown matrix type") 

 

def rsolve(self, v, tol=0): 

m = J(self.x) 

if isinstance(m, np.ndarray): 

return solve(m.conj().T, v) 

elif scipy.sparse.isspmatrix(m): 

return spsolve(m.conj().T, v) 

else: 

raise ValueError("Unknown matrix type") 

 

def rmatvec(self, v): 

m = J(self.x) 

if isinstance(m, np.ndarray): 

return dot(m.conj().T, v) 

elif scipy.sparse.isspmatrix(m): 

return m.conj().T * v 

else: 

raise ValueError("Unknown matrix type") 

return Jac() 

elif isinstance(J, str): 

return dict(broyden1=BroydenFirst, 

broyden2=BroydenSecond, 

anderson=Anderson, 

diagbroyden=DiagBroyden, 

linearmixing=LinearMixing, 

excitingmixing=ExcitingMixing, 

krylov=KrylovJacobian)[J]() 

else: 

raise TypeError('Cannot convert object to a Jacobian') 

 

 

#------------------------------------------------------------------------------ 

# Broyden 

#------------------------------------------------------------------------------ 

 

class GenericBroyden(Jacobian): 

def setup(self, x0, f0, func): 

Jacobian.setup(self, x0, f0, func) 

self.last_f = f0 

self.last_x = x0 

 

if hasattr(self, 'alpha') and self.alpha is None: 

# Autoscale the initial Jacobian parameter 

# unless we have already guessed the solution. 

normf0 = norm(f0) 

if normf0: 

self.alpha = 0.5*max(norm(x0), 1) / normf0 

else: 

self.alpha = 1.0 

 

def _update(self, x, f, dx, df, dx_norm, df_norm): 

raise NotImplementedError 

 

def update(self, x, f): 

df = f - self.last_f 

dx = x - self.last_x 

self._update(x, f, dx, df, norm(dx), norm(df)) 

self.last_f = f 

self.last_x = x 

 

 

class LowRankMatrix(object): 

r""" 

A matrix represented as 

 

.. math:: \alpha I + \sum_{n=0}^{n=M} c_n d_n^\dagger 

 

However, if the rank of the matrix reaches the dimension of the vectors, 

full matrix representation will be used thereon. 

 

""" 

 

def __init__(self, alpha, n, dtype): 

self.alpha = alpha 

self.cs = [] 

self.ds = [] 

self.n = n 

self.dtype = dtype 

self.collapsed = None 

 

@staticmethod 

def _matvec(v, alpha, cs, ds): 

axpy, scal, dotc = get_blas_funcs(['axpy', 'scal', 'dotc'], 

cs[:1] + [v]) 

w = alpha * v 

for c, d in zip(cs, ds): 

a = dotc(d, v) 

w = axpy(c, w, w.size, a) 

return w 

 

@staticmethod 

def _solve(v, alpha, cs, ds): 

"""Evaluate w = M^-1 v""" 

if len(cs) == 0: 

return v/alpha 

 

# (B + C D^H)^-1 = B^-1 - B^-1 C (I + D^H B^-1 C)^-1 D^H B^-1 

 

axpy, dotc = get_blas_funcs(['axpy', 'dotc'], cs[:1] + [v]) 

 

c0 = cs[0] 

A = alpha * np.identity(len(cs), dtype=c0.dtype) 

for i, d in enumerate(ds): 

for j, c in enumerate(cs): 

A[i,j] += dotc(d, c) 

 

q = np.zeros(len(cs), dtype=c0.dtype) 

for j, d in enumerate(ds): 

q[j] = dotc(d, v) 

q /= alpha 

q = solve(A, q) 

 

w = v/alpha 

for c, qc in zip(cs, q): 

w = axpy(c, w, w.size, -qc) 

 

return w 

 

def matvec(self, v): 

"""Evaluate w = M v""" 

if self.collapsed is not None: 

return np.dot(self.collapsed, v) 

return LowRankMatrix._matvec(v, self.alpha, self.cs, self.ds) 

 

def rmatvec(self, v): 

"""Evaluate w = M^H v""" 

if self.collapsed is not None: 

return np.dot(self.collapsed.T.conj(), v) 

return LowRankMatrix._matvec(v, np.conj(self.alpha), self.ds, self.cs) 

 

def solve(self, v, tol=0): 

"""Evaluate w = M^-1 v""" 

if self.collapsed is not None: 

return solve(self.collapsed, v) 

return LowRankMatrix._solve(v, self.alpha, self.cs, self.ds) 

 

def rsolve(self, v, tol=0): 

"""Evaluate w = M^-H v""" 

if self.collapsed is not None: 

return solve(self.collapsed.T.conj(), v) 

return LowRankMatrix._solve(v, np.conj(self.alpha), self.ds, self.cs) 

 

def append(self, c, d): 

if self.collapsed is not None: 

self.collapsed += c[:,None] * d[None,:].conj() 

return 

 

self.cs.append(c) 

self.ds.append(d) 

 

if len(self.cs) > c.size: 

self.collapse() 

 

def __array__(self): 

if self.collapsed is not None: 

return self.collapsed 

 

Gm = self.alpha*np.identity(self.n, dtype=self.dtype) 

for c, d in zip(self.cs, self.ds): 

Gm += c[:,None]*d[None,:].conj() 

return Gm 

 

def collapse(self): 

"""Collapse the low-rank matrix to a full-rank one.""" 

self.collapsed = np.array(self) 

self.cs = None 

self.ds = None 

self.alpha = None 

 

def restart_reduce(self, rank): 

""" 

Reduce the rank of the matrix by dropping all vectors. 

""" 

if self.collapsed is not None: 

return 

assert rank > 0 

if len(self.cs) > rank: 

del self.cs[:] 

del self.ds[:] 

 

def simple_reduce(self, rank): 

""" 

Reduce the rank of the matrix by dropping oldest vectors. 

""" 

if self.collapsed is not None: 

return 

assert rank > 0 

while len(self.cs) > rank: 

del self.cs[0] 

del self.ds[0] 

 

def svd_reduce(self, max_rank, to_retain=None): 

""" 

Reduce the rank of the matrix by retaining some SVD components. 

 

This corresponds to the \"Broyden Rank Reduction Inverse\" 

algorithm described in [1]_. 

 

Note that the SVD decomposition can be done by solving only a 

problem whose size is the effective rank of this matrix, which 

is viable even for large problems. 

 

Parameters 

---------- 

max_rank : int 

Maximum rank of this matrix after reduction. 

to_retain : int, optional 

Number of SVD components to retain when reduction is done 

(ie. rank > max_rank). Default is ``max_rank - 2``. 

 

References 

---------- 

.. [1] B.A. van der Rotten, PhD thesis, 

\"A limited memory Broyden method to solve high-dimensional 

systems of nonlinear equations\". Mathematisch Instituut, 

Universiteit Leiden, The Netherlands (2003). 

 

http://www.math.leidenuniv.nl/scripties/Rotten.pdf 

 

""" 

if self.collapsed is not None: 

return 

 

p = max_rank 

if to_retain is not None: 

q = to_retain 

else: 

q = p - 2 

 

if self.cs: 

p = min(p, len(self.cs[0])) 

q = max(0, min(q, p-1)) 

 

m = len(self.cs) 

if m < p: 

# nothing to do 

return 

 

C = np.array(self.cs).T 

D = np.array(self.ds).T 

 

D, R = qr(D, mode='economic') 

C = dot(C, R.T.conj()) 

 

U, S, WH = svd(C, full_matrices=False, compute_uv=True) 

 

C = dot(C, inv(WH)) 

D = dot(D, WH.T.conj()) 

 

for k in xrange(q): 

self.cs[k] = C[:,k].copy() 

self.ds[k] = D[:,k].copy() 

 

del self.cs[q:] 

del self.ds[q:] 

 

 

_doc_parts['broyden_params'] = """ 

alpha : float, optional 

Initial guess for the Jacobian is ``(-1/alpha)``. 

reduction_method : str or tuple, optional 

Method used in ensuring that the rank of the Broyden matrix 

stays low. Can either be a string giving the name of the method, 

or a tuple of the form ``(method, param1, param2, ...)`` 

that gives the name of the method and values for additional parameters. 

 

Methods available: 

 

- ``restart``: drop all matrix columns. Has no extra parameters. 

- ``simple``: drop oldest matrix column. Has no extra parameters. 

- ``svd``: keep only the most significant SVD components. 

Takes an extra parameter, ``to_retain``, which determines the 

number of SVD components to retain when rank reduction is done. 

Default is ``max_rank - 2``. 

 

max_rank : int, optional 

Maximum rank for the Broyden matrix. 

Default is infinity (ie., no rank reduction). 

""".strip() 

 

 

class BroydenFirst(GenericBroyden): 

r""" 

Find a root of a function, using Broyden's first Jacobian approximation. 

 

This method is also known as \"Broyden's good method\". 

 

Parameters 

---------- 

%(params_basic)s 

%(broyden_params)s 

%(params_extra)s 

 

Notes 

----- 

This algorithm implements the inverse Jacobian Quasi-Newton update 

 

.. math:: H_+ = H + (dx - H df) dx^\dagger H / ( dx^\dagger H df) 

 

which corresponds to Broyden's first Jacobian update 

 

.. math:: J_+ = J + (df - J dx) dx^\dagger / dx^\dagger dx 

 

 

References 

---------- 

.. [1] B.A. van der Rotten, PhD thesis, 

\"A limited memory Broyden method to solve high-dimensional 

systems of nonlinear equations\". Mathematisch Instituut, 

Universiteit Leiden, The Netherlands (2003). 

 

http://www.math.leidenuniv.nl/scripties/Rotten.pdf 

 

""" 

 

def __init__(self, alpha=None, reduction_method='restart', max_rank=None): 

GenericBroyden.__init__(self) 

self.alpha = alpha 

self.Gm = None 

 

if max_rank is None: 

max_rank = np.inf 

self.max_rank = max_rank 

 

if isinstance(reduction_method, str): 

reduce_params = () 

else: 

reduce_params = reduction_method[1:] 

reduction_method = reduction_method[0] 

reduce_params = (max_rank - 1,) + reduce_params 

 

if reduction_method == 'svd': 

self._reduce = lambda: self.Gm.svd_reduce(*reduce_params) 

elif reduction_method == 'simple': 

self._reduce = lambda: self.Gm.simple_reduce(*reduce_params) 

elif reduction_method == 'restart': 

self._reduce = lambda: self.Gm.restart_reduce(*reduce_params) 

else: 

raise ValueError("Unknown rank reduction method '%s'" % 

reduction_method) 

 

def setup(self, x, F, func): 

GenericBroyden.setup(self, x, F, func) 

self.Gm = LowRankMatrix(-self.alpha, self.shape[0], self.dtype) 

 

def todense(self): 

return inv(self.Gm) 

 

def solve(self, f, tol=0): 

r = self.Gm.matvec(f) 

if not np.isfinite(r).all(): 

# singular; reset the Jacobian approximation 

self.setup(self.last_x, self.last_f, self.func) 

return self.Gm.matvec(f) 

 

def matvec(self, f): 

return self.Gm.solve(f) 

 

def rsolve(self, f, tol=0): 

return self.Gm.rmatvec(f) 

 

def rmatvec(self, f): 

return self.Gm.rsolve(f) 

 

def _update(self, x, f, dx, df, dx_norm, df_norm): 

self._reduce() # reduce first to preserve secant condition 

 

v = self.Gm.rmatvec(dx) 

c = dx - self.Gm.matvec(df) 

d = v / vdot(df, v) 

 

self.Gm.append(c, d) 

 

 

class BroydenSecond(BroydenFirst): 

""" 

Find a root of a function, using Broyden\'s second Jacobian approximation. 

 

This method is also known as \"Broyden's bad method\". 

 

Parameters 

---------- 

%(params_basic)s 

%(broyden_params)s 

%(params_extra)s 

 

Notes 

----- 

This algorithm implements the inverse Jacobian Quasi-Newton update 

 

.. math:: H_+ = H + (dx - H df) df^\\dagger / ( df^\\dagger df) 

 

corresponding to Broyden's second method. 

 

References 

---------- 

.. [1] B.A. van der Rotten, PhD thesis, 

\"A limited memory Broyden method to solve high-dimensional 

systems of nonlinear equations\". Mathematisch Instituut, 

Universiteit Leiden, The Netherlands (2003). 

 

http://www.math.leidenuniv.nl/scripties/Rotten.pdf 

 

""" 

 

def _update(self, x, f, dx, df, dx_norm, df_norm): 

self._reduce() # reduce first to preserve secant condition 

 

v = df 

c = dx - self.Gm.matvec(df) 

d = v / df_norm**2 

self.Gm.append(c, d) 

 

 

#------------------------------------------------------------------------------ 

# Broyden-like (restricted memory) 

#------------------------------------------------------------------------------ 

 

class Anderson(GenericBroyden): 

""" 

Find a root of a function, using (extended) Anderson mixing. 

 

The Jacobian is formed by for a 'best' solution in the space 

spanned by last `M` vectors. As a result, only a MxM matrix 

inversions and MxN multiplications are required. [Ey]_ 

 

Parameters 

---------- 

%(params_basic)s 

alpha : float, optional 

Initial guess for the Jacobian is (-1/alpha). 

M : float, optional 

Number of previous vectors to retain. Defaults to 5. 

w0 : float, optional 

Regularization parameter for numerical stability. 

Compared to unity, good values of the order of 0.01. 

%(params_extra)s 

 

References 

---------- 

.. [Ey] V. Eyert, J. Comp. Phys., 124, 271 (1996). 

 

""" 

 

# Note: 

# 

# Anderson method maintains a rank M approximation of the inverse Jacobian, 

# 

# J^-1 v ~ -v*alpha + (dX + alpha dF) A^-1 dF^H v 

# A = W + dF^H dF 

# W = w0^2 diag(dF^H dF) 

# 

# so that for w0 = 0 the secant condition applies for last M iterates, ie., 

# 

# J^-1 df_j = dx_j 

# 

# for all j = 0 ... M-1. 

# 

# Moreover, (from Sherman-Morrison-Woodbury formula) 

# 

# J v ~ [ b I - b^2 C (I + b dF^H A^-1 C)^-1 dF^H ] v 

# C = (dX + alpha dF) A^-1 

# b = -1/alpha 

# 

# and after simplification 

# 

# J v ~ -v/alpha + (dX/alpha + dF) (dF^H dX - alpha W)^-1 dF^H v 

# 

 

def __init__(self, alpha=None, w0=0.01, M=5): 

GenericBroyden.__init__(self) 

self.alpha = alpha 

self.M = M 

self.dx = [] 

self.df = [] 

self.gamma = None 

self.w0 = w0 

 

def solve(self, f, tol=0): 

dx = -self.alpha*f 

 

n = len(self.dx) 

if n == 0: 

return dx 

 

df_f = np.empty(n, dtype=f.dtype) 

for k in xrange(n): 

df_f[k] = vdot(self.df[k], f) 

 

try: 

gamma = solve(self.a, df_f) 

except LinAlgError: 

# singular; reset the Jacobian approximation 

del self.dx[:] 

del self.df[:] 

return dx 

 

for m in xrange(n): 

dx += gamma[m]*(self.dx[m] + self.alpha*self.df[m]) 

return dx 

 

def matvec(self, f): 

dx = -f/self.alpha 

 

n = len(self.dx) 

if n == 0: 

return dx 

 

df_f = np.empty(n, dtype=f.dtype) 

for k in xrange(n): 

df_f[k] = vdot(self.df[k], f) 

 

b = np.empty((n, n), dtype=f.dtype) 

for i in xrange(n): 

for j in xrange(n): 

b[i,j] = vdot(self.df[i], self.dx[j]) 

if i == j and self.w0 != 0: 

b[i,j] -= vdot(self.df[i], self.df[i])*self.w0**2*self.alpha 

gamma = solve(b, df_f) 

 

for m in xrange(n): 

dx += gamma[m]*(self.df[m] + self.dx[m]/self.alpha) 

return dx 

 

def _update(self, x, f, dx, df, dx_norm, df_norm): 

if self.M == 0: 

return 

 

self.dx.append(dx) 

self.df.append(df) 

 

while len(self.dx) > self.M: 

self.dx.pop(0) 

self.df.pop(0) 

 

n = len(self.dx) 

a = np.zeros((n, n), dtype=f.dtype) 

 

for i in xrange(n): 

for j in xrange(i, n): 

if i == j: 

wd = self.w0**2 

else: 

wd = 0 

a[i,j] = (1+wd)*vdot(self.df[i], self.df[j]) 

 

a += np.triu(a, 1).T.conj() 

self.a = a 

 

#------------------------------------------------------------------------------ 

# Simple iterations 

#------------------------------------------------------------------------------ 

 

 

class DiagBroyden(GenericBroyden): 

""" 

Find a root of a function, using diagonal Broyden Jacobian approximation. 

 

The Jacobian approximation is derived from previous iterations, by 

retaining only the diagonal of Broyden matrices. 

 

.. warning:: 

 

This algorithm may be useful for specific problems, but whether 

it will work may depend strongly on the problem. 

 

Parameters 

---------- 

%(params_basic)s 

alpha : float, optional 

Initial guess for the Jacobian is (-1/alpha). 

%(params_extra)s 

""" 

 

def __init__(self, alpha=None): 

GenericBroyden.__init__(self) 

self.alpha = alpha 

 

def setup(self, x, F, func): 

GenericBroyden.setup(self, x, F, func) 

self.d = np.ones((self.shape[0],), dtype=self.dtype) / self.alpha 

 

def solve(self, f, tol=0): 

return -f / self.d 

 

def matvec(self, f): 

return -f * self.d 

 

def rsolve(self, f, tol=0): 

return -f / self.d.conj() 

 

def rmatvec(self, f): 

return -f * self.d.conj() 

 

def todense(self): 

return np.diag(-self.d) 

 

def _update(self, x, f, dx, df, dx_norm, df_norm): 

self.d -= (df + self.d*dx)*dx/dx_norm**2 

 

 

class LinearMixing(GenericBroyden): 

""" 

Find a root of a function, using a scalar Jacobian approximation. 

 

.. warning:: 

 

This algorithm may be useful for specific problems, but whether 

it will work may depend strongly on the problem. 

 

Parameters 

---------- 

%(params_basic)s 

alpha : float, optional 

The Jacobian approximation is (-1/alpha). 

%(params_extra)s 

""" 

 

def __init__(self, alpha=None): 

GenericBroyden.__init__(self) 

self.alpha = alpha 

 

def solve(self, f, tol=0): 

return -f*self.alpha 

 

def matvec(self, f): 

return -f/self.alpha 

 

def rsolve(self, f, tol=0): 

return -f*np.conj(self.alpha) 

 

def rmatvec(self, f): 

return -f/np.conj(self.alpha) 

 

def todense(self): 

return np.diag(-np.ones(self.shape[0])/self.alpha) 

 

def _update(self, x, f, dx, df, dx_norm, df_norm): 

pass 

 

 

class ExcitingMixing(GenericBroyden): 

""" 

Find a root of a function, using a tuned diagonal Jacobian approximation. 

 

The Jacobian matrix is diagonal and is tuned on each iteration. 

 

.. warning:: 

 

This algorithm may be useful for specific problems, but whether 

it will work may depend strongly on the problem. 

 

Parameters 

---------- 

%(params_basic)s 

alpha : float, optional 

Initial Jacobian approximation is (-1/alpha). 

alphamax : float, optional 

The entries of the diagonal Jacobian are kept in the range 

``[alpha, alphamax]``. 

%(params_extra)s 

""" 

 

def __init__(self, alpha=None, alphamax=1.0): 

GenericBroyden.__init__(self) 

self.alpha = alpha 

self.alphamax = alphamax 

self.beta = None 

 

def setup(self, x, F, func): 

GenericBroyden.setup(self, x, F, func) 

self.beta = self.alpha * np.ones((self.shape[0],), dtype=self.dtype) 

 

def solve(self, f, tol=0): 

return -f*self.beta 

 

def matvec(self, f): 

return -f/self.beta 

 

def rsolve(self, f, tol=0): 

return -f*self.beta.conj() 

 

def rmatvec(self, f): 

return -f/self.beta.conj() 

 

def todense(self): 

return np.diag(-1/self.beta) 

 

def _update(self, x, f, dx, df, dx_norm, df_norm): 

incr = f*self.last_f > 0 

self.beta[incr] += self.alpha 

self.beta[~incr] = self.alpha 

np.clip(self.beta, 0, self.alphamax, out=self.beta) 

 

 

#------------------------------------------------------------------------------ 

# Iterative/Krylov approximated Jacobians 

#------------------------------------------------------------------------------ 

 

class KrylovJacobian(Jacobian): 

r""" 

Find a root of a function, using Krylov approximation for inverse Jacobian. 

 

This method is suitable for solving large-scale problems. 

 

Parameters 

---------- 

%(params_basic)s 

rdiff : float, optional 

Relative step size to use in numerical differentiation. 

method : {'lgmres', 'gmres', 'bicgstab', 'cgs', 'minres'} or function 

Krylov method to use to approximate the Jacobian. 

Can be a string, or a function implementing the same interface as 

the iterative solvers in `scipy.sparse.linalg`. 

 

The default is `scipy.sparse.linalg.lgmres`. 

inner_M : LinearOperator or InverseJacobian 

Preconditioner for the inner Krylov iteration. 

Note that you can use also inverse Jacobians as (adaptive) 

preconditioners. For example, 

 

>>> from scipy.optimize.nonlin import BroydenFirst, KrylovJacobian 

>>> from scipy.optimize.nonlin import InverseJacobian 

>>> jac = BroydenFirst() 

>>> kjac = KrylovJacobian(inner_M=InverseJacobian(jac)) 

 

If the preconditioner has a method named 'update', it will be called 

as ``update(x, f)`` after each nonlinear step, with ``x`` giving 

the current point, and ``f`` the current function value. 

inner_tol, inner_maxiter, ... 

Parameters to pass on to the \"inner\" Krylov solver. 

See `scipy.sparse.linalg.gmres` for details. 

outer_k : int, optional 

Size of the subspace kept across LGMRES nonlinear iterations. 

See `scipy.sparse.linalg.lgmres` for details. 

%(params_extra)s 

 

See Also 

-------- 

scipy.sparse.linalg.gmres 

scipy.sparse.linalg.lgmres 

 

Notes 

----- 

This function implements a Newton-Krylov solver. The basic idea is 

to compute the inverse of the Jacobian with an iterative Krylov 

method. These methods require only evaluating the Jacobian-vector 

products, which are conveniently approximated by a finite difference: 

 

.. math:: J v \approx (f(x + \omega*v/|v|) - f(x)) / \omega 

 

Due to the use of iterative matrix inverses, these methods can 

deal with large nonlinear problems. 

 

Scipy's `scipy.sparse.linalg` module offers a selection of Krylov 

solvers to choose from. The default here is `lgmres`, which is a 

variant of restarted GMRES iteration that reuses some of the 

information obtained in the previous Newton steps to invert 

Jacobians in subsequent steps. 

 

For a review on Newton-Krylov methods, see for example [1]_, 

and for the LGMRES sparse inverse method, see [2]_. 

 

References 

---------- 

.. [1] D.A. Knoll and D.E. Keyes, J. Comp. Phys. 193, 357 (2004). 

:doi:`10.1016/j.jcp.2003.08.010` 

.. [2] A.H. Baker and E.R. Jessup and T. Manteuffel, 

SIAM J. Matrix Anal. Appl. 26, 962 (2005). 

:doi:`10.1137/S0895479803422014` 

 

""" 

 

def __init__(self, rdiff=None, method='lgmres', inner_maxiter=20, 

inner_M=None, outer_k=10, **kw): 

self.preconditioner = inner_M 

self.rdiff = rdiff 

self.method = dict( 

bicgstab=scipy.sparse.linalg.bicgstab, 

gmres=scipy.sparse.linalg.gmres, 

lgmres=scipy.sparse.linalg.lgmres, 

cgs=scipy.sparse.linalg.cgs, 

minres=scipy.sparse.linalg.minres, 

).get(method, method) 

 

self.method_kw = dict(maxiter=inner_maxiter, M=self.preconditioner) 

 

if self.method is scipy.sparse.linalg.gmres: 

# Replace GMRES's outer iteration with Newton steps 

self.method_kw['restrt'] = inner_maxiter 

self.method_kw['maxiter'] = 1 

self.method_kw.setdefault('atol', 0) 

elif self.method is scipy.sparse.linalg.gcrotmk: 

self.method_kw.setdefault('atol', 0) 

elif self.method is scipy.sparse.linalg.lgmres: 

self.method_kw['outer_k'] = outer_k 

# Replace LGMRES's outer iteration with Newton steps 

self.method_kw['maxiter'] = 1 

# Carry LGMRES's `outer_v` vectors across nonlinear iterations 

self.method_kw.setdefault('outer_v', []) 

self.method_kw.setdefault('prepend_outer_v', True) 

# But don't carry the corresponding Jacobian*v products, in case 

# the Jacobian changes a lot in the nonlinear step 

# 

# XXX: some trust-region inspired ideas might be more efficient... 

# See eg. Brown & Saad. But needs to be implemented separately 

# since it's not an inexact Newton method. 

self.method_kw.setdefault('store_outer_Av', False) 

self.method_kw.setdefault('atol', 0) 

 

for key, value in kw.items(): 

if not key.startswith('inner_'): 

raise ValueError("Unknown parameter %s" % key) 

self.method_kw[key[6:]] = value 

 

def _update_diff_step(self): 

mx = abs(self.x0).max() 

mf = abs(self.f0).max() 

self.omega = self.rdiff * max(1, mx) / max(1, mf) 

 

def matvec(self, v): 

nv = norm(v) 

if nv == 0: 

return 0*v 

sc = self.omega / nv 

r = (self.func(self.x0 + sc*v) - self.f0) / sc 

if not np.all(np.isfinite(r)) and np.all(np.isfinite(v)): 

raise ValueError('Function returned non-finite results') 

return r 

 

def solve(self, rhs, tol=0): 

if 'tol' in self.method_kw: 

sol, info = self.method(self.op, rhs, **self.method_kw) 

else: 

sol, info = self.method(self.op, rhs, tol=tol, **self.method_kw) 

return sol 

 

def update(self, x, f): 

self.x0 = x 

self.f0 = f 

self._update_diff_step() 

 

# Update also the preconditioner, if possible 

if self.preconditioner is not None: 

if hasattr(self.preconditioner, 'update'): 

self.preconditioner.update(x, f) 

 

def setup(self, x, f, func): 

Jacobian.setup(self, x, f, func) 

self.x0 = x 

self.f0 = f 

self.op = scipy.sparse.linalg.aslinearoperator(self) 

 

if self.rdiff is None: 

self.rdiff = np.finfo(x.dtype).eps ** (1./2) 

 

self._update_diff_step() 

 

# Setup also the preconditioner, if possible 

if self.preconditioner is not None: 

if hasattr(self.preconditioner, 'setup'): 

self.preconditioner.setup(x, f, func) 

 

 

#------------------------------------------------------------------------------ 

# Wrapper functions 

#------------------------------------------------------------------------------ 

 

def _nonlin_wrapper(name, jac): 

""" 

Construct a solver wrapper with given name and jacobian approx. 

 

It inspects the keyword arguments of ``jac.__init__``, and allows to 

use the same arguments in the wrapper function, in addition to the 

keyword arguments of `nonlin_solve` 

 

""" 

args, varargs, varkw, defaults = _getargspec(jac.__init__) 

kwargs = list(zip(args[-len(defaults):], defaults)) 

kw_str = ", ".join(["%s=%r" % (k, v) for k, v in kwargs]) 

if kw_str: 

kw_str = ", " + kw_str 

kwkw_str = ", ".join(["%s=%s" % (k, k) for k, v in kwargs]) 

if kwkw_str: 

kwkw_str = kwkw_str + ", " 

 

# Construct the wrapper function so that its keyword arguments 

# are visible in pydoc.help etc. 

wrapper = """ 

def %(name)s(F, xin, iter=None %(kw)s, verbose=False, maxiter=None, 

f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, 

tol_norm=None, line_search='armijo', callback=None, **kw): 

jac = %(jac)s(%(kwkw)s **kw) 

return nonlin_solve(F, xin, jac, iter, verbose, maxiter, 

f_tol, f_rtol, x_tol, x_rtol, tol_norm, line_search, 

callback) 

""" 

 

wrapper = wrapper % dict(name=name, kw=kw_str, jac=jac.__name__, 

kwkw=kwkw_str) 

ns = {} 

ns.update(globals()) 

exec_(wrapper, ns) 

func = ns[name] 

func.__doc__ = jac.__doc__ 

_set_doc(func) 

return func 

 

 

broyden1 = _nonlin_wrapper('broyden1', BroydenFirst) 

broyden2 = _nonlin_wrapper('broyden2', BroydenSecond) 

anderson = _nonlin_wrapper('anderson', Anderson) 

linearmixing = _nonlin_wrapper('linearmixing', LinearMixing) 

diagbroyden = _nonlin_wrapper('diagbroyden', DiagBroyden) 

excitingmixing = _nonlin_wrapper('excitingmixing', ExcitingMixing) 

newton_krylov = _nonlin_wrapper('newton_krylov', KrylovJacobian)