1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

#__docformat__ = "restructuredtext en" 

# ******NOTICE*************** 

# optimize.py module by Travis E. Oliphant 

# 

# You may copy and use this module as you see fit with no 

# guarantee implied provided you keep this notice in all copies. 

# *****END NOTICE************ 

 

# A collection of optimization algorithms. Version 0.5 

# CHANGES 

# Added fminbound (July 2001) 

# Added brute (Aug. 2002) 

# Finished line search satisfying strong Wolfe conditions (Mar. 2004) 

# Updated strong Wolfe conditions line search to use 

# cubic-interpolation (Mar. 2004) 

 

from __future__ import division, print_function, absolute_import 

 

 

# Minimization routines 

 

__all__ = ['fmin', 'fmin_powell', 'fmin_bfgs', 'fmin_ncg', 'fmin_cg', 

'fminbound', 'brent', 'golden', 'bracket', 'rosen', 'rosen_der', 

'rosen_hess', 'rosen_hess_prod', 'brute', 'approx_fprime', 

'line_search', 'check_grad', 'OptimizeResult', 'show_options', 

'OptimizeWarning'] 

 

__docformat__ = "restructuredtext en" 

 

import warnings 

import sys 

import numpy 

from scipy._lib.six import callable, xrange 

from numpy import (atleast_1d, eye, mgrid, argmin, zeros, shape, squeeze, 

vectorize, asarray, sqrt, Inf, asfarray, isinf) 

import numpy as np 

from .linesearch import (line_search_wolfe1, line_search_wolfe2, 

line_search_wolfe2 as line_search, 

LineSearchWarning) 

from scipy._lib._util import getargspec_no_self as _getargspec 

 

 

# standard status messages of optimizers 

_status_message = {'success': 'Optimization terminated successfully.', 

'maxfev': 'Maximum number of function evaluations has ' 

'been exceeded.', 

'maxiter': 'Maximum number of iterations has been ' 

'exceeded.', 

'pr_loss': 'Desired error not necessarily achieved due ' 

'to precision loss.'} 

 

 

class MemoizeJac(object): 

""" Decorator that caches the value gradient of function each time it 

is called. """ 

def __init__(self, fun): 

self.fun = fun 

self.jac = None 

self.x = None 

 

def __call__(self, x, *args): 

self.x = numpy.asarray(x).copy() 

fg = self.fun(x, *args) 

self.jac = fg[1] 

return fg[0] 

 

def derivative(self, x, *args): 

if self.jac is not None and numpy.alltrue(x == self.x): 

return self.jac 

else: 

self(x, *args) 

return self.jac 

 

 

class OptimizeResult(dict): 

""" Represents the optimization result. 

 

Attributes 

---------- 

x : ndarray 

The solution of the optimization. 

success : bool 

Whether or not the optimizer exited successfully. 

status : int 

Termination status of the optimizer. Its value depends on the 

underlying solver. Refer to `message` for details. 

message : str 

Description of the cause of the termination. 

fun, jac, hess: ndarray 

Values of objective function, its Jacobian and its Hessian (if 

available). The Hessians may be approximations, see the documentation 

of the function in question. 

hess_inv : object 

Inverse of the objective function's Hessian; may be an approximation. 

Not available for all solvers. The type of this attribute may be 

either np.ndarray or scipy.sparse.linalg.LinearOperator. 

nfev, njev, nhev : int 

Number of evaluations of the objective functions and of its 

Jacobian and Hessian. 

nit : int 

Number of iterations performed by the optimizer. 

maxcv : float 

The maximum constraint violation. 

 

Notes 

----- 

There may be additional attributes not listed above depending of the 

specific solver. Since this class is essentially a subclass of dict 

with attribute accessors, one can see which attributes are available 

using the `keys()` method. 

""" 

def __getattr__(self, name): 

try: 

return self[name] 

except KeyError: 

raise AttributeError(name) 

 

__setattr__ = dict.__setitem__ 

__delattr__ = dict.__delitem__ 

 

def __repr__(self): 

if self.keys(): 

m = max(map(len, list(self.keys()))) + 1 

return '\n'.join([k.rjust(m) + ': ' + repr(v) 

for k, v in sorted(self.items())]) 

else: 

return self.__class__.__name__ + "()" 

 

def __dir__(self): 

return list(self.keys()) 

 

 

class OptimizeWarning(UserWarning): 

pass 

 

 

def _check_unknown_options(unknown_options): 

if unknown_options: 

msg = ", ".join(map(str, unknown_options.keys())) 

# Stack level 4: this is called from _minimize_*, which is 

# called from another function in Scipy. Level 4 is the first 

# level in user code. 

warnings.warn("Unknown solver options: %s" % msg, OptimizeWarning, 4) 

 

 

def is_array_scalar(x): 

"""Test whether `x` is either a scalar or an array scalar. 

 

""" 

return np.size(x) == 1 

 

 

_epsilon = sqrt(numpy.finfo(float).eps) 

 

 

def vecnorm(x, ord=2): 

if ord == Inf: 

return numpy.amax(numpy.abs(x)) 

elif ord == -Inf: 

return numpy.amin(numpy.abs(x)) 

else: 

return numpy.sum(numpy.abs(x)**ord, axis=0)**(1.0 / ord) 

 

 

def rosen(x): 

""" 

The Rosenbrock function. 

 

The function computed is:: 

 

sum(100.0*(x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0) 

 

Parameters 

---------- 

x : array_like 

1-D array of points at which the Rosenbrock function is to be computed. 

 

Returns 

------- 

f : float 

The value of the Rosenbrock function. 

 

See Also 

-------- 

rosen_der, rosen_hess, rosen_hess_prod 

 

""" 

x = asarray(x) 

r = numpy.sum(100.0 * (x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0, 

axis=0) 

return r 

 

 

def rosen_der(x): 

""" 

The derivative (i.e. gradient) of the Rosenbrock function. 

 

Parameters 

---------- 

x : array_like 

1-D array of points at which the derivative is to be computed. 

 

Returns 

------- 

rosen_der : (N,) ndarray 

The gradient of the Rosenbrock function at `x`. 

 

See Also 

-------- 

rosen, rosen_hess, rosen_hess_prod 

 

""" 

x = asarray(x) 

xm = x[1:-1] 

xm_m1 = x[:-2] 

xm_p1 = x[2:] 

der = numpy.zeros_like(x) 

der[1:-1] = (200 * (xm - xm_m1**2) - 

400 * (xm_p1 - xm**2) * xm - 2 * (1 - xm)) 

der[0] = -400 * x[0] * (x[1] - x[0]**2) - 2 * (1 - x[0]) 

der[-1] = 200 * (x[-1] - x[-2]**2) 

return der 

 

 

def rosen_hess(x): 

""" 

The Hessian matrix of the Rosenbrock function. 

 

Parameters 

---------- 

x : array_like 

1-D array of points at which the Hessian matrix is to be computed. 

 

Returns 

------- 

rosen_hess : ndarray 

The Hessian matrix of the Rosenbrock function at `x`. 

 

See Also 

-------- 

rosen, rosen_der, rosen_hess_prod 

 

""" 

x = atleast_1d(x) 

H = numpy.diag(-400 * x[:-1], 1) - numpy.diag(400 * x[:-1], -1) 

diagonal = numpy.zeros(len(x), dtype=x.dtype) 

diagonal[0] = 1200 * x[0]**2 - 400 * x[1] + 2 

diagonal[-1] = 200 

diagonal[1:-1] = 202 + 1200 * x[1:-1]**2 - 400 * x[2:] 

H = H + numpy.diag(diagonal) 

return H 

 

 

def rosen_hess_prod(x, p): 

""" 

Product of the Hessian matrix of the Rosenbrock function with a vector. 

 

Parameters 

---------- 

x : array_like 

1-D array of points at which the Hessian matrix is to be computed. 

p : array_like 

1-D array, the vector to be multiplied by the Hessian matrix. 

 

Returns 

------- 

rosen_hess_prod : ndarray 

The Hessian matrix of the Rosenbrock function at `x` multiplied 

by the vector `p`. 

 

See Also 

-------- 

rosen, rosen_der, rosen_hess 

 

""" 

x = atleast_1d(x) 

Hp = numpy.zeros(len(x), dtype=x.dtype) 

Hp[0] = (1200 * x[0]**2 - 400 * x[1] + 2) * p[0] - 400 * x[0] * p[1] 

Hp[1:-1] = (-400 * x[:-2] * p[:-2] + 

(202 + 1200 * x[1:-1]**2 - 400 * x[2:]) * p[1:-1] - 

400 * x[1:-1] * p[2:]) 

Hp[-1] = -400 * x[-2] * p[-2] + 200*p[-1] 

return Hp 

 

 

def wrap_function(function, args): 

ncalls = [0] 

if function is None: 

return ncalls, None 

 

def function_wrapper(*wrapper_args): 

ncalls[0] += 1 

return function(*(wrapper_args + args)) 

 

return ncalls, function_wrapper 

 

 

def fmin(func, x0, args=(), xtol=1e-4, ftol=1e-4, maxiter=None, maxfun=None, 

full_output=0, disp=1, retall=0, callback=None, initial_simplex=None): 

""" 

Minimize a function using the downhill simplex algorithm. 

 

This algorithm only uses function values, not derivatives or second 

derivatives. 

 

Parameters 

---------- 

func : callable func(x,*args) 

The objective function to be minimized. 

x0 : ndarray 

Initial guess. 

args : tuple, optional 

Extra arguments passed to func, i.e. ``f(x,*args)``. 

xtol : float, optional 

Absolute error in xopt between iterations that is acceptable for 

convergence. 

ftol : number, optional 

Absolute error in func(xopt) between iterations that is acceptable for 

convergence. 

maxiter : int, optional 

Maximum number of iterations to perform. 

maxfun : number, optional 

Maximum number of function evaluations to make. 

full_output : bool, optional 

Set to True if fopt and warnflag outputs are desired. 

disp : bool, optional 

Set to True to print convergence messages. 

retall : bool, optional 

Set to True to return list of solutions at each iteration. 

callback : callable, optional 

Called after each iteration, as callback(xk), where xk is the 

current parameter vector. 

initial_simplex : array_like of shape (N + 1, N), optional 

Initial simplex. If given, overrides `x0`. 

``initial_simplex[j,:]`` should contain the coordinates of 

the j-th vertex of the ``N+1`` vertices in the simplex, where 

``N`` is the dimension. 

 

Returns 

------- 

xopt : ndarray 

Parameter that minimizes function. 

fopt : float 

Value of function at minimum: ``fopt = func(xopt)``. 

iter : int 

Number of iterations performed. 

funcalls : int 

Number of function calls made. 

warnflag : int 

1 : Maximum number of function evaluations made. 

2 : Maximum number of iterations reached. 

allvecs : list 

Solution at each iteration. 

 

See also 

-------- 

minimize: Interface to minimization algorithms for multivariate 

functions. See the 'Nelder-Mead' `method` in particular. 

 

Notes 

----- 

Uses a Nelder-Mead simplex algorithm to find the minimum of function of 

one or more variables. 

 

This algorithm has a long history of successful use in applications. 

But it will usually be slower than an algorithm that uses first or 

second derivative information. In practice it can have poor 

performance in high-dimensional problems and is not robust to 

minimizing complicated functions. Additionally, there currently is no 

complete theory describing when the algorithm will successfully 

converge to the minimum, or how fast it will if it does. Both the ftol and 

xtol criteria must be met for convergence. 

 

Examples 

-------- 

>>> def f(x): 

... return x**2 

 

>>> from scipy import optimize 

 

>>> minimum = optimize.fmin(f, 1) 

Optimization terminated successfully. 

Current function value: 0.000000 

Iterations: 17 

Function evaluations: 34 

>>> minimum[0] 

-8.8817841970012523e-16 

 

References 

---------- 

.. [1] Nelder, J.A. and Mead, R. (1965), "A simplex method for function 

minimization", The Computer Journal, 7, pp. 308-313 

 

.. [2] Wright, M.H. (1996), "Direct Search Methods: Once Scorned, Now 

Respectable", in Numerical Analysis 1995, Proceedings of the 

1995 Dundee Biennial Conference in Numerical Analysis, D.F. 

Griffiths and G.A. Watson (Eds.), Addison Wesley Longman, 

Harlow, UK, pp. 191-208. 

 

""" 

opts = {'xatol': xtol, 

'fatol': ftol, 

'maxiter': maxiter, 

'maxfev': maxfun, 

'disp': disp, 

'return_all': retall, 

'initial_simplex': initial_simplex} 

 

res = _minimize_neldermead(func, x0, args, callback=callback, **opts) 

if full_output: 

retlist = res['x'], res['fun'], res['nit'], res['nfev'], res['status'] 

if retall: 

retlist += (res['allvecs'], ) 

return retlist 

else: 

if retall: 

return res['x'], res['allvecs'] 

else: 

return res['x'] 

 

 

def _minimize_neldermead(func, x0, args=(), callback=None, 

maxiter=None, maxfev=None, disp=False, 

return_all=False, initial_simplex=None, 

xatol=1e-4, fatol=1e-4, adaptive=False, 

**unknown_options): 

""" 

Minimization of scalar function of one or more variables using the 

Nelder-Mead algorithm. 

 

Options 

------- 

disp : bool 

Set to True to print convergence messages. 

maxiter, maxfev : int 

Maximum allowed number of iterations and function evaluations. 

Will default to ``N*200``, where ``N`` is the number of 

variables, if neither `maxiter` or `maxfev` is set. If both 

`maxiter` and `maxfev` are set, minimization will stop at the 

first reached. 

initial_simplex : array_like of shape (N + 1, N) 

Initial simplex. If given, overrides `x0`. 

``initial_simplex[j,:]`` should contain the coordinates of 

the j-th vertex of the ``N+1`` vertices in the simplex, where 

``N`` is the dimension. 

xatol : float, optional 

Absolute error in xopt between iterations that is acceptable for 

convergence. 

fatol : number, optional 

Absolute error in func(xopt) between iterations that is acceptable for 

convergence. 

adaptive : bool, optional 

Adapt algorithm parameters to dimensionality of problem. Useful for 

high-dimensional minimization [1]_. 

 

References 

---------- 

.. [1] Gao, F. and Han, L. 

Implementing the Nelder-Mead simplex algorithm with adaptive 

parameters. 2012. Computational Optimization and Applications. 

51:1, pp. 259-277 

 

""" 

if 'ftol' in unknown_options: 

warnings.warn("ftol is deprecated for Nelder-Mead," 

" use fatol instead. If you specified both, only" 

" fatol is used.", 

DeprecationWarning) 

if (np.isclose(fatol, 1e-4) and 

not np.isclose(unknown_options['ftol'], 1e-4)): 

# only ftol was probably specified, use it. 

fatol = unknown_options['ftol'] 

unknown_options.pop('ftol') 

if 'xtol' in unknown_options: 

warnings.warn("xtol is deprecated for Nelder-Mead," 

" use xatol instead. If you specified both, only" 

" xatol is used.", 

DeprecationWarning) 

if (np.isclose(xatol, 1e-4) and 

not np.isclose(unknown_options['xtol'], 1e-4)): 

# only xtol was probably specified, use it. 

xatol = unknown_options['xtol'] 

unknown_options.pop('xtol') 

 

_check_unknown_options(unknown_options) 

maxfun = maxfev 

retall = return_all 

 

fcalls, func = wrap_function(func, args) 

 

if adaptive: 

dim = float(len(x0)) 

rho = 1 

chi = 1 + 2/dim 

psi = 0.75 - 1/(2*dim) 

sigma = 1 - 1/dim 

else: 

rho = 1 

chi = 2 

psi = 0.5 

sigma = 0.5 

 

nonzdelt = 0.05 

zdelt = 0.00025 

 

x0 = asfarray(x0).flatten() 

 

if initial_simplex is None: 

N = len(x0) 

 

sim = numpy.zeros((N + 1, N), dtype=x0.dtype) 

sim[0] = x0 

for k in range(N): 

y = numpy.array(x0, copy=True) 

if y[k] != 0: 

y[k] = (1 + nonzdelt)*y[k] 

else: 

y[k] = zdelt 

sim[k + 1] = y 

else: 

sim = np.asfarray(initial_simplex).copy() 

if sim.ndim != 2 or sim.shape[0] != sim.shape[1] + 1: 

raise ValueError("`initial_simplex` should be an array of shape (N+1,N)") 

if len(x0) != sim.shape[1]: 

raise ValueError("Size of `initial_simplex` is not consistent with `x0`") 

N = sim.shape[1] 

 

if retall: 

allvecs = [sim[0]] 

 

# If neither are set, then set both to default 

if maxiter is None and maxfun is None: 

maxiter = N * 200 

maxfun = N * 200 

elif maxiter is None: 

# Convert remaining Nones, to np.inf, unless the other is np.inf, in 

# which case use the default to avoid unbounded iteration 

if maxfun == np.inf: 

maxiter = N * 200 

else: 

maxiter = np.inf 

elif maxfun is None: 

if maxiter == np.inf: 

maxfun = N * 200 

else: 

maxfun = np.inf 

 

one2np1 = list(range(1, N + 1)) 

fsim = numpy.zeros((N + 1,), float) 

 

for k in range(N + 1): 

fsim[k] = func(sim[k]) 

 

ind = numpy.argsort(fsim) 

fsim = numpy.take(fsim, ind, 0) 

# sort so sim[0,:] has the lowest function value 

sim = numpy.take(sim, ind, 0) 

 

iterations = 1 

 

while (fcalls[0] < maxfun and iterations < maxiter): 

if (numpy.max(numpy.ravel(numpy.abs(sim[1:] - sim[0]))) <= xatol and 

numpy.max(numpy.abs(fsim[0] - fsim[1:])) <= fatol): 

break 

 

xbar = numpy.add.reduce(sim[:-1], 0) / N 

xr = (1 + rho) * xbar - rho * sim[-1] 

fxr = func(xr) 

doshrink = 0 

 

if fxr < fsim[0]: 

xe = (1 + rho * chi) * xbar - rho * chi * sim[-1] 

fxe = func(xe) 

 

if fxe < fxr: 

sim[-1] = xe 

fsim[-1] = fxe 

else: 

sim[-1] = xr 

fsim[-1] = fxr 

else: # fsim[0] <= fxr 

if fxr < fsim[-2]: 

sim[-1] = xr 

fsim[-1] = fxr 

else: # fxr >= fsim[-2] 

# Perform contraction 

if fxr < fsim[-1]: 

xc = (1 + psi * rho) * xbar - psi * rho * sim[-1] 

fxc = func(xc) 

 

if fxc <= fxr: 

sim[-1] = xc 

fsim[-1] = fxc 

else: 

doshrink = 1 

else: 

# Perform an inside contraction 

xcc = (1 - psi) * xbar + psi * sim[-1] 

fxcc = func(xcc) 

 

if fxcc < fsim[-1]: 

sim[-1] = xcc 

fsim[-1] = fxcc 

else: 

doshrink = 1 

 

if doshrink: 

for j in one2np1: 

sim[j] = sim[0] + sigma * (sim[j] - sim[0]) 

fsim[j] = func(sim[j]) 

 

ind = numpy.argsort(fsim) 

sim = numpy.take(sim, ind, 0) 

fsim = numpy.take(fsim, ind, 0) 

if callback is not None: 

callback(sim[0]) 

iterations += 1 

if retall: 

allvecs.append(sim[0]) 

 

x = sim[0] 

fval = numpy.min(fsim) 

warnflag = 0 

 

if fcalls[0] >= maxfun: 

warnflag = 1 

msg = _status_message['maxfev'] 

if disp: 

print('Warning: ' + msg) 

elif iterations >= maxiter: 

warnflag = 2 

msg = _status_message['maxiter'] 

if disp: 

print('Warning: ' + msg) 

else: 

msg = _status_message['success'] 

if disp: 

print(msg) 

print(" Current function value: %f" % fval) 

print(" Iterations: %d" % iterations) 

print(" Function evaluations: %d" % fcalls[0]) 

 

result = OptimizeResult(fun=fval, nit=iterations, nfev=fcalls[0], 

status=warnflag, success=(warnflag == 0), 

message=msg, x=x, final_simplex=(sim, fsim)) 

if retall: 

result['allvecs'] = allvecs 

return result 

 

 

def _approx_fprime_helper(xk, f, epsilon, args=(), f0=None): 

""" 

See ``approx_fprime``. An optional initial function value arg is added. 

 

""" 

if f0 is None: 

f0 = f(*((xk,) + args)) 

grad = numpy.zeros((len(xk),), float) 

ei = numpy.zeros((len(xk),), float) 

for k in range(len(xk)): 

ei[k] = 1.0 

d = epsilon * ei 

grad[k] = (f(*((xk + d,) + args)) - f0) / d[k] 

ei[k] = 0.0 

return grad 

 

 

def approx_fprime(xk, f, epsilon, *args): 

"""Finite-difference approximation of the gradient of a scalar function. 

 

Parameters 

---------- 

xk : array_like 

The coordinate vector at which to determine the gradient of `f`. 

f : callable 

The function of which to determine the gradient (partial derivatives). 

Should take `xk` as first argument, other arguments to `f` can be 

supplied in ``*args``. Should return a scalar, the value of the 

function at `xk`. 

epsilon : array_like 

Increment to `xk` to use for determining the function gradient. 

If a scalar, uses the same finite difference delta for all partial 

derivatives. If an array, should contain one value per element of 

`xk`. 

\\*args : args, optional 

Any other arguments that are to be passed to `f`. 

 

Returns 

------- 

grad : ndarray 

The partial derivatives of `f` to `xk`. 

 

See Also 

-------- 

check_grad : Check correctness of gradient function against approx_fprime. 

 

Notes 

----- 

The function gradient is determined by the forward finite difference 

formula:: 

 

f(xk[i] + epsilon[i]) - f(xk[i]) 

f'[i] = --------------------------------- 

epsilon[i] 

 

The main use of `approx_fprime` is in scalar function optimizers like 

`fmin_bfgs`, to determine numerically the Jacobian of a function. 

 

Examples 

-------- 

>>> from scipy import optimize 

>>> def func(x, c0, c1): 

... "Coordinate vector `x` should be an array of size two." 

... return c0 * x[0]**2 + c1*x[1]**2 

 

>>> x = np.ones(2) 

>>> c0, c1 = (1, 200) 

>>> eps = np.sqrt(np.finfo(float).eps) 

>>> optimize.approx_fprime(x, func, [eps, np.sqrt(200) * eps], c0, c1) 

array([ 2. , 400.00004198]) 

 

""" 

return _approx_fprime_helper(xk, f, epsilon, args=args) 

 

 

def check_grad(func, grad, x0, *args, **kwargs): 

"""Check the correctness of a gradient function by comparing it against a 

(forward) finite-difference approximation of the gradient. 

 

Parameters 

---------- 

func : callable ``func(x0, *args)`` 

Function whose derivative is to be checked. 

grad : callable ``grad(x0, *args)`` 

Gradient of `func`. 

x0 : ndarray 

Points to check `grad` against forward difference approximation of grad 

using `func`. 

args : \\*args, optional 

Extra arguments passed to `func` and `grad`. 

epsilon : float, optional 

Step size used for the finite difference approximation. It defaults to 

``sqrt(numpy.finfo(float).eps)``, which is approximately 1.49e-08. 

 

Returns 

------- 

err : float 

The square root of the sum of squares (i.e. the 2-norm) of the 

difference between ``grad(x0, *args)`` and the finite difference 

approximation of `grad` using func at the points `x0`. 

 

See Also 

-------- 

approx_fprime 

 

Examples 

-------- 

>>> def func(x): 

... return x[0]**2 - 0.5 * x[1]**3 

>>> def grad(x): 

... return [2 * x[0], -1.5 * x[1]**2] 

>>> from scipy.optimize import check_grad 

>>> check_grad(func, grad, [1.5, -1.5]) 

2.9802322387695312e-08 

 

""" 

step = kwargs.pop('epsilon', _epsilon) 

if kwargs: 

raise ValueError("Unknown keyword arguments: %r" % 

(list(kwargs.keys()),)) 

return sqrt(sum((grad(x0, *args) - 

approx_fprime(x0, func, step, *args))**2)) 

 

 

def approx_fhess_p(x0, p, fprime, epsilon, *args): 

f2 = fprime(*((x0 + epsilon*p,) + args)) 

f1 = fprime(*((x0,) + args)) 

return (f2 - f1) / epsilon 

 

 

class _LineSearchError(RuntimeError): 

pass 

 

 

def _line_search_wolfe12(f, fprime, xk, pk, gfk, old_fval, old_old_fval, 

**kwargs): 

""" 

Same as line_search_wolfe1, but fall back to line_search_wolfe2 if 

suitable step length is not found, and raise an exception if a 

suitable step length is not found. 

 

Raises 

------ 

_LineSearchError 

If no suitable step size is found 

 

""" 

 

extra_condition = kwargs.pop('extra_condition', None) 

 

ret = line_search_wolfe1(f, fprime, xk, pk, gfk, 

old_fval, old_old_fval, 

**kwargs) 

 

if ret[0] is not None and extra_condition is not None: 

xp1 = xk + ret[0] * pk 

if not extra_condition(ret[0], xp1, ret[3], ret[5]): 

# Reject step if extra_condition fails 

ret = (None,) 

 

if ret[0] is None: 

# line search failed: try different one. 

with warnings.catch_warnings(): 

warnings.simplefilter('ignore', LineSearchWarning) 

kwargs2 = {} 

for key in ('c1', 'c2', 'amax'): 

if key in kwargs: 

kwargs2[key] = kwargs[key] 

ret = line_search_wolfe2(f, fprime, xk, pk, gfk, 

old_fval, old_old_fval, 

extra_condition=extra_condition, 

**kwargs2) 

 

if ret[0] is None: 

raise _LineSearchError() 

 

return ret 

 

 

def fmin_bfgs(f, x0, fprime=None, args=(), gtol=1e-5, norm=Inf, 

epsilon=_epsilon, maxiter=None, full_output=0, disp=1, 

retall=0, callback=None): 

""" 

Minimize a function using the BFGS algorithm. 

 

Parameters 

---------- 

f : callable f(x,*args) 

Objective function to be minimized. 

x0 : ndarray 

Initial guess. 

fprime : callable f'(x,*args), optional 

Gradient of f. 

args : tuple, optional 

Extra arguments passed to f and fprime. 

gtol : float, optional 

Gradient norm must be less than gtol before successful termination. 

norm : float, optional 

Order of norm (Inf is max, -Inf is min) 

epsilon : int or ndarray, optional 

If fprime is approximated, use this value for the step size. 

callback : callable, optional 

An optional user-supplied function to call after each 

iteration. Called as callback(xk), where xk is the 

current parameter vector. 

maxiter : int, optional 

Maximum number of iterations to perform. 

full_output : bool, optional 

If True,return fopt, func_calls, grad_calls, and warnflag 

in addition to xopt. 

disp : bool, optional 

Print convergence message if True. 

retall : bool, optional 

Return a list of results at each iteration if True. 

 

Returns 

------- 

xopt : ndarray 

Parameters which minimize f, i.e. f(xopt) == fopt. 

fopt : float 

Minimum value. 

gopt : ndarray 

Value of gradient at minimum, f'(xopt), which should be near 0. 

Bopt : ndarray 

Value of 1/f''(xopt), i.e. the inverse hessian matrix. 

func_calls : int 

Number of function_calls made. 

grad_calls : int 

Number of gradient calls made. 

warnflag : integer 

1 : Maximum number of iterations exceeded. 

2 : Gradient and/or function calls not changing. 

allvecs : list 

The value of xopt at each iteration. Only returned if retall is True. 

 

See also 

-------- 

minimize: Interface to minimization algorithms for multivariate 

functions. See the 'BFGS' `method` in particular. 

 

Notes 

----- 

Optimize the function, f, whose gradient is given by fprime 

using the quasi-Newton method of Broyden, Fletcher, Goldfarb, 

and Shanno (BFGS) 

 

References 

---------- 

Wright, and Nocedal 'Numerical Optimization', 1999, pg. 198. 

 

""" 

opts = {'gtol': gtol, 

'norm': norm, 

'eps': epsilon, 

'disp': disp, 

'maxiter': maxiter, 

'return_all': retall} 

 

res = _minimize_bfgs(f, x0, args, fprime, callback=callback, **opts) 

 

if full_output: 

retlist = (res['x'], res['fun'], res['jac'], res['hess_inv'], 

res['nfev'], res['njev'], res['status']) 

if retall: 

retlist += (res['allvecs'], ) 

return retlist 

else: 

if retall: 

return res['x'], res['allvecs'] 

else: 

return res['x'] 

 

 

def _minimize_bfgs(fun, x0, args=(), jac=None, callback=None, 

gtol=1e-5, norm=Inf, eps=_epsilon, maxiter=None, 

disp=False, return_all=False, 

**unknown_options): 

""" 

Minimization of scalar function of one or more variables using the 

BFGS algorithm. 

 

Options 

------- 

disp : bool 

Set to True to print convergence messages. 

maxiter : int 

Maximum number of iterations to perform. 

gtol : float 

Gradient norm must be less than `gtol` before successful 

termination. 

norm : float 

Order of norm (Inf is max, -Inf is min). 

eps : float or ndarray 

If `jac` is approximated, use this value for the step size. 

 

""" 

_check_unknown_options(unknown_options) 

f = fun 

fprime = jac 

epsilon = eps 

retall = return_all 

 

x0 = asarray(x0).flatten() 

if x0.ndim == 0: 

x0.shape = (1,) 

if maxiter is None: 

maxiter = len(x0) * 200 

func_calls, f = wrap_function(f, args) 

if fprime is None: 

grad_calls, myfprime = wrap_function(approx_fprime, (f, epsilon)) 

else: 

grad_calls, myfprime = wrap_function(fprime, args) 

gfk = myfprime(x0) 

k = 0 

N = len(x0) 

I = numpy.eye(N, dtype=int) 

Hk = I 

 

# Sets the initial step guess to dx ~ 1 

old_fval = f(x0) 

old_old_fval = old_fval + np.linalg.norm(gfk) / 2 

 

xk = x0 

if retall: 

allvecs = [x0] 

warnflag = 0 

gnorm = vecnorm(gfk, ord=norm) 

while (gnorm > gtol) and (k < maxiter): 

pk = -numpy.dot(Hk, gfk) 

try: 

alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \ 

_line_search_wolfe12(f, myfprime, xk, pk, gfk, 

old_fval, old_old_fval, amin=1e-100, amax=1e100) 

except _LineSearchError: 

# Line search failed to find a better solution. 

warnflag = 2 

break 

 

xkp1 = xk + alpha_k * pk 

if retall: 

allvecs.append(xkp1) 

sk = xkp1 - xk 

xk = xkp1 

if gfkp1 is None: 

gfkp1 = myfprime(xkp1) 

 

yk = gfkp1 - gfk 

gfk = gfkp1 

if callback is not None: 

callback(xk) 

k += 1 

gnorm = vecnorm(gfk, ord=norm) 

if (gnorm <= gtol): 

break 

 

if not numpy.isfinite(old_fval): 

# We correctly found +-Inf as optimal value, or something went 

# wrong. 

warnflag = 2 

break 

 

try: # this was handled in numeric, let it remaines for more safety 

rhok = 1.0 / (numpy.dot(yk, sk)) 

except ZeroDivisionError: 

rhok = 1000.0 

if disp: 

print("Divide-by-zero encountered: rhok assumed large") 

if isinf(rhok): # this is patch for numpy 

rhok = 1000.0 

if disp: 

print("Divide-by-zero encountered: rhok assumed large") 

A1 = I - sk[:, numpy.newaxis] * yk[numpy.newaxis, :] * rhok 

A2 = I - yk[:, numpy.newaxis] * sk[numpy.newaxis, :] * rhok 

Hk = numpy.dot(A1, numpy.dot(Hk, A2)) + (rhok * sk[:, numpy.newaxis] * 

sk[numpy.newaxis, :]) 

 

fval = old_fval 

if np.isnan(fval): 

# This can happen if the first call to f returned NaN; 

# the loop is then never entered. 

warnflag = 2 

 

if warnflag == 2: 

msg = _status_message['pr_loss'] 

elif k >= maxiter: 

warnflag = 1 

msg = _status_message['maxiter'] 

else: 

msg = _status_message['success'] 

 

if disp: 

print("%s%s" % ("Warning: " if warnflag != 0 else "", msg)) 

print(" Current function value: %f" % fval) 

print(" Iterations: %d" % k) 

print(" Function evaluations: %d" % func_calls[0]) 

print(" Gradient evaluations: %d" % grad_calls[0]) 

 

result = OptimizeResult(fun=fval, jac=gfk, hess_inv=Hk, nfev=func_calls[0], 

njev=grad_calls[0], status=warnflag, 

success=(warnflag == 0), message=msg, x=xk, 

nit=k) 

if retall: 

result['allvecs'] = allvecs 

return result 

 

 

def fmin_cg(f, x0, fprime=None, args=(), gtol=1e-5, norm=Inf, epsilon=_epsilon, 

maxiter=None, full_output=0, disp=1, retall=0, callback=None): 

""" 

Minimize a function using a nonlinear conjugate gradient algorithm. 

 

Parameters 

---------- 

f : callable, ``f(x, *args)`` 

Objective function to be minimized. Here `x` must be a 1-D array of 

the variables that are to be changed in the search for a minimum, and 

`args` are the other (fixed) parameters of `f`. 

x0 : ndarray 

A user-supplied initial estimate of `xopt`, the optimal value of `x`. 

It must be a 1-D array of values. 

fprime : callable, ``fprime(x, *args)``, optional 

A function that returns the gradient of `f` at `x`. Here `x` and `args` 

are as described above for `f`. The returned value must be a 1-D array. 

Defaults to None, in which case the gradient is approximated 

numerically (see `epsilon`, below). 

args : tuple, optional 

Parameter values passed to `f` and `fprime`. Must be supplied whenever 

additional fixed parameters are needed to completely specify the 

functions `f` and `fprime`. 

gtol : float, optional 

Stop when the norm of the gradient is less than `gtol`. 

norm : float, optional 

Order to use for the norm of the gradient 

(``-np.Inf`` is min, ``np.Inf`` is max). 

epsilon : float or ndarray, optional 

Step size(s) to use when `fprime` is approximated numerically. Can be a 

scalar or a 1-D array. Defaults to ``sqrt(eps)``, with eps the 

floating point machine precision. Usually ``sqrt(eps)`` is about 

1.5e-8. 

maxiter : int, optional 

Maximum number of iterations to perform. Default is ``200 * len(x0)``. 

full_output : bool, optional 

If True, return `fopt`, `func_calls`, `grad_calls`, and `warnflag` in 

addition to `xopt`. See the Returns section below for additional 

information on optional return values. 

disp : bool, optional 

If True, return a convergence message, followed by `xopt`. 

retall : bool, optional 

If True, add to the returned values the results of each iteration. 

callback : callable, optional 

An optional user-supplied function, called after each iteration. 

Called as ``callback(xk)``, where ``xk`` is the current value of `x0`. 

 

Returns 

------- 

xopt : ndarray 

Parameters which minimize f, i.e. ``f(xopt) == fopt``. 

fopt : float, optional 

Minimum value found, f(xopt). Only returned if `full_output` is True. 

func_calls : int, optional 

The number of function_calls made. Only returned if `full_output` 

is True. 

grad_calls : int, optional 

The number of gradient calls made. Only returned if `full_output` is 

True. 

warnflag : int, optional 

Integer value with warning status, only returned if `full_output` is 

True. 

 

0 : Success. 

 

1 : The maximum number of iterations was exceeded. 

 

2 : Gradient and/or function calls were not changing. May indicate 

that precision was lost, i.e., the routine did not converge. 

 

allvecs : list of ndarray, optional 

List of arrays, containing the results at each iteration. 

Only returned if `retall` is True. 

 

See Also 

-------- 

minimize : common interface to all `scipy.optimize` algorithms for 

unconstrained and constrained minimization of multivariate 

functions. It provides an alternative way to call 

``fmin_cg``, by specifying ``method='CG'``. 

 

Notes 

----- 

This conjugate gradient algorithm is based on that of Polak and Ribiere 

[1]_. 

 

Conjugate gradient methods tend to work better when: 

 

1. `f` has a unique global minimizing point, and no local minima or 

other stationary points, 

2. `f` is, at least locally, reasonably well approximated by a 

quadratic function of the variables, 

3. `f` is continuous and has a continuous gradient, 

4. `fprime` is not too large, e.g., has a norm less than 1000, 

5. The initial guess, `x0`, is reasonably close to `f` 's global 

minimizing point, `xopt`. 

 

References 

---------- 

.. [1] Wright & Nocedal, "Numerical Optimization", 1999, pp. 120-122. 

 

Examples 

-------- 

Example 1: seek the minimum value of the expression 

``a*u**2 + b*u*v + c*v**2 + d*u + e*v + f`` for given values 

of the parameters and an initial guess ``(u, v) = (0, 0)``. 

 

>>> args = (2, 3, 7, 8, 9, 10) # parameter values 

>>> def f(x, *args): 

... u, v = x 

... a, b, c, d, e, f = args 

... return a*u**2 + b*u*v + c*v**2 + d*u + e*v + f 

>>> def gradf(x, *args): 

... u, v = x 

... a, b, c, d, e, f = args 

... gu = 2*a*u + b*v + d # u-component of the gradient 

... gv = b*u + 2*c*v + e # v-component of the gradient 

... return np.asarray((gu, gv)) 

>>> x0 = np.asarray((0, 0)) # Initial guess. 

>>> from scipy import optimize 

>>> res1 = optimize.fmin_cg(f, x0, fprime=gradf, args=args) 

Optimization terminated successfully. 

Current function value: 1.617021 

Iterations: 4 

Function evaluations: 8 

Gradient evaluations: 8 

>>> res1 

array([-1.80851064, -0.25531915]) 

 

Example 2: solve the same problem using the `minimize` function. 

(This `myopts` dictionary shows all of the available options, 

although in practice only non-default values would be needed. 

The returned value will be a dictionary.) 

 

>>> opts = {'maxiter' : None, # default value. 

... 'disp' : True, # non-default value. 

... 'gtol' : 1e-5, # default value. 

... 'norm' : np.inf, # default value. 

... 'eps' : 1.4901161193847656e-08} # default value. 

>>> res2 = optimize.minimize(f, x0, jac=gradf, args=args, 

... method='CG', options=opts) 

Optimization terminated successfully. 

Current function value: 1.617021 

Iterations: 4 

Function evaluations: 8 

Gradient evaluations: 8 

>>> res2.x # minimum found 

array([-1.80851064, -0.25531915]) 

 

""" 

opts = {'gtol': gtol, 

'norm': norm, 

'eps': epsilon, 

'disp': disp, 

'maxiter': maxiter, 

'return_all': retall} 

 

res = _minimize_cg(f, x0, args, fprime, callback=callback, **opts) 

 

if full_output: 

retlist = res['x'], res['fun'], res['nfev'], res['njev'], res['status'] 

if retall: 

retlist += (res['allvecs'], ) 

return retlist 

else: 

if retall: 

return res['x'], res['allvecs'] 

else: 

return res['x'] 

 

 

def _minimize_cg(fun, x0, args=(), jac=None, callback=None, 

gtol=1e-5, norm=Inf, eps=_epsilon, maxiter=None, 

disp=False, return_all=False, 

**unknown_options): 

""" 

Minimization of scalar function of one or more variables using the 

conjugate gradient algorithm. 

 

Options 

------- 

disp : bool 

Set to True to print convergence messages. 

maxiter : int 

Maximum number of iterations to perform. 

gtol : float 

Gradient norm must be less than `gtol` before successful 

termination. 

norm : float 

Order of norm (Inf is max, -Inf is min). 

eps : float or ndarray 

If `jac` is approximated, use this value for the step size. 

 

""" 

_check_unknown_options(unknown_options) 

f = fun 

fprime = jac 

epsilon = eps 

retall = return_all 

 

x0 = asarray(x0).flatten() 

if maxiter is None: 

maxiter = len(x0) * 200 

func_calls, f = wrap_function(f, args) 

if fprime is None: 

grad_calls, myfprime = wrap_function(approx_fprime, (f, epsilon)) 

else: 

grad_calls, myfprime = wrap_function(fprime, args) 

gfk = myfprime(x0) 

k = 0 

xk = x0 

 

# Sets the initial step guess to dx ~ 1 

old_fval = f(xk) 

old_old_fval = old_fval + np.linalg.norm(gfk) / 2 

 

if retall: 

allvecs = [xk] 

warnflag = 0 

pk = -gfk 

gnorm = vecnorm(gfk, ord=norm) 

 

sigma_3 = 0.01 

 

while (gnorm > gtol) and (k < maxiter): 

deltak = numpy.dot(gfk, gfk) 

 

cached_step = [None] 

 

def polak_ribiere_powell_step(alpha, gfkp1=None): 

xkp1 = xk + alpha * pk 

if gfkp1 is None: 

gfkp1 = myfprime(xkp1) 

yk = gfkp1 - gfk 

beta_k = max(0, numpy.dot(yk, gfkp1) / deltak) 

pkp1 = -gfkp1 + beta_k * pk 

gnorm = vecnorm(gfkp1, ord=norm) 

return (alpha, xkp1, pkp1, gfkp1, gnorm) 

 

def descent_condition(alpha, xkp1, fp1, gfkp1): 

# Polak-Ribiere+ needs an explicit check of a sufficient 

# descent condition, which is not guaranteed by strong Wolfe. 

# 

# See Gilbert & Nocedal, "Global convergence properties of 

# conjugate gradient methods for optimization", 

# SIAM J. Optimization 2, 21 (1992). 

cached_step[:] = polak_ribiere_powell_step(alpha, gfkp1) 

alpha, xk, pk, gfk, gnorm = cached_step 

 

# Accept step if it leads to convergence. 

if gnorm <= gtol: 

return True 

 

# Accept step if sufficient descent condition applies. 

return numpy.dot(pk, gfk) <= -sigma_3 * numpy.dot(gfk, gfk) 

 

try: 

alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \ 

_line_search_wolfe12(f, myfprime, xk, pk, gfk, old_fval, 

old_old_fval, c2=0.4, amin=1e-100, amax=1e100, 

extra_condition=descent_condition) 

except _LineSearchError: 

# Line search failed to find a better solution. 

warnflag = 2 

break 

 

# Reuse already computed results if possible 

if alpha_k == cached_step[0]: 

alpha_k, xk, pk, gfk, gnorm = cached_step 

else: 

alpha_k, xk, pk, gfk, gnorm = polak_ribiere_powell_step(alpha_k, gfkp1) 

 

if retall: 

allvecs.append(xk) 

if callback is not None: 

callback(xk) 

k += 1 

 

fval = old_fval 

if warnflag == 2: 

msg = _status_message['pr_loss'] 

elif k >= maxiter: 

warnflag = 1 

msg = _status_message['maxiter'] 

else: 

msg = _status_message['success'] 

 

if disp: 

print("%s%s" % ("Warning: " if warnflag != 0 else "", msg)) 

print(" Current function value: %f" % fval) 

print(" Iterations: %d" % k) 

print(" Function evaluations: %d" % func_calls[0]) 

print(" Gradient evaluations: %d" % grad_calls[0]) 

 

result = OptimizeResult(fun=fval, jac=gfk, nfev=func_calls[0], 

njev=grad_calls[0], status=warnflag, 

success=(warnflag == 0), message=msg, x=xk, 

nit=k) 

if retall: 

result['allvecs'] = allvecs 

return result 

 

 

def fmin_ncg(f, x0, fprime, fhess_p=None, fhess=None, args=(), avextol=1e-5, 

epsilon=_epsilon, maxiter=None, full_output=0, disp=1, retall=0, 

callback=None): 

""" 

Unconstrained minimization of a function using the Newton-CG method. 

 

Parameters 

---------- 

f : callable ``f(x, *args)`` 

Objective function to be minimized. 

x0 : ndarray 

Initial guess. 

fprime : callable ``f'(x, *args)`` 

Gradient of f. 

fhess_p : callable ``fhess_p(x, p, *args)``, optional 

Function which computes the Hessian of f times an 

arbitrary vector, p. 

fhess : callable ``fhess(x, *args)``, optional 

Function to compute the Hessian matrix of f. 

args : tuple, optional 

Extra arguments passed to f, fprime, fhess_p, and fhess 

(the same set of extra arguments is supplied to all of 

these functions). 

epsilon : float or ndarray, optional 

If fhess is approximated, use this value for the step size. 

callback : callable, optional 

An optional user-supplied function which is called after 

each iteration. Called as callback(xk), where xk is the 

current parameter vector. 

avextol : float, optional 

Convergence is assumed when the average relative error in 

the minimizer falls below this amount. 

maxiter : int, optional 

Maximum number of iterations to perform. 

full_output : bool, optional 

If True, return the optional outputs. 

disp : bool, optional 

If True, print convergence message. 

retall : bool, optional 

If True, return a list of results at each iteration. 

 

Returns 

------- 

xopt : ndarray 

Parameters which minimize f, i.e. ``f(xopt) == fopt``. 

fopt : float 

Value of the function at xopt, i.e. ``fopt = f(xopt)``. 

fcalls : int 

Number of function calls made. 

gcalls : int 

Number of gradient calls made. 

hcalls : int 

Number of hessian calls made. 

warnflag : int 

Warnings generated by the algorithm. 

1 : Maximum number of iterations exceeded. 

allvecs : list 

The result at each iteration, if retall is True (see below). 

 

See also 

-------- 

minimize: Interface to minimization algorithms for multivariate 

functions. See the 'Newton-CG' `method` in particular. 

 

Notes 

----- 

Only one of `fhess_p` or `fhess` need to be given. If `fhess` 

is provided, then `fhess_p` will be ignored. If neither `fhess` 

nor `fhess_p` is provided, then the hessian product will be 

approximated using finite differences on `fprime`. `fhess_p` 

must compute the hessian times an arbitrary vector. If it is not 

given, finite-differences on `fprime` are used to compute 

it. 

 

Newton-CG methods are also called truncated Newton methods. This 

function differs from scipy.optimize.fmin_tnc because 

 

1. scipy.optimize.fmin_ncg is written purely in python using numpy 

and scipy while scipy.optimize.fmin_tnc calls a C function. 

2. scipy.optimize.fmin_ncg is only for unconstrained minimization 

while scipy.optimize.fmin_tnc is for unconstrained minimization 

or box constrained minimization. (Box constraints give 

lower and upper bounds for each variable separately.) 

 

References 

---------- 

Wright & Nocedal, 'Numerical Optimization', 1999, pg. 140. 

 

""" 

opts = {'xtol': avextol, 

'eps': epsilon, 

'maxiter': maxiter, 

'disp': disp, 

'return_all': retall} 

 

res = _minimize_newtoncg(f, x0, args, fprime, fhess, fhess_p, 

callback=callback, **opts) 

 

if full_output: 

retlist = (res['x'], res['fun'], res['nfev'], res['njev'], 

res['nhev'], res['status']) 

if retall: 

retlist += (res['allvecs'], ) 

return retlist 

else: 

if retall: 

return res['x'], res['allvecs'] 

else: 

return res['x'] 

 

 

def _minimize_newtoncg(fun, x0, args=(), jac=None, hess=None, hessp=None, 

callback=None, xtol=1e-5, eps=_epsilon, maxiter=None, 

disp=False, return_all=False, 

**unknown_options): 

""" 

Minimization of scalar function of one or more variables using the 

Newton-CG algorithm. 

 

Note that the `jac` parameter (Jacobian) is required. 

 

Options 

------- 

disp : bool 

Set to True to print convergence messages. 

xtol : float 

Average relative error in solution `xopt` acceptable for 

convergence. 

maxiter : int 

Maximum number of iterations to perform. 

eps : float or ndarray 

If `jac` is approximated, use this value for the step size. 

 

""" 

_check_unknown_options(unknown_options) 

if jac is None: 

raise ValueError('Jacobian is required for Newton-CG method') 

f = fun 

fprime = jac 

fhess_p = hessp 

fhess = hess 

avextol = xtol 

epsilon = eps 

retall = return_all 

 

def terminate(warnflag, msg): 

if disp: 

print(msg) 

print(" Current function value: %f" % old_fval) 

print(" Iterations: %d" % k) 

print(" Function evaluations: %d" % fcalls[0]) 

print(" Gradient evaluations: %d" % gcalls[0]) 

print(" Hessian evaluations: %d" % hcalls) 

fval = old_fval 

result = OptimizeResult(fun=fval, jac=gfk, nfev=fcalls[0], 

njev=gcalls[0], nhev=hcalls, status=warnflag, 

success=(warnflag == 0), message=msg, x=xk, 

nit=k) 

if retall: 

result['allvecs'] = allvecs 

return result 

 

x0 = asarray(x0).flatten() 

fcalls, f = wrap_function(f, args) 

gcalls, fprime = wrap_function(fprime, args) 

hcalls = 0 

if maxiter is None: 

maxiter = len(x0)*200 

cg_maxiter = 20*len(x0) 

 

xtol = len(x0) * avextol 

update = [2 * xtol] 

xk = x0 

if retall: 

allvecs = [xk] 

k = 0 

gfk = None 

old_fval = f(x0) 

old_old_fval = None 

float64eps = numpy.finfo(numpy.float64).eps 

while numpy.add.reduce(numpy.abs(update)) > xtol: 

if k >= maxiter: 

msg = "Warning: " + _status_message['maxiter'] 

return terminate(1, msg) 

# Compute a search direction pk by applying the CG method to 

# del2 f(xk) p = - grad f(xk) starting from 0. 

b = -fprime(xk) 

maggrad = numpy.add.reduce(numpy.abs(b)) 

eta = numpy.min([0.5, numpy.sqrt(maggrad)]) 

termcond = eta * maggrad 

xsupi = zeros(len(x0), dtype=x0.dtype) 

ri = -b 

psupi = -ri 

i = 0 

dri0 = numpy.dot(ri, ri) 

 

if fhess is not None: # you want to compute hessian once. 

A = fhess(*(xk,) + args) 

hcalls = hcalls + 1 

 

for k2 in xrange(cg_maxiter): 

if numpy.add.reduce(numpy.abs(ri)) <= termcond: 

break 

if fhess is None: 

if fhess_p is None: 

Ap = approx_fhess_p(xk, psupi, fprime, epsilon) 

else: 

Ap = fhess_p(xk, psupi, *args) 

hcalls = hcalls + 1 

else: 

Ap = numpy.dot(A, psupi) 

# check curvature 

Ap = asarray(Ap).squeeze() # get rid of matrices... 

curv = numpy.dot(psupi, Ap) 

if 0 <= curv <= 3 * float64eps: 

break 

elif curv < 0: 

if (i > 0): 

break 

else: 

# fall back to steepest descent direction 

xsupi = dri0 / (-curv) * b 

break 

alphai = dri0 / curv 

xsupi = xsupi + alphai * psupi 

ri = ri + alphai * Ap 

dri1 = numpy.dot(ri, ri) 

betai = dri1 / dri0 

psupi = -ri + betai * psupi 

i = i + 1 

dri0 = dri1 # update numpy.dot(ri,ri) for next time. 

else: 

# curvature keeps increasing, bail out 

msg = ("Warning: CG iterations didn't converge. The Hessian is not " 

"positive definite.") 

return terminate(3, msg) 

 

pk = xsupi # search direction is solution to system. 

gfk = -b # gradient at xk 

 

try: 

alphak, fc, gc, old_fval, old_old_fval, gfkp1 = \ 

_line_search_wolfe12(f, fprime, xk, pk, gfk, 

old_fval, old_old_fval) 

except _LineSearchError: 

# Line search failed to find a better solution. 

msg = "Warning: " + _status_message['pr_loss'] 

return terminate(2, msg) 

 

update = alphak * pk 

xk = xk + update # upcast if necessary 

if callback is not None: 

callback(xk) 

if retall: 

allvecs.append(xk) 

k += 1 

else: 

msg = _status_message['success'] 

return terminate(0, msg) 

 

 

def fminbound(func, x1, x2, args=(), xtol=1e-5, maxfun=500, 

full_output=0, disp=1): 

"""Bounded minimization for scalar functions. 

 

Parameters 

---------- 

func : callable f(x,*args) 

Objective function to be minimized (must accept and return scalars). 

x1, x2 : float or array scalar 

The optimization bounds. 

args : tuple, optional 

Extra arguments passed to function. 

xtol : float, optional 

The convergence tolerance. 

maxfun : int, optional 

Maximum number of function evaluations allowed. 

full_output : bool, optional 

If True, return optional outputs. 

disp : int, optional 

If non-zero, print messages. 

0 : no message printing. 

1 : non-convergence notification messages only. 

2 : print a message on convergence too. 

3 : print iteration results. 

 

 

Returns 

------- 

xopt : ndarray 

Parameters (over given interval) which minimize the 

objective function. 

fval : number 

The function value at the minimum point. 

ierr : int 

An error flag (0 if converged, 1 if maximum number of 

function calls reached). 

numfunc : int 

The number of function calls made. 

 

See also 

-------- 

minimize_scalar: Interface to minimization algorithms for scalar 

univariate functions. See the 'Bounded' `method` in particular. 

 

Notes 

----- 

Finds a local minimizer of the scalar function `func` in the 

interval x1 < xopt < x2 using Brent's method. (See `brent` 

for auto-bracketing). 

 

Examples 

-------- 

`fminbound` finds the minimum of the function in the given range. 

The following examples illustrate the same 

 

>>> def f(x): 

... return x**2 

 

>>> from scipy import optimize 

 

>>> minimum = optimize.fminbound(f, -1, 2) 

>>> minimum 

0.0 

>>> minimum = optimize.fminbound(f, 1, 2) 

>>> minimum 

1.0000059608609866 

""" 

options = {'xatol': xtol, 

'maxiter': maxfun, 

'disp': disp} 

 

res = _minimize_scalar_bounded(func, (x1, x2), args, **options) 

if full_output: 

return res['x'], res['fun'], res['status'], res['nfev'] 

else: 

return res['x'] 

 

 

def _minimize_scalar_bounded(func, bounds, args=(), 

xatol=1e-5, maxiter=500, disp=0, 

**unknown_options): 

""" 

Options 

------- 

maxiter : int 

Maximum number of iterations to perform. 

disp: int, optional 

If non-zero, print messages. 

0 : no message printing. 

1 : non-convergence notification messages only. 

2 : print a message on convergence too. 

3 : print iteration results. 

xatol : float 

Absolute error in solution `xopt` acceptable for convergence. 

 

""" 

_check_unknown_options(unknown_options) 

maxfun = maxiter 

# Test bounds are of correct form 

if len(bounds) != 2: 

raise ValueError('bounds must have two elements.') 

x1, x2 = bounds 

 

if not (is_array_scalar(x1) and is_array_scalar(x2)): 

raise ValueError("Optimisation bounds must be scalars" 

" or array scalars.") 

if x1 > x2: 

raise ValueError("The lower bound exceeds the upper bound.") 

 

flag = 0 

header = ' Func-count x f(x) Procedure' 

step = ' initial' 

 

sqrt_eps = sqrt(2.2e-16) 

golden_mean = 0.5 * (3.0 - sqrt(5.0)) 

a, b = x1, x2 

fulc = a + golden_mean * (b - a) 

nfc, xf = fulc, fulc 

rat = e = 0.0 

x = xf 

fx = func(x, *args) 

num = 1 

fmin_data = (1, xf, fx) 

 

ffulc = fnfc = fx 

xm = 0.5 * (a + b) 

tol1 = sqrt_eps * numpy.abs(xf) + xatol / 3.0 

tol2 = 2.0 * tol1 

 

if disp > 2: 

print(" ") 

print(header) 

print("%5.0f %12.6g %12.6g %s" % (fmin_data + (step,))) 

 

while (numpy.abs(xf - xm) > (tol2 - 0.5 * (b - a))): 

golden = 1 

# Check for parabolic fit 

if numpy.abs(e) > tol1: 

golden = 0 

r = (xf - nfc) * (fx - ffulc) 

q = (xf - fulc) * (fx - fnfc) 

p = (xf - fulc) * q - (xf - nfc) * r 

q = 2.0 * (q - r) 

if q > 0.0: 

p = -p 

q = numpy.abs(q) 

r = e 

e = rat 

 

# Check for acceptability of parabola 

if ((numpy.abs(p) < numpy.abs(0.5*q*r)) and (p > q*(a - xf)) and 

(p < q * (b - xf))): 

rat = (p + 0.0) / q 

x = xf + rat 

step = ' parabolic' 

 

if ((x - a) < tol2) or ((b - x) < tol2): 

si = numpy.sign(xm - xf) + ((xm - xf) == 0) 

rat = tol1 * si 

else: # do a golden section step 

golden = 1 

 

if golden: # Do a golden-section step 

if xf >= xm: 

e = a - xf 

else: 

e = b - xf 

rat = golden_mean*e 

step = ' golden' 

 

si = numpy.sign(rat) + (rat == 0) 

x = xf + si * numpy.max([numpy.abs(rat), tol1]) 

fu = func(x, *args) 

num += 1 

fmin_data = (num, x, fu) 

if disp > 2: 

print("%5.0f %12.6g %12.6g %s" % (fmin_data + (step,))) 

 

if fu <= fx: 

if x >= xf: 

a = xf 

else: 

b = xf 

fulc, ffulc = nfc, fnfc 

nfc, fnfc = xf, fx 

xf, fx = x, fu 

else: 

if x < xf: 

a = x 

else: 

b = x 

if (fu <= fnfc) or (nfc == xf): 

fulc, ffulc = nfc, fnfc 

nfc, fnfc = x, fu 

elif (fu <= ffulc) or (fulc == xf) or (fulc == nfc): 

fulc, ffulc = x, fu 

 

xm = 0.5 * (a + b) 

tol1 = sqrt_eps * numpy.abs(xf) + xatol / 3.0 

tol2 = 2.0 * tol1 

 

if num >= maxfun: 

flag = 1 

break 

 

fval = fx 

if disp > 0: 

_endprint(x, flag, fval, maxfun, xatol, disp) 

 

result = OptimizeResult(fun=fval, status=flag, success=(flag == 0), 

message={0: 'Solution found.', 

1: 'Maximum number of function calls ' 

'reached.'}.get(flag, ''), 

x=xf, nfev=num) 

 

return result 

 

 

class Brent: 

#need to rethink design of __init__ 

def __init__(self, func, args=(), tol=1.48e-8, maxiter=500, 

full_output=0): 

self.func = func 

self.args = args 

self.tol = tol 

self.maxiter = maxiter 

self._mintol = 1.0e-11 

self._cg = 0.3819660 

self.xmin = None 

self.fval = None 

self.iter = 0 

self.funcalls = 0 

 

# need to rethink design of set_bracket (new options, etc) 

def set_bracket(self, brack=None): 

self.brack = brack 

 

def get_bracket_info(self): 

#set up 

func = self.func 

args = self.args 

brack = self.brack 

### BEGIN core bracket_info code ### 

### carefully DOCUMENT any CHANGES in core ## 

if brack is None: 

xa, xb, xc, fa, fb, fc, funcalls = bracket(func, args=args) 

elif len(brack) == 2: 

xa, xb, xc, fa, fb, fc, funcalls = bracket(func, xa=brack[0], 

xb=brack[1], args=args) 

elif len(brack) == 3: 

xa, xb, xc = brack 

if (xa > xc): # swap so xa < xc can be assumed 

xc, xa = xa, xc 

if not ((xa < xb) and (xb < xc)): 

raise ValueError("Not a bracketing interval.") 

fa = func(*((xa,) + args)) 

fb = func(*((xb,) + args)) 

fc = func(*((xc,) + args)) 

if not ((fb < fa) and (fb < fc)): 

raise ValueError("Not a bracketing interval.") 

funcalls = 3 

else: 

raise ValueError("Bracketing interval must be " 

"length 2 or 3 sequence.") 

### END core bracket_info code ### 

 

return xa, xb, xc, fa, fb, fc, funcalls 

 

def optimize(self): 

# set up for optimization 

func = self.func 

xa, xb, xc, fa, fb, fc, funcalls = self.get_bracket_info() 

_mintol = self._mintol 

_cg = self._cg 

################################# 

#BEGIN CORE ALGORITHM 

################################# 

x = w = v = xb 

fw = fv = fx = func(*((x,) + self.args)) 

if (xa < xc): 

a = xa 

b = xc 

else: 

a = xc 

b = xa 

deltax = 0.0 

funcalls += 1 

iter = 0 

while (iter < self.maxiter): 

tol1 = self.tol * numpy.abs(x) + _mintol 

tol2 = 2.0 * tol1 

xmid = 0.5 * (a + b) 

# check for convergence 

if numpy.abs(x - xmid) < (tol2 - 0.5 * (b - a)): 

break 

# XXX In the first iteration, rat is only bound in the true case 

# of this conditional. This used to cause an UnboundLocalError 

# (gh-4140). It should be set before the if (but to what?). 

if (numpy.abs(deltax) <= tol1): 

if (x >= xmid): 

deltax = a - x # do a golden section step 

else: 

deltax = b - x 

rat = _cg * deltax 

else: # do a parabolic step 

tmp1 = (x - w) * (fx - fv) 

tmp2 = (x - v) * (fx - fw) 

p = (x - v) * tmp2 - (x - w) * tmp1 

tmp2 = 2.0 * (tmp2 - tmp1) 

if (tmp2 > 0.0): 

p = -p 

tmp2 = numpy.abs(tmp2) 

dx_temp = deltax 

deltax = rat 

# check parabolic fit 

if ((p > tmp2 * (a - x)) and (p < tmp2 * (b - x)) and 

(numpy.abs(p) < numpy.abs(0.5 * tmp2 * dx_temp))): 

rat = p * 1.0 / tmp2 # if parabolic step is useful. 

u = x + rat 

if ((u - a) < tol2 or (b - u) < tol2): 

if xmid - x >= 0: 

rat = tol1 

else: 

rat = -tol1 

else: 

if (x >= xmid): 

deltax = a - x # if it's not do a golden section step 

else: 

deltax = b - x 

rat = _cg * deltax 

 

if (numpy.abs(rat) < tol1): # update by at least tol1 

if rat >= 0: 

u = x + tol1 

else: 

u = x - tol1 

else: 

u = x + rat 

fu = func(*((u,) + self.args)) # calculate new output value 

funcalls += 1 

 

if (fu > fx): # if it's bigger than current 

if (u < x): 

a = u 

else: 

b = u 

if (fu <= fw) or (w == x): 

v = w 

w = u 

fv = fw 

fw = fu 

elif (fu <= fv) or (v == x) or (v == w): 

v = u 

fv = fu 

else: 

if (u >= x): 

a = x 

else: 

b = x 

v = w 

w = x 

x = u 

fv = fw 

fw = fx 

fx = fu 

 

iter += 1 

################################# 

#END CORE ALGORITHM 

################################# 

 

self.xmin = x 

self.fval = fx 

self.iter = iter 

self.funcalls = funcalls 

 

def get_result(self, full_output=False): 

if full_output: 

return self.xmin, self.fval, self.iter, self.funcalls 

else: 

return self.xmin 

 

 

def brent(func, args=(), brack=None, tol=1.48e-8, full_output=0, maxiter=500): 

""" 

Given a function of one-variable and a possible bracket, return 

the local minimum of the function isolated to a fractional precision 

of tol. 

 

Parameters 

---------- 

func : callable f(x,*args) 

Objective function. 

args : tuple, optional 

Additional arguments (if present). 

brack : tuple, optional 

Either a triple (xa,xb,xc) where xa<xb<xc and func(xb) < 

func(xa), func(xc) or a pair (xa,xb) which are used as a 

starting interval for a downhill bracket search (see 

`bracket`). Providing the pair (xa,xb) does not always mean 

the obtained solution will satisfy xa<=x<=xb. 

tol : float, optional 

Stop if between iteration change is less than `tol`. 

full_output : bool, optional 

If True, return all output args (xmin, fval, iter, 

funcalls). 

maxiter : int, optional 

Maximum number of iterations in solution. 

 

Returns 

------- 

xmin : ndarray 

Optimum point. 

fval : float 

Optimum value. 

iter : int 

Number of iterations. 

funcalls : int 

Number of objective function evaluations made. 

 

See also 

-------- 

minimize_scalar: Interface to minimization algorithms for scalar 

univariate functions. See the 'Brent' `method` in particular. 

 

Notes 

----- 

Uses inverse parabolic interpolation when possible to speed up 

convergence of golden section method. 

 

Does not ensure that the minimum lies in the range specified by 

`brack`. See `fminbound`. 

 

Examples 

-------- 

We illustrate the behaviour of the function when `brack` is of 

size 2 and 3 respectively. In the case where `brack` is of the 

form (xa,xb), we can see for the given values, the output need 

not necessarily lie in the range (xa,xb). 

 

>>> def f(x): 

... return x**2 

 

>>> from scipy import optimize 

 

>>> minimum = optimize.brent(f,brack=(1,2)) 

>>> minimum 

0.0 

>>> minimum = optimize.brent(f,brack=(-1,0.5,2)) 

>>> minimum 

-2.7755575615628914e-17 

 

""" 

options = {'xtol': tol, 

'maxiter': maxiter} 

res = _minimize_scalar_brent(func, brack, args, **options) 

if full_output: 

return res['x'], res['fun'], res['nit'], res['nfev'] 

else: 

return res['x'] 

 

 

def _minimize_scalar_brent(func, brack=None, args=(), 

xtol=1.48e-8, maxiter=500, 

**unknown_options): 

""" 

Options 

------- 

maxiter : int 

Maximum number of iterations to perform. 

xtol : float 

Relative error in solution `xopt` acceptable for convergence. 

 

Notes 

----- 

Uses inverse parabolic interpolation when possible to speed up 

convergence of golden section method. 

 

""" 

_check_unknown_options(unknown_options) 

tol = xtol 

if tol < 0: 

raise ValueError('tolerance should be >= 0, got %r' % tol) 

 

brent = Brent(func=func, args=args, tol=tol, 

full_output=True, maxiter=maxiter) 

brent.set_bracket(brack) 

brent.optimize() 

x, fval, nit, nfev = brent.get_result(full_output=True) 

return OptimizeResult(fun=fval, x=x, nit=nit, nfev=nfev, 

success=nit < maxiter) 

 

 

def golden(func, args=(), brack=None, tol=_epsilon, 

full_output=0, maxiter=5000): 

""" 

Return the minimum of a function of one variable using golden section 

method. 

 

Given a function of one variable and a possible bracketing interval, 

return the minimum of the function isolated to a fractional precision of 

tol. 

 

Parameters 

---------- 

func : callable func(x,*args) 

Objective function to minimize. 

args : tuple, optional 

Additional arguments (if present), passed to func. 

brack : tuple, optional 

Triple (a,b,c), where (a<b<c) and func(b) < 

func(a),func(c). If bracket consists of two numbers (a, 

c), then they are assumed to be a starting interval for a 

downhill bracket search (see `bracket`); it doesn't always 

mean that obtained solution will satisfy a<=x<=c. 

tol : float, optional 

x tolerance stop criterion 

full_output : bool, optional 

If True, return optional outputs. 

maxiter : int 

Maximum number of iterations to perform. 

 

See also 

-------- 

minimize_scalar: Interface to minimization algorithms for scalar 

univariate functions. See the 'Golden' `method` in particular. 

 

Notes 

----- 

Uses analog of bisection method to decrease the bracketed 

interval. 

 

Examples 

-------- 

We illustrate the behaviour of the function when `brack` is of 

size 2 and 3 respectively. In the case where `brack` is of the 

form (xa,xb), we can see for the given values, the output need 

not necessarily lie in the range ``(xa, xb)``. 

 

>>> def f(x): 

... return x**2 

 

>>> from scipy import optimize 

 

>>> minimum = optimize.golden(f, brack=(1, 2)) 

>>> minimum 

1.5717277788484873e-162 

>>> minimum = optimize.golden(f, brack=(-1, 0.5, 2)) 

>>> minimum 

-1.5717277788484873e-162 

 

""" 

options = {'xtol': tol, 'maxiter': maxiter} 

res = _minimize_scalar_golden(func, brack, args, **options) 

if full_output: 

return res['x'], res['fun'], res['nfev'] 

else: 

return res['x'] 

 

 

def _minimize_scalar_golden(func, brack=None, args=(), 

xtol=_epsilon, maxiter=5000, **unknown_options): 

""" 

Options 

------- 

maxiter : int 

Maximum number of iterations to perform. 

xtol : float 

Relative error in solution `xopt` acceptable for convergence. 

 

""" 

_check_unknown_options(unknown_options) 

tol = xtol 

if brack is None: 

xa, xb, xc, fa, fb, fc, funcalls = bracket(func, args=args) 

elif len(brack) == 2: 

xa, xb, xc, fa, fb, fc, funcalls = bracket(func, xa=brack[0], 

xb=brack[1], args=args) 

elif len(brack) == 3: 

xa, xb, xc = brack 

if (xa > xc): # swap so xa < xc can be assumed 

xc, xa = xa, xc 

if not ((xa < xb) and (xb < xc)): 

raise ValueError("Not a bracketing interval.") 

fa = func(*((xa,) + args)) 

fb = func(*((xb,) + args)) 

fc = func(*((xc,) + args)) 

if not ((fb < fa) and (fb < fc)): 

raise ValueError("Not a bracketing interval.") 

funcalls = 3 

else: 

raise ValueError("Bracketing interval must be length 2 or 3 sequence.") 

 

_gR = 0.61803399 # golden ratio conjugate: 2.0/(1.0+sqrt(5.0)) 

_gC = 1.0 - _gR 

x3 = xc 

x0 = xa 

if (numpy.abs(xc - xb) > numpy.abs(xb - xa)): 

x1 = xb 

x2 = xb + _gC * (xc - xb) 

else: 

x2 = xb 

x1 = xb - _gC * (xb - xa) 

f1 = func(*((x1,) + args)) 

f2 = func(*((x2,) + args)) 

funcalls += 2 

nit = 0 

for i in xrange(maxiter): 

if numpy.abs(x3 - x0) <= tol * (numpy.abs(x1) + numpy.abs(x2)): 

break 

if (f2 < f1): 

x0 = x1 

x1 = x2 

x2 = _gR * x1 + _gC * x3 

f1 = f2 

f2 = func(*((x2,) + args)) 

else: 

x3 = x2 

x2 = x1 

x1 = _gR * x2 + _gC * x0 

f2 = f1 

f1 = func(*((x1,) + args)) 

funcalls += 1 

nit += 1 

if (f1 < f2): 

xmin = x1 

fval = f1 

else: 

xmin = x2 

fval = f2 

 

return OptimizeResult(fun=fval, nfev=funcalls, x=xmin, nit=nit, 

success=nit < maxiter) 

 

 

def bracket(func, xa=0.0, xb=1.0, args=(), grow_limit=110.0, maxiter=1000): 

""" 

Bracket the minimum of the function. 

 

Given a function and distinct initial points, search in the 

downhill direction (as defined by the initital points) and return 

new points xa, xb, xc that bracket the minimum of the function 

f(xa) > f(xb) < f(xc). It doesn't always mean that obtained 

solution will satisfy xa<=x<=xb 

 

Parameters 

---------- 

func : callable f(x,*args) 

Objective function to minimize. 

xa, xb : float, optional 

Bracketing interval. Defaults `xa` to 0.0, and `xb` to 1.0. 

args : tuple, optional 

Additional arguments (if present), passed to `func`. 

grow_limit : float, optional 

Maximum grow limit. Defaults to 110.0 

maxiter : int, optional 

Maximum number of iterations to perform. Defaults to 1000. 

 

Returns 

------- 

xa, xb, xc : float 

Bracket. 

fa, fb, fc : float 

Objective function values in bracket. 

funcalls : int 

Number of function evaluations made. 

 

""" 

_gold = 1.618034 # golden ratio: (1.0+sqrt(5.0))/2.0 

_verysmall_num = 1e-21 

fa = func(*(xa,) + args) 

fb = func(*(xb,) + args) 

if (fa < fb): # Switch so fa > fb 

xa, xb = xb, xa 

fa, fb = fb, fa 

xc = xb + _gold * (xb - xa) 

fc = func(*((xc,) + args)) 

funcalls = 3 

iter = 0 

while (fc < fb): 

tmp1 = (xb - xa) * (fb - fc) 

tmp2 = (xb - xc) * (fb - fa) 

val = tmp2 - tmp1 

if numpy.abs(val) < _verysmall_num: 

denom = 2.0 * _verysmall_num 

else: 

denom = 2.0 * val 

w = xb - ((xb - xc) * tmp2 - (xb - xa) * tmp1) / denom 

wlim = xb + grow_limit * (xc - xb) 

if iter > maxiter: 

raise RuntimeError("Too many iterations.") 

iter += 1 

if (w - xc) * (xb - w) > 0.0: 

fw = func(*((w,) + args)) 

funcalls += 1 

if (fw < fc): 

xa = xb 

xb = w 

fa = fb 

fb = fw 

return xa, xb, xc, fa, fb, fc, funcalls 

elif (fw > fb): 

xc = w 

fc = fw 

return xa, xb, xc, fa, fb, fc, funcalls 

w = xc + _gold * (xc - xb) 

fw = func(*((w,) + args)) 

funcalls += 1 

elif (w - wlim)*(wlim - xc) >= 0.0: 

w = wlim 

fw = func(*((w,) + args)) 

funcalls += 1 

elif (w - wlim)*(xc - w) > 0.0: 

fw = func(*((w,) + args)) 

funcalls += 1 

if (fw < fc): 

xb = xc 

xc = w 

w = xc + _gold * (xc - xb) 

fb = fc 

fc = fw 

fw = func(*((w,) + args)) 

funcalls += 1 

else: 

w = xc + _gold * (xc - xb) 

fw = func(*((w,) + args)) 

funcalls += 1 

xa = xb 

xb = xc 

xc = w 

fa = fb 

fb = fc 

fc = fw 

return xa, xb, xc, fa, fb, fc, funcalls 

 

 

def _linesearch_powell(func, p, xi, tol=1e-3): 

"""Line-search algorithm using fminbound. 

 

Find the minimium of the function ``func(x0+ alpha*direc)``. 

 

""" 

def myfunc(alpha): 

return func(p + alpha*xi) 

alpha_min, fret, iter, num = brent(myfunc, full_output=1, tol=tol) 

xi = alpha_min*xi 

return squeeze(fret), p + xi, xi 

 

 

def fmin_powell(func, x0, args=(), xtol=1e-4, ftol=1e-4, maxiter=None, 

maxfun=None, full_output=0, disp=1, retall=0, callback=None, 

direc=None): 

""" 

Minimize a function using modified Powell's method. This method 

only uses function values, not derivatives. 

 

Parameters 

---------- 

func : callable f(x,*args) 

Objective function to be minimized. 

x0 : ndarray 

Initial guess. 

args : tuple, optional 

Extra arguments passed to func. 

callback : callable, optional 

An optional user-supplied function, called after each 

iteration. Called as ``callback(xk)``, where ``xk`` is the 

current parameter vector. 

direc : ndarray, optional 

Initial direction set. 

xtol : float, optional 

Line-search error tolerance. 

ftol : float, optional 

Relative error in ``func(xopt)`` acceptable for convergence. 

maxiter : int, optional 

Maximum number of iterations to perform. 

maxfun : int, optional 

Maximum number of function evaluations to make. 

full_output : bool, optional 

If True, fopt, xi, direc, iter, funcalls, and 

warnflag are returned. 

disp : bool, optional 

If True, print convergence messages. 

retall : bool, optional 

If True, return a list of the solution at each iteration. 

 

Returns 

------- 

xopt : ndarray 

Parameter which minimizes `func`. 

fopt : number 

Value of function at minimum: ``fopt = func(xopt)``. 

direc : ndarray 

Current direction set. 

iter : int 

Number of iterations. 

funcalls : int 

Number of function calls made. 

warnflag : int 

Integer warning flag: 

1 : Maximum number of function evaluations. 

2 : Maximum number of iterations. 

allvecs : list 

List of solutions at each iteration. 

 

See also 

-------- 

minimize: Interface to unconstrained minimization algorithms for 

multivariate functions. See the 'Powell' `method` in particular. 

 

Notes 

----- 

Uses a modification of Powell's method to find the minimum of 

a function of N variables. Powell's method is a conjugate 

direction method. 

 

The algorithm has two loops. The outer loop 

merely iterates over the inner loop. The inner loop minimizes 

over each current direction in the direction set. At the end 

of the inner loop, if certain conditions are met, the direction 

that gave the largest decrease is dropped and replaced with 

the difference between the current estimated x and the estimated 

x from the beginning of the inner-loop. 

 

The technical conditions for replacing the direction of greatest 

increase amount to checking that 

 

1. No further gain can be made along the direction of greatest increase 

from that iteration. 

2. The direction of greatest increase accounted for a large sufficient 

fraction of the decrease in the function value from that iteration of 

the inner loop. 

 

Examples 

-------- 

>>> def f(x): 

... return x**2 

 

>>> from scipy import optimize 

 

>>> minimum = optimize.fmin_powell(f, -1) 

Optimization terminated successfully. 

Current function value: 0.000000 

Iterations: 2 

Function evaluations: 18 

>>> minimum 

array(0.0) 

 

References 

---------- 

Powell M.J.D. (1964) An efficient method for finding the minimum of a 

function of several variables without calculating derivatives, 

Computer Journal, 7 (2):155-162. 

 

Press W., Teukolsky S.A., Vetterling W.T., and Flannery B.P.: 

Numerical Recipes (any edition), Cambridge University Press 

 

""" 

opts = {'xtol': xtol, 

'ftol': ftol, 

'maxiter': maxiter, 

'maxfev': maxfun, 

'disp': disp, 

'direc': direc, 

'return_all': retall} 

 

res = _minimize_powell(func, x0, args, callback=callback, **opts) 

 

if full_output: 

retlist = (res['x'], res['fun'], res['direc'], res['nit'], 

res['nfev'], res['status']) 

if retall: 

retlist += (res['allvecs'], ) 

return retlist 

else: 

if retall: 

return res['x'], res['allvecs'] 

else: 

return res['x'] 

 

 

def _minimize_powell(func, x0, args=(), callback=None, 

xtol=1e-4, ftol=1e-4, maxiter=None, maxfev=None, 

disp=False, direc=None, return_all=False, 

**unknown_options): 

""" 

Minimization of scalar function of one or more variables using the 

modified Powell algorithm. 

 

Options 

------- 

disp : bool 

Set to True to print convergence messages. 

xtol : float 

Relative error in solution `xopt` acceptable for convergence. 

ftol : float 

Relative error in ``fun(xopt)`` acceptable for convergence. 

maxiter, maxfev : int 

Maximum allowed number of iterations and function evaluations. 

Will default to ``N*1000``, where ``N`` is the number of 

variables, if neither `maxiter` or `maxfev` is set. If both 

`maxiter` and `maxfev` are set, minimization will stop at the 

first reached. 

direc : ndarray 

Initial set of direction vectors for the Powell method. 

 

""" 

_check_unknown_options(unknown_options) 

maxfun = maxfev 

retall = return_all 

# we need to use a mutable object here that we can update in the 

# wrapper function 

fcalls, func = wrap_function(func, args) 

x = asarray(x0).flatten() 

if retall: 

allvecs = [x] 

N = len(x) 

# If neither are set, then set both to default 

if maxiter is None and maxfun is None: 

maxiter = N * 1000 

maxfun = N * 1000 

elif maxiter is None: 

# Convert remaining Nones, to np.inf, unless the other is np.inf, in 

# which case use the default to avoid unbounded iteration 

if maxfun == np.inf: 

maxiter = N * 1000 

else: 

maxiter = np.inf 

elif maxfun is None: 

if maxiter == np.inf: 

maxfun = N * 1000 

else: 

maxfun = np.inf 

 

if direc is None: 

direc = eye(N, dtype=float) 

else: 

direc = asarray(direc, dtype=float) 

 

fval = squeeze(func(x)) 

x1 = x.copy() 

iter = 0 

ilist = list(range(N)) 

while True: 

fx = fval 

bigind = 0 

delta = 0.0 

for i in ilist: 

direc1 = direc[i] 

fx2 = fval 

fval, x, direc1 = _linesearch_powell(func, x, direc1, 

tol=xtol * 100) 

if (fx2 - fval) > delta: 

delta = fx2 - fval 

bigind = i 

iter += 1 

if callback is not None: 

callback(x) 

if retall: 

allvecs.append(x) 

bnd = ftol * (numpy.abs(fx) + numpy.abs(fval)) + 1e-20 

if 2.0 * (fx - fval) <= bnd: 

break 

if fcalls[0] >= maxfun: 

break 

if iter >= maxiter: 

break 

 

# Construct the extrapolated point 

direc1 = x - x1 

x2 = 2*x - x1 

x1 = x.copy() 

fx2 = squeeze(func(x2)) 

 

if (fx > fx2): 

t = 2.0*(fx + fx2 - 2.0*fval) 

temp = (fx - fval - delta) 

t *= temp*temp 

temp = fx - fx2 

t -= delta*temp*temp 

if t < 0.0: 

fval, x, direc1 = _linesearch_powell(func, x, direc1, 

tol=xtol*100) 

direc[bigind] = direc[-1] 

direc[-1] = direc1 

 

warnflag = 0 

if fcalls[0] >= maxfun: 

warnflag = 1 

msg = _status_message['maxfev'] 

if disp: 

print("Warning: " + msg) 

elif iter >= maxiter: 

warnflag = 2 

msg = _status_message['maxiter'] 

if disp: 

print("Warning: " + msg) 

else: 

msg = _status_message['success'] 

if disp: 

print(msg) 

print(" Current function value: %f" % fval) 

print(" Iterations: %d" % iter) 

print(" Function evaluations: %d" % fcalls[0]) 

 

x = squeeze(x) 

 

result = OptimizeResult(fun=fval, direc=direc, nit=iter, nfev=fcalls[0], 

status=warnflag, success=(warnflag == 0), 

message=msg, x=x) 

if retall: 

result['allvecs'] = allvecs 

return result 

 

 

def _endprint(x, flag, fval, maxfun, xtol, disp): 

if flag == 0: 

if disp > 1: 

print("\nOptimization terminated successfully;\n" 

"The returned value satisfies the termination criteria\n" 

"(using xtol = ", xtol, ")") 

if flag == 1: 

if disp: 

print("\nMaximum number of function evaluations exceeded --- " 

"increase maxfun argument.\n") 

return 

 

 

def brute(func, ranges, args=(), Ns=20, full_output=0, finish=fmin, 

disp=False): 

"""Minimize a function over a given range by brute force. 

 

Uses the "brute force" method, i.e. computes the function's value 

at each point of a multidimensional grid of points, to find the global 

minimum of the function. 

 

The function is evaluated everywhere in the range with the datatype of the 

first call to the function, as enforced by the ``vectorize`` NumPy 

function. The value and type of the function evaluation returned when 

``full_output=True`` are affected in addition by the ``finish`` argument 

(see Notes). 

 

The brute force approach is inefficient because the number of grid points 

increases exponentially - the number of grid points to evaluate is 

``Ns ** len(x)``. Consequently, even with coarse grid spacing, even 

moderately sized problems can take a long time to run, and/or run into 

memory limitations. 

 

Parameters 

---------- 

func : callable 

The objective function to be minimized. Must be in the 

form ``f(x, *args)``, where ``x`` is the argument in 

the form of a 1-D array and ``args`` is a tuple of any 

additional fixed parameters needed to completely specify 

the function. 

ranges : tuple 

Each component of the `ranges` tuple must be either a 

"slice object" or a range tuple of the form ``(low, high)``. 

The program uses these to create the grid of points on which 

the objective function will be computed. See `Note 2` for 

more detail. 

args : tuple, optional 

Any additional fixed parameters needed to completely specify 

the function. 

Ns : int, optional 

Number of grid points along the axes, if not otherwise 

specified. See `Note2`. 

full_output : bool, optional 

If True, return the evaluation grid and the objective function's 

values on it. 

finish : callable, optional 

An optimization function that is called with the result of brute force 

minimization as initial guess. `finish` should take `func` and 

the initial guess as positional arguments, and take `args` as 

keyword arguments. It may additionally take `full_output` 

and/or `disp` as keyword arguments. Use None if no "polishing" 

function is to be used. See Notes for more details. 

disp : bool, optional 

Set to True to print convergence messages. 

 

Returns 

------- 

x0 : ndarray 

A 1-D array containing the coordinates of a point at which the 

objective function had its minimum value. (See `Note 1` for 

which point is returned.) 

fval : float 

Function value at the point `x0`. (Returned when `full_output` is 

True.) 

grid : tuple 

Representation of the evaluation grid. It has the same 

length as `x0`. (Returned when `full_output` is True.) 

Jout : ndarray 

Function values at each point of the evaluation 

grid, `i.e.`, ``Jout = func(*grid)``. (Returned 

when `full_output` is True.) 

 

See Also 

-------- 

basinhopping, differential_evolution 

 

Notes 

----- 

*Note 1*: The program finds the gridpoint at which the lowest value 

of the objective function occurs. If `finish` is None, that is the 

point returned. When the global minimum occurs within (or not very far 

outside) the grid's boundaries, and the grid is fine enough, that 

point will be in the neighborhood of the global minimum. 

 

However, users often employ some other optimization program to 

"polish" the gridpoint values, `i.e.`, to seek a more precise 

(local) minimum near `brute's` best gridpoint. 

The `brute` function's `finish` option provides a convenient way to do 

that. Any polishing program used must take `brute's` output as its 

initial guess as a positional argument, and take `brute's` input values 

for `args` as keyword arguments, otherwise an error will be raised. 

It may additionally take `full_output` and/or `disp` as keyword arguments. 

 

`brute` assumes that the `finish` function returns either an 

`OptimizeResult` object or a tuple in the form: 

``(xmin, Jmin, ... , statuscode)``, where ``xmin`` is the minimizing 

value of the argument, ``Jmin`` is the minimum value of the objective 

function, "..." may be some other returned values (which are not used 

by `brute`), and ``statuscode`` is the status code of the `finish` program. 

 

Note that when `finish` is not None, the values returned are those 

of the `finish` program, *not* the gridpoint ones. Consequently, 

while `brute` confines its search to the input grid points, 

the `finish` program's results usually will not coincide with any 

gridpoint, and may fall outside the grid's boundary. Thus, if a 

minimum only needs to be found over the provided grid points, make 

sure to pass in `finish=None`. 

 

*Note 2*: The grid of points is a `numpy.mgrid` object. 

For `brute` the `ranges` and `Ns` inputs have the following effect. 

Each component of the `ranges` tuple can be either a slice object or a 

two-tuple giving a range of values, such as (0, 5). If the component is a 

slice object, `brute` uses it directly. If the component is a two-tuple 

range, `brute` internally converts it to a slice object that interpolates 

`Ns` points from its low-value to its high-value, inclusive. 

 

Examples 

-------- 

We illustrate the use of `brute` to seek the global minimum of a function 

of two variables that is given as the sum of a positive-definite 

quadratic and two deep "Gaussian-shaped" craters. Specifically, define 

the objective function `f` as the sum of three other functions, 

``f = f1 + f2 + f3``. We suppose each of these has a signature 

``(z, *params)``, where ``z = (x, y)``, and ``params`` and the functions 

are as defined below. 

 

>>> params = (2, 3, 7, 8, 9, 10, 44, -1, 2, 26, 1, -2, 0.5) 

>>> def f1(z, *params): 

... x, y = z 

... a, b, c, d, e, f, g, h, i, j, k, l, scale = params 

... return (a * x**2 + b * x * y + c * y**2 + d*x + e*y + f) 

 

>>> def f2(z, *params): 

... x, y = z 

... a, b, c, d, e, f, g, h, i, j, k, l, scale = params 

... return (-g*np.exp(-((x-h)**2 + (y-i)**2) / scale)) 

 

>>> def f3(z, *params): 

... x, y = z 

... a, b, c, d, e, f, g, h, i, j, k, l, scale = params 

... return (-j*np.exp(-((x-k)**2 + (y-l)**2) / scale)) 

 

>>> def f(z, *params): 

... return f1(z, *params) + f2(z, *params) + f3(z, *params) 

 

Thus, the objective function may have local minima near the minimum 

of each of the three functions of which it is composed. To 

use `fmin` to polish its gridpoint result, we may then continue as 

follows: 

 

>>> rranges = (slice(-4, 4, 0.25), slice(-4, 4, 0.25)) 

>>> from scipy import optimize 

>>> resbrute = optimize.brute(f, rranges, args=params, full_output=True, 

... finish=optimize.fmin) 

>>> resbrute[0] # global minimum 

array([-1.05665192, 1.80834843]) 

>>> resbrute[1] # function value at global minimum 

-3.4085818767 

 

Note that if `finish` had been set to None, we would have gotten the 

gridpoint [-1.0 1.75] where the rounded function value is -2.892. 

 

""" 

N = len(ranges) 

if N > 40: 

raise ValueError("Brute Force not possible with more " 

"than 40 variables.") 

lrange = list(ranges) 

for k in range(N): 

if type(lrange[k]) is not type(slice(None)): 

if len(lrange[k]) < 3: 

lrange[k] = tuple(lrange[k]) + (complex(Ns),) 

lrange[k] = slice(*lrange[k]) 

if (N == 1): 

lrange = lrange[0] 

 

def _scalarfunc(*params): 

params = asarray(params).flatten() 

return func(params, *args) 

 

vecfunc = vectorize(_scalarfunc) 

grid = mgrid[lrange] 

if (N == 1): 

grid = (grid,) 

Jout = vecfunc(*grid) 

Nshape = shape(Jout) 

indx = argmin(Jout.ravel(), axis=-1) 

Nindx = zeros(N, int) 

xmin = zeros(N, float) 

for k in range(N - 1, -1, -1): 

thisN = Nshape[k] 

Nindx[k] = indx % Nshape[k] 

indx = indx // thisN 

for k in range(N): 

xmin[k] = grid[k][tuple(Nindx)] 

 

Jmin = Jout[tuple(Nindx)] 

if (N == 1): 

grid = grid[0] 

xmin = xmin[0] 

if callable(finish): 

# set up kwargs for `finish` function 

finish_args = _getargspec(finish).args 

finish_kwargs = dict() 

if 'full_output' in finish_args: 

finish_kwargs['full_output'] = 1 

if 'disp' in finish_args: 

finish_kwargs['disp'] = disp 

elif 'options' in finish_args: 

# pass 'disp' as `options` 

# (e.g. if `finish` is `minimize`) 

finish_kwargs['options'] = {'disp': disp} 

 

# run minimizer 

res = finish(func, xmin, args=args, **finish_kwargs) 

 

if isinstance(res, OptimizeResult): 

xmin = res.x 

Jmin = res.fun 

success = res.success 

else: 

xmin = res[0] 

Jmin = res[1] 

success = res[-1] == 0 

if not success: 

if disp: 

print("Warning: Either final optimization did not succeed " 

"or `finish` does not return `statuscode` as its last " 

"argument.") 

 

if full_output: 

return xmin, Jmin, grid, Jout 

else: 

return xmin 

 

 

def show_options(solver=None, method=None, disp=True): 

""" 

Show documentation for additional options of optimization solvers. 

 

These are method-specific options that can be supplied through the 

``options`` dict. 

 

Parameters 

---------- 

solver : str 

Type of optimization solver. One of 'minimize', 'minimize_scalar', 

'root', or 'linprog'. 

method : str, optional 

If not given, shows all methods of the specified solver. Otherwise, 

show only the options for the specified method. Valid values 

corresponds to methods' names of respective solver (e.g. 'BFGS' for 

'minimize'). 

disp : bool, optional 

Whether to print the result rather than returning it. 

 

Returns 

------- 

text 

Either None (for disp=False) or the text string (disp=True) 

 

Notes 

----- 

The solver-specific methods are: 

 

`scipy.optimize.minimize` 

 

- :ref:`Nelder-Mead <optimize.minimize-neldermead>` 

- :ref:`Powell <optimize.minimize-powell>` 

- :ref:`CG <optimize.minimize-cg>` 

- :ref:`BFGS <optimize.minimize-bfgs>` 

- :ref:`Newton-CG <optimize.minimize-newtoncg>` 

- :ref:`L-BFGS-B <optimize.minimize-lbfgsb>` 

- :ref:`TNC <optimize.minimize-tnc>` 

- :ref:`COBYLA <optimize.minimize-cobyla>` 

- :ref:`SLSQP <optimize.minimize-slsqp>` 

- :ref:`dogleg <optimize.minimize-dogleg>` 

- :ref:`trust-ncg <optimize.minimize-trustncg>` 

 

`scipy.optimize.root` 

 

- :ref:`hybr <optimize.root-hybr>` 

- :ref:`lm <optimize.root-lm>` 

- :ref:`broyden1 <optimize.root-broyden1>` 

- :ref:`broyden2 <optimize.root-broyden2>` 

- :ref:`anderson <optimize.root-anderson>` 

- :ref:`linearmixing <optimize.root-linearmixing>` 

- :ref:`diagbroyden <optimize.root-diagbroyden>` 

- :ref:`excitingmixing <optimize.root-excitingmixing>` 

- :ref:`krylov <optimize.root-krylov>` 

- :ref:`df-sane <optimize.root-dfsane>` 

 

`scipy.optimize.minimize_scalar` 

 

- :ref:`brent <optimize.minimize_scalar-brent>` 

- :ref:`golden <optimize.minimize_scalar-golden>` 

- :ref:`bounded <optimize.minimize_scalar-bounded>` 

 

`scipy.optimize.linprog` 

 

- :ref:`simplex <optimize.linprog-simplex>` 

- :ref:`interior-point <optimize.linprog-interior-point>` 

 

""" 

import textwrap 

 

doc_routines = { 

'minimize': ( 

('bfgs', 'scipy.optimize.optimize._minimize_bfgs'), 

('cg', 'scipy.optimize.optimize._minimize_cg'), 

('cobyla', 'scipy.optimize.cobyla._minimize_cobyla'), 

('dogleg', 'scipy.optimize._trustregion_dogleg._minimize_dogleg'), 

('l-bfgs-b', 'scipy.optimize.lbfgsb._minimize_lbfgsb'), 

('nelder-mead', 'scipy.optimize.optimize._minimize_neldermead'), 

('newton-cg', 'scipy.optimize.optimize._minimize_newtoncg'), 

('powell', 'scipy.optimize.optimize._minimize_powell'), 

('slsqp', 'scipy.optimize.slsqp._minimize_slsqp'), 

('tnc', 'scipy.optimize.tnc._minimize_tnc'), 

('trust-ncg', 'scipy.optimize._trustregion_ncg._minimize_trust_ncg'), 

), 

'root': ( 

('hybr', 'scipy.optimize.minpack._root_hybr'), 

('lm', 'scipy.optimize._root._root_leastsq'), 

('broyden1', 'scipy.optimize._root._root_broyden1_doc'), 

('broyden2', 'scipy.optimize._root._root_broyden2_doc'), 

('anderson', 'scipy.optimize._root._root_anderson_doc'), 

('diagbroyden', 'scipy.optimize._root._root_diagbroyden_doc'), 

('excitingmixing', 'scipy.optimize._root._root_excitingmixing_doc'), 

('linearmixing', 'scipy.optimize._root._root_linearmixing_doc'), 

('krylov', 'scipy.optimize._root._root_krylov_doc'), 

('df-sane', 'scipy.optimize._spectral._root_df_sane'), 

), 

'linprog': ( 

('simplex', 'scipy.optimize._linprog._linprog_simplex'), 

('interior-point', 'scipy.optimize._linprog._linprog_ip'), 

), 

'minimize_scalar': ( 

('brent', 'scipy.optimize.optimize._minimize_scalar_brent'), 

('bounded', 'scipy.optimize.optimize._minimize_scalar_bounded'), 

('golden', 'scipy.optimize.optimize._minimize_scalar_golden'), 

), 

} 

 

if solver is None: 

text = ["\n\n\n========\n", "minimize\n", "========\n"] 

text.append(show_options('minimize', disp=False)) 

text.extend(["\n\n===============\n", "minimize_scalar\n", 

"===============\n"]) 

text.append(show_options('minimize_scalar', disp=False)) 

text.extend(["\n\n\n====\n", "root\n", 

"====\n"]) 

text.append(show_options('root', disp=False)) 

text.extend(['\n\n\n=======\n', 'linprog\n', 

'=======\n']) 

text.append(show_options('linprog', disp=False)) 

text = "".join(text) 

else: 

solver = solver.lower() 

if solver not in doc_routines: 

raise ValueError('Unknown solver %r' % (solver,)) 

 

if method is None: 

text = [] 

for name, _ in doc_routines[solver]: 

text.extend(["\n\n" + name, "\n" + "="*len(name) + "\n\n"]) 

text.append(show_options(solver, name, disp=False)) 

text = "".join(text) 

else: 

method = method.lower() 

methods = dict(doc_routines[solver]) 

if method not in methods: 

raise ValueError("Unknown method %r" % (method,)) 

name = methods[method] 

 

# Import function object 

parts = name.split('.') 

mod_name = ".".join(parts[:-1]) 

__import__(mod_name) 

obj = getattr(sys.modules[mod_name], parts[-1]) 

 

# Get doc 

doc = obj.__doc__ 

if doc is not None: 

text = textwrap.dedent(doc).strip() 

else: 

text = "" 

 

if disp: 

print(text) 

return 

else: 

return text 

 

 

def main(): 

import time 

 

times = [] 

algor = [] 

x0 = [0.8, 1.2, 0.7] 

print("Nelder-Mead Simplex") 

print("===================") 

start = time.time() 

x = fmin(rosen, x0) 

print(x) 

times.append(time.time() - start) 

algor.append('Nelder-Mead Simplex\t') 

 

print() 

print("Powell Direction Set Method") 

print("===========================") 

start = time.time() 

x = fmin_powell(rosen, x0) 

print(x) 

times.append(time.time() - start) 

algor.append('Powell Direction Set Method.') 

 

print() 

print("Nonlinear CG") 

print("============") 

start = time.time() 

x = fmin_cg(rosen, x0, fprime=rosen_der, maxiter=200) 

print(x) 

times.append(time.time() - start) 

algor.append('Nonlinear CG \t') 

 

print() 

print("BFGS Quasi-Newton") 

print("=================") 

start = time.time() 

x = fmin_bfgs(rosen, x0, fprime=rosen_der, maxiter=80) 

print(x) 

times.append(time.time() - start) 

algor.append('BFGS Quasi-Newton\t') 

 

print() 

print("BFGS approximate gradient") 

print("=========================") 

start = time.time() 

x = fmin_bfgs(rosen, x0, gtol=1e-4, maxiter=100) 

print(x) 

times.append(time.time() - start) 

algor.append('BFGS without gradient\t') 

 

print() 

print("Newton-CG with Hessian product") 

print("==============================") 

start = time.time() 

x = fmin_ncg(rosen, x0, rosen_der, fhess_p=rosen_hess_prod, maxiter=80) 

print(x) 

times.append(time.time() - start) 

algor.append('Newton-CG with hessian product') 

 

print() 

print("Newton-CG with full Hessian") 

print("===========================") 

start = time.time() 

x = fmin_ncg(rosen, x0, rosen_der, fhess=rosen_hess, maxiter=80) 

print(x) 

times.append(time.time() - start) 

algor.append('Newton-CG with full hessian') 

 

print() 

print("\nMinimizing the Rosenbrock function of order 3\n") 

print(" Algorithm \t\t\t Seconds") 

print("===========\t\t\t =========") 

for k in range(len(algor)): 

print(algor[k], "\t -- ", times[k]) 

 

 

if __name__ == "__main__": 

main()