1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

from __future__ import division, print_function, absolute_import 

 

import warnings 

 

from . import _zeros 

from numpy import finfo, sign, sqrt 

 

_iter = 100 

_xtol = 2e-12 

_rtol = 4*finfo(float).eps 

 

__all__ = ['newton', 'bisect', 'ridder', 'brentq', 'brenth'] 

 

CONVERGED = 'converged' 

SIGNERR = 'sign error' 

CONVERR = 'convergence error' 

flag_map = {0: CONVERGED, -1: SIGNERR, -2: CONVERR} 

 

 

class RootResults(object): 

""" Represents the root finding result. 

Attributes 

---------- 

root : float 

Estimated root location. 

iterations : int 

Number of iterations needed to find the root. 

function_calls : int 

Number of times the function was called. 

converged : bool 

True if the routine converged. 

flag : str 

Description of the cause of termination. 

""" 

def __init__(self, root, iterations, function_calls, flag): 

self.root = root 

self.iterations = iterations 

self.function_calls = function_calls 

self.converged = flag == 0 

try: 

self.flag = flag_map[flag] 

except KeyError: 

self.flag = 'unknown error %d' % (flag,) 

 

def __repr__(self): 

attrs = ['converged', 'flag', 'function_calls', 

'iterations', 'root'] 

m = max(map(len, attrs)) + 1 

return '\n'.join([a.rjust(m) + ': ' + repr(getattr(self, a)) 

for a in attrs]) 

 

 

def results_c(full_output, r): 

if full_output: 

x, funcalls, iterations, flag = r 

results = RootResults(root=x, 

iterations=iterations, 

function_calls=funcalls, 

flag=flag) 

return x, results 

else: 

return r 

 

 

# Newton-Raphson method 

def newton(func, x0, fprime=None, args=(), tol=1.48e-8, maxiter=50, 

fprime2=None): 

""" 

Find a zero using the Newton-Raphson or secant method. 

 

Find a zero of the function `func` given a nearby starting point `x0`. 

The Newton-Raphson method is used if the derivative `fprime` of `func` 

is provided, otherwise the secant method is used. If the second order 

derivative `fprime2` of `func` is provided, then Halley's method is used. 

 

Parameters 

---------- 

func : function 

The function whose zero is wanted. It must be a function of a 

single variable of the form f(x,a,b,c...), where a,b,c... are extra 

arguments that can be passed in the `args` parameter. 

x0 : float 

An initial estimate of the zero that should be somewhere near the 

actual zero. 

fprime : function, optional 

The derivative of the function when available and convenient. If it 

is None (default), then the secant method is used. 

args : tuple, optional 

Extra arguments to be used in the function call. 

tol : float, optional 

The allowable error of the zero value. 

maxiter : int, optional 

Maximum number of iterations. 

fprime2 : function, optional 

The second order derivative of the function when available and 

convenient. If it is None (default), then the normal Newton-Raphson 

or the secant method is used. If it is not None, then Halley's method 

is used. 

 

Returns 

------- 

zero : float 

Estimated location where function is zero. 

 

See Also 

-------- 

brentq, brenth, ridder, bisect 

fsolve : find zeroes in n dimensions. 

 

Notes 

----- 

The convergence rate of the Newton-Raphson method is quadratic, 

the Halley method is cubic, and the secant method is 

sub-quadratic. This means that if the function is well behaved 

the actual error in the estimated zero is approximately the square 

(cube for Halley) of the requested tolerance up to roundoff 

error. However, the stopping criterion used here is the step size 

and there is no guarantee that a zero has been found. Consequently 

the result should be verified. Safer algorithms are brentq, 

brenth, ridder, and bisect, but they all require that the root 

first be bracketed in an interval where the function changes 

sign. The brentq algorithm is recommended for general use in one 

dimensional problems when such an interval has been found. 

 

Examples 

-------- 

 

>>> def f(x): 

... return (x**3 - 1) # only one real root at x = 1 

 

>>> from scipy import optimize 

 

``fprime`` not provided, use secant method 

 

>>> root = optimize.newton(f, 1.5) 

>>> root 

1.0000000000000016 

>>> root = optimize.newton(f, 1.5, fprime2=lambda x: 6 * x) 

>>> root 

1.0000000000000016 

 

Only ``fprime`` provided, use Newton Raphson method 

 

>>> root = optimize.newton(f, 1.5, fprime=lambda x: 3 * x**2) 

>>> root 

1.0 

 

Both ``fprime2`` and ``fprime`` provided, use Halley's method 

 

>>> root = optimize.newton(f, 1.5, fprime=lambda x: 3 * x**2, 

... fprime2=lambda x: 6 * x) 

>>> root 

1.0 

 

""" 

if tol <= 0: 

raise ValueError("tol too small (%g <= 0)" % tol) 

if maxiter < 1: 

raise ValueError("maxiter must be greater than 0") 

# Multiply by 1.0 to convert to floating point. We don't use float(x0) 

# so it still works if x0 is complex. 

p0 = 1.0 * x0 

if fprime is not None: 

# Newton-Rapheson method 

for iter in range(maxiter): 

fder = fprime(p0, *args) 

if fder == 0: 

msg = "derivative was zero." 

warnings.warn(msg, RuntimeWarning) 

return p0 

fval = func(p0, *args) 

newton_step = fval / fder 

if fprime2 is None: 

# Newton step 

p = p0 - newton_step 

else: 

fder2 = fprime2(p0, *args) 

# Halley's method 

p = p0 - newton_step / (1.0 - 0.5 * newton_step * fder2 / fder) 

if abs(p - p0) < tol: 

return p 

p0 = p 

else: 

# Secant method 

if x0 >= 0: 

p1 = x0*(1 + 1e-4) + 1e-4 

else: 

p1 = x0*(1 + 1e-4) - 1e-4 

q0 = func(p0, *args) 

q1 = func(p1, *args) 

for iter in range(maxiter): 

if q1 == q0: 

if p1 != p0: 

msg = "Tolerance of %s reached" % (p1 - p0) 

warnings.warn(msg, RuntimeWarning) 

return (p1 + p0)/2.0 

else: 

p = p1 - q1*(p1 - p0)/(q1 - q0) 

if abs(p - p1) < tol: 

return p 

p0 = p1 

q0 = q1 

p1 = p 

q1 = func(p1, *args) 

msg = "Failed to converge after %d iterations, value is %s" % (maxiter, p) 

raise RuntimeError(msg) 

 

 

def bisect(f, a, b, args=(), 

xtol=_xtol, rtol=_rtol, maxiter=_iter, 

full_output=False, disp=True): 

""" 

Find root of a function within an interval. 

 

Basic bisection routine to find a zero of the function `f` between the 

arguments `a` and `b`. `f(a)` and `f(b)` cannot have the same signs. 

Slow but sure. 

 

Parameters 

---------- 

f : function 

Python function returning a number. `f` must be continuous, and 

f(a) and f(b) must have opposite signs. 

a : number 

One end of the bracketing interval [a,b]. 

b : number 

The other end of the bracketing interval [a,b]. 

xtol : number, optional 

The computed root ``x0`` will satisfy ``np.allclose(x, x0, 

atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The 

parameter must be nonnegative. 

rtol : number, optional 

The computed root ``x0`` will satisfy ``np.allclose(x, x0, 

atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The 

parameter cannot be smaller than its default value of 

``4*np.finfo(float).eps``. 

maxiter : number, optional 

if convergence is not achieved in `maxiter` iterations, an error is 

raised. Must be >= 0. 

args : tuple, optional 

containing extra arguments for the function `f`. 

`f` is called by ``apply(f, (x)+args)``. 

full_output : bool, optional 

If `full_output` is False, the root is returned. If `full_output` is 

True, the return value is ``(x, r)``, where x is the root, and r is 

a `RootResults` object. 

disp : bool, optional 

If True, raise RuntimeError if the algorithm didn't converge. 

 

Returns 

------- 

x0 : float 

Zero of `f` between `a` and `b`. 

r : RootResults (present if ``full_output = True``) 

Object containing information about the convergence. In particular, 

``r.converged`` is True if the routine converged. 

 

Examples 

-------- 

 

>>> def f(x): 

... return (x**2 - 1) 

 

>>> from scipy import optimize 

 

>>> root = optimize.bisect(f, 0, 2) 

>>> root 

1.0 

 

>>> root = optimize.bisect(f, -2, 0) 

>>> root 

-1.0 

 

See Also 

-------- 

brentq, brenth, bisect, newton 

fixed_point : scalar fixed-point finder 

fsolve : n-dimensional root-finding 

 

""" 

if not isinstance(args, tuple): 

args = (args,) 

if xtol <= 0: 

raise ValueError("xtol too small (%g <= 0)" % xtol) 

if rtol < _rtol: 

raise ValueError("rtol too small (%g < %g)" % (rtol, _rtol)) 

r = _zeros._bisect(f,a,b,xtol,rtol,maxiter,args,full_output,disp) 

return results_c(full_output, r) 

 

 

def ridder(f, a, b, args=(), 

xtol=_xtol, rtol=_rtol, maxiter=_iter, 

full_output=False, disp=True): 

""" 

Find a root of a function in an interval. 

 

Parameters 

---------- 

f : function 

Python function returning a number. f must be continuous, and f(a) and 

f(b) must have opposite signs. 

a : number 

One end of the bracketing interval [a,b]. 

b : number 

The other end of the bracketing interval [a,b]. 

xtol : number, optional 

The computed root ``x0`` will satisfy ``np.allclose(x, x0, 

atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The 

parameter must be nonnegative. 

rtol : number, optional 

The computed root ``x0`` will satisfy ``np.allclose(x, x0, 

atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The 

parameter cannot be smaller than its default value of 

``4*np.finfo(float).eps``. 

maxiter : number, optional 

if convergence is not achieved in maxiter iterations, an error is 

raised. Must be >= 0. 

args : tuple, optional 

containing extra arguments for the function `f`. 

`f` is called by ``apply(f, (x)+args)``. 

full_output : bool, optional 

If `full_output` is False, the root is returned. If `full_output` is 

True, the return value is ``(x, r)``, where `x` is the root, and `r` is 

a RootResults object. 

disp : bool, optional 

If True, raise RuntimeError if the algorithm didn't converge. 

 

Returns 

------- 

x0 : float 

Zero of `f` between `a` and `b`. 

r : RootResults (present if ``full_output = True``) 

Object containing information about the convergence. 

In particular, ``r.converged`` is True if the routine converged. 

 

See Also 

-------- 

brentq, brenth, bisect, newton : one-dimensional root-finding 

fixed_point : scalar fixed-point finder 

 

Notes 

----- 

Uses [Ridders1979]_ method to find a zero of the function `f` between the 

arguments `a` and `b`. Ridders' method is faster than bisection, but not 

generally as fast as the Brent routines. [Ridders1979]_ provides the 

classic description and source of the algorithm. A description can also be 

found in any recent edition of Numerical Recipes. 

 

The routine used here diverges slightly from standard presentations in 

order to be a bit more careful of tolerance. 

 

Examples 

-------- 

 

>>> def f(x): 

... return (x**2 - 1) 

 

>>> from scipy import optimize 

 

>>> root = optimize.ridder(f, 0, 2) 

>>> root 

1.0 

 

>>> root = optimize.ridder(f, -2, 0) 

>>> root 

-1.0 

 

References 

---------- 

.. [Ridders1979] 

Ridders, C. F. J. "A New Algorithm for Computing a 

Single Root of a Real Continuous Function." 

IEEE Trans. Circuits Systems 26, 979-980, 1979. 

 

""" 

if not isinstance(args, tuple): 

args = (args,) 

if xtol <= 0: 

raise ValueError("xtol too small (%g <= 0)" % xtol) 

if rtol < _rtol: 

raise ValueError("rtol too small (%g < %g)" % (rtol, _rtol)) 

r = _zeros._ridder(f,a,b,xtol,rtol,maxiter,args,full_output,disp) 

return results_c(full_output, r) 

 

 

def brentq(f, a, b, args=(), 

xtol=_xtol, rtol=_rtol, maxiter=_iter, 

full_output=False, disp=True): 

""" 

Find a root of a function in a bracketing interval using Brent's method. 

 

Uses the classic Brent's method to find a zero of the function `f` on 

the sign changing interval [a , b]. Generally considered the best of the 

rootfinding routines here. It is a safe version of the secant method that 

uses inverse quadratic extrapolation. Brent's method combines root 

bracketing, interval bisection, and inverse quadratic interpolation. It is 

sometimes known as the van Wijngaarden-Dekker-Brent method. Brent (1973) 

claims convergence is guaranteed for functions computable within [a,b]. 

 

[Brent1973]_ provides the classic description of the algorithm. Another 

description can be found in a recent edition of Numerical Recipes, including 

[PressEtal1992]_. Another description is at 

http://mathworld.wolfram.com/BrentsMethod.html. It should be easy to 

understand the algorithm just by reading our code. Our code diverges a bit 

from standard presentations: we choose a different formula for the 

extrapolation step. 

 

Parameters 

---------- 

f : function 

Python function returning a number. The function :math:`f` 

must be continuous, and :math:`f(a)` and :math:`f(b)` must 

have opposite signs. 

a : number 

One end of the bracketing interval :math:`[a, b]`. 

b : number 

The other end of the bracketing interval :math:`[a, b]`. 

xtol : number, optional 

The computed root ``x0`` will satisfy ``np.allclose(x, x0, 

atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The 

parameter must be nonnegative. For nice functions, Brent's 

method will often satisfy the above condition with ``xtol/2`` 

and ``rtol/2``. [Brent1973]_ 

rtol : number, optional 

The computed root ``x0`` will satisfy ``np.allclose(x, x0, 

atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The 

parameter cannot be smaller than its default value of 

``4*np.finfo(float).eps``. For nice functions, Brent's 

method will often satisfy the above condition with ``xtol/2`` 

and ``rtol/2``. [Brent1973]_ 

maxiter : number, optional 

if convergence is not achieved in maxiter iterations, an error is 

raised. Must be >= 0. 

args : tuple, optional 

containing extra arguments for the function `f`. 

`f` is called by ``apply(f, (x)+args)``. 

full_output : bool, optional 

If `full_output` is False, the root is returned. If `full_output` is 

True, the return value is ``(x, r)``, where `x` is the root, and `r` is 

a RootResults object. 

disp : bool, optional 

If True, raise RuntimeError if the algorithm didn't converge. 

 

Returns 

------- 

x0 : float 

Zero of `f` between `a` and `b`. 

r : RootResults (present if ``full_output = True``) 

Object containing information about the convergence. In particular, 

``r.converged`` is True if the routine converged. 

 

See Also 

-------- 

multivariate local optimizers 

`fmin`, `fmin_powell`, `fmin_cg`, `fmin_bfgs`, `fmin_ncg` 

nonlinear least squares minimizer 

`leastsq` 

constrained multivariate optimizers 

`fmin_l_bfgs_b`, `fmin_tnc`, `fmin_cobyla` 

global optimizers 

`basinhopping`, `brute`, `differential_evolution` 

local scalar minimizers 

`fminbound`, `brent`, `golden`, `bracket` 

n-dimensional root-finding 

`fsolve` 

one-dimensional root-finding 

`brenth`, `ridder`, `bisect`, `newton` 

scalar fixed-point finder 

`fixed_point` 

 

Notes 

----- 

`f` must be continuous. f(a) and f(b) must have opposite signs. 

 

Examples 

-------- 

>>> def f(x): 

... return (x**2 - 1) 

 

>>> from scipy import optimize 

 

>>> root = optimize.brentq(f, -2, 0) 

>>> root 

-1.0 

 

>>> root = optimize.brentq(f, 0, 2) 

>>> root 

1.0 

 

References 

---------- 

.. [Brent1973] 

Brent, R. P., 

*Algorithms for Minimization Without Derivatives*. 

Englewood Cliffs, NJ: Prentice-Hall, 1973. Ch. 3-4. 

 

.. [PressEtal1992] 

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. 

*Numerical Recipes in FORTRAN: The Art of Scientific Computing*, 2nd ed. 

Cambridge, England: Cambridge University Press, pp. 352-355, 1992. 

Section 9.3: "Van Wijngaarden-Dekker-Brent Method." 

 

""" 

if not isinstance(args, tuple): 

args = (args,) 

if xtol <= 0: 

raise ValueError("xtol too small (%g <= 0)" % xtol) 

if rtol < _rtol: 

raise ValueError("rtol too small (%g < %g)" % (rtol, _rtol)) 

r = _zeros._brentq(f,a,b,xtol,rtol,maxiter,args,full_output,disp) 

return results_c(full_output, r) 

 

 

def brenth(f, a, b, args=(), 

xtol=_xtol, rtol=_rtol, maxiter=_iter, 

full_output=False, disp=True): 

"""Find root of f in [a,b]. 

 

A variation on the classic Brent routine to find a zero of the function f 

between the arguments a and b that uses hyperbolic extrapolation instead of 

inverse quadratic extrapolation. There was a paper back in the 1980's ... 

f(a) and f(b) cannot have the same signs. Generally on a par with the 

brent routine, but not as heavily tested. It is a safe version of the 

secant method that uses hyperbolic extrapolation. The version here is by 

Chuck Harris. 

 

Parameters 

---------- 

f : function 

Python function returning a number. f must be continuous, and f(a) and 

f(b) must have opposite signs. 

a : number 

One end of the bracketing interval [a,b]. 

b : number 

The other end of the bracketing interval [a,b]. 

xtol : number, optional 

The computed root ``x0`` will satisfy ``np.allclose(x, x0, 

atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The 

parameter must be nonnegative. As with `brentq`, for nice 

functions the method will often satisfy the above condition 

with ``xtol/2`` and ``rtol/2``. 

rtol : number, optional 

The computed root ``x0`` will satisfy ``np.allclose(x, x0, 

atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The 

parameter cannot be smaller than its default value of 

``4*np.finfo(float).eps``. As with `brentq`, for nice functions 

the method will often satisfy the above condition with 

``xtol/2`` and ``rtol/2``. 

maxiter : number, optional 

if convergence is not achieved in maxiter iterations, an error is 

raised. Must be >= 0. 

args : tuple, optional 

containing extra arguments for the function `f`. 

`f` is called by ``apply(f, (x)+args)``. 

full_output : bool, optional 

If `full_output` is False, the root is returned. If `full_output` is 

True, the return value is ``(x, r)``, where `x` is the root, and `r` is 

a RootResults object. 

disp : bool, optional 

If True, raise RuntimeError if the algorithm didn't converge. 

 

Returns 

------- 

x0 : float 

Zero of `f` between `a` and `b`. 

r : RootResults (present if ``full_output = True``) 

Object containing information about the convergence. In particular, 

``r.converged`` is True if the routine converged. 

 

Examples 

-------- 

>>> def f(x): 

... return (x**2 - 1) 

 

>>> from scipy import optimize 

 

>>> root = optimize.brenth(f, -2, 0) 

>>> root 

-1.0 

 

>>> root = optimize.brenth(f, 0, 2) 

>>> root 

1.0 

 

See Also 

-------- 

fmin, fmin_powell, fmin_cg, 

fmin_bfgs, fmin_ncg : multivariate local optimizers 

 

leastsq : nonlinear least squares minimizer 

 

fmin_l_bfgs_b, fmin_tnc, fmin_cobyla : constrained multivariate optimizers 

 

basinhopping, differential_evolution, brute : global optimizers 

 

fminbound, brent, golden, bracket : local scalar minimizers 

 

fsolve : n-dimensional root-finding 

 

brentq, brenth, ridder, bisect, newton : one-dimensional root-finding 

 

fixed_point : scalar fixed-point finder 

 

""" 

if not isinstance(args, tuple): 

args = (args,) 

if xtol <= 0: 

raise ValueError("xtol too small (%g <= 0)" % xtol) 

if rtol < _rtol: 

raise ValueError("rtol too small (%g < %g)" % (rtol, _rtol)) 

r = _zeros._brenth(f,a, b, xtol, rtol, maxiter, args, full_output, disp) 

return results_c(full_output, r)