# Author: Eric Larson # 2014
# These are definitions of linear shift register taps for use in max_len_seq() 9: [5], 10: [7], 11: [9], 12: [11, 10, 4], 13: [12, 11, 8], 14: [13, 12, 2], 15: [14], 16: [15, 13, 4], 17: [14], 18: [11], 19: [18, 17, 14], 20: [17], 21: [19], 22: [21], 23: [18], 24: [23, 22, 17], 25: [22], 26: [25, 24, 20], 27: [26, 25, 22], 28: [25], 29: [27], 30: [29, 28, 7], 31: [28], 32: [31, 30, 10]}
""" Maximum length sequence (MLS) generator.
Parameters ---------- nbits : int Number of bits to use. Length of the resulting sequence will be ``(2**nbits) - 1``. Note that generating long sequences (e.g., greater than ``nbits == 16``) can take a long time. state : array_like, optional If array, must be of length ``nbits``, and will be cast to binary (bool) representation. If None, a seed of ones will be used, producing a repeatable representation. If ``state`` is all zeros, an error is raised as this is invalid. Default: None. length : int, optional Number of samples to compute. If None, the entire length ``(2**nbits) - 1`` is computed. taps : array_like, optional Polynomial taps to use (e.g., ``[7, 6, 1]`` for an 8-bit sequence). If None, taps will be automatically selected (for up to ``nbits == 32``).
Returns ------- seq : array Resulting MLS sequence of 0's and 1's. state : array The final state of the shift register.
Notes ----- The algorithm for MLS generation is generically described in:
https://en.wikipedia.org/wiki/Maximum_length_sequence
The default values for taps are specifically taken from the first option listed for each value of ``nbits`` in:
http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm
.. versionadded:: 0.15.0
Examples -------- MLS uses binary convention:
>>> from scipy.signal import max_len_seq >>> max_len_seq(4)[0] array([1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0], dtype=int8)
MLS has a white spectrum (except for DC):
>>> import matplotlib.pyplot as plt >>> from numpy.fft import fft, ifft, fftshift, fftfreq >>> seq = max_len_seq(6)[0]*2-1 # +1 and -1 >>> spec = fft(seq) >>> N = len(seq) >>> plt.plot(fftshift(fftfreq(N)), fftshift(np.abs(spec)), '.-') >>> plt.margins(0.1, 0.1) >>> plt.grid(True) >>> plt.show()
Circular autocorrelation of MLS is an impulse:
>>> acorrcirc = ifft(spec * np.conj(spec)).real >>> plt.figure() >>> plt.plot(np.arange(-N/2+1, N/2+1), fftshift(acorrcirc), '.-') >>> plt.margins(0.1, 0.1) >>> plt.grid(True) >>> plt.show()
Linear autocorrelation of MLS is approximately an impulse:
>>> acorr = np.correlate(seq, seq, 'full') >>> plt.figure() >>> plt.plot(np.arange(-N+1, N), acorr, '.-') >>> plt.margins(0.1, 0.1) >>> plt.grid(True) >>> plt.show()
""" if taps is None: if nbits not in _mls_taps: known_taps = np.array(list(_mls_taps.keys())) raise ValueError('nbits must be between %s and %s if taps is None' % (known_taps.min(), known_taps.max())) taps = np.array(_mls_taps[nbits], np.intp) else: taps = np.unique(np.array(taps, np.intp))[::-1] if np.any(taps < 0) or np.any(taps > nbits) or taps.size < 1: raise ValueError('taps must be non-empty with values between ' 'zero and nbits (inclusive)') taps = np.ascontiguousarray(taps) # needed for Cython n_max = (2**nbits) - 1 if length is None: length = n_max else: length = int(length) if length < 0: raise ValueError('length must be greater than or equal to 0') # We use int8 instead of bool here because numpy arrays of bools # don't seem to work nicely with Cython if state is None: state = np.ones(nbits, dtype=np.int8, order='c') else: # makes a copy if need be, ensuring it's 0's and 1's state = np.array(state, dtype=bool, order='c').astype(np.int8) if state.ndim != 1 or state.size != nbits: raise ValueError('state must be a 1-dimensional array of size nbits') if np.all(state == 0): raise ValueError('state must not be all zeros')
seq = np.empty(length, dtype=np.int8, order='c') state = _max_len_seq_inner(taps, state, nbits, length, seq) return seq, state |