1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

# -*- coding: utf-8 -*- 

"""Functions for FIR filter design.""" 

from __future__ import division, print_function, absolute_import 

 

from math import ceil, log 

import warnings 

 

import numpy as np 

from numpy.fft import irfft, fft, ifft 

from scipy.special import sinc 

from scipy.linalg import toeplitz, hankel, pinv 

from scipy._lib.six import string_types 

 

from . import sigtools 

 

__all__ = ['kaiser_beta', 'kaiser_atten', 'kaiserord', 

'firwin', 'firwin2', 'remez', 'firls', 'minimum_phase'] 

 

 

def _get_fs(fs, nyq): 

""" 

Utility for replacing the argument 'nyq' (with default 1) with 'fs'. 

""" 

if nyq is None and fs is None: 

fs = 2 

elif nyq is not None: 

if fs is not None: 

raise ValueError("Values cannot be given for both 'nyq' and 'fs'.") 

fs = 2*nyq 

return fs 

 

 

# Some notes on function parameters: 

# 

# `cutoff` and `width` are given as numbers between 0 and 1. These are 

# relative frequencies, expressed as a fraction of the Nyquist frequency. 

# For example, if the Nyquist frequency is 2 KHz, then width=0.15 is a width 

# of 300 Hz. 

# 

# The `order` of a FIR filter is one less than the number of taps. 

# This is a potential source of confusion, so in the following code, 

# we will always use the number of taps as the parameterization of 

# the 'size' of the filter. The "number of taps" means the number 

# of coefficients, which is the same as the length of the impulse 

# response of the filter. 

 

 

def kaiser_beta(a): 

"""Compute the Kaiser parameter `beta`, given the attenuation `a`. 

 

Parameters 

---------- 

a : float 

The desired attenuation in the stopband and maximum ripple in 

the passband, in dB. This should be a *positive* number. 

 

Returns 

------- 

beta : float 

The `beta` parameter to be used in the formula for a Kaiser window. 

 

References 

---------- 

Oppenheim, Schafer, "Discrete-Time Signal Processing", p.475-476. 

 

Examples 

-------- 

Suppose we want to design a lowpass filter, with 65 dB attenuation 

in the stop band. The Kaiser window parameter to be used in the 

window method is computed by `kaiser_beta(65)`: 

 

>>> from scipy.signal import kaiser_beta 

>>> kaiser_beta(65) 

6.20426 

 

""" 

if a > 50: 

beta = 0.1102 * (a - 8.7) 

elif a > 21: 

beta = 0.5842 * (a - 21) ** 0.4 + 0.07886 * (a - 21) 

else: 

beta = 0.0 

return beta 

 

 

def kaiser_atten(numtaps, width): 

"""Compute the attenuation of a Kaiser FIR filter. 

 

Given the number of taps `N` and the transition width `width`, compute the 

attenuation `a` in dB, given by Kaiser's formula: 

 

a = 2.285 * (N - 1) * pi * width + 7.95 

 

Parameters 

---------- 

numtaps : int 

The number of taps in the FIR filter. 

width : float 

The desired width of the transition region between passband and 

stopband (or, in general, at any discontinuity) for the filter, 

expressed as a fraction of the Nyquist frequency. 

 

Returns 

------- 

a : float 

The attenuation of the ripple, in dB. 

 

See Also 

-------- 

kaiserord, kaiser_beta 

 

Examples 

-------- 

Suppose we want to design a FIR filter using the Kaiser window method 

that will have 211 taps and a transition width of 9 Hz for a signal that 

is sampled at 480 Hz. Expressed as a fraction of the Nyquist frequency, 

the width is 9/(0.5*480) = 0.0375. The approximate attenuation (in dB) 

is computed as follows: 

 

>>> from scipy.signal import kaiser_atten 

>>> kaiser_atten(211, 0.0375) 

64.48099630593983 

 

""" 

a = 2.285 * (numtaps - 1) * np.pi * width + 7.95 

return a 

 

 

def kaiserord(ripple, width): 

""" 

Determine the filter window parameters for the Kaiser window method. 

 

The parameters returned by this function are generally used to create 

a finite impulse response filter using the window method, with either 

`firwin` or `firwin2`. 

 

Parameters 

---------- 

ripple : float 

Upper bound for the deviation (in dB) of the magnitude of the 

filter's frequency response from that of the desired filter (not 

including frequencies in any transition intervals). That is, if w 

is the frequency expressed as a fraction of the Nyquist frequency, 

A(w) is the actual frequency response of the filter and D(w) is the 

desired frequency response, the design requirement is that:: 

 

abs(A(w) - D(w))) < 10**(-ripple/20) 

 

for 0 <= w <= 1 and w not in a transition interval. 

width : float 

Width of transition region, normalized so that 1 corresponds to pi 

radians / sample. That is, the frequency is expressed as a fraction 

of the Nyquist frequency. 

 

Returns 

------- 

numtaps : int 

The length of the Kaiser window. 

beta : float 

The beta parameter for the Kaiser window. 

 

See Also 

-------- 

kaiser_beta, kaiser_atten 

 

Notes 

----- 

There are several ways to obtain the Kaiser window: 

 

- ``signal.kaiser(numtaps, beta, sym=True)`` 

- ``signal.get_window(beta, numtaps)`` 

- ``signal.get_window(('kaiser', beta), numtaps)`` 

 

The empirical equations discovered by Kaiser are used. 

 

References 

---------- 

Oppenheim, Schafer, "Discrete-Time Signal Processing", p.475-476. 

 

Examples 

-------- 

We will use the Kaiser window method to design a lowpass FIR filter 

for a signal that is sampled at 1000 Hz. 

 

We want at least 65 dB rejection in the stop band, and in the pass 

band the gain should vary no more than 0.5%. 

 

We want a cutoff frequency of 175 Hz, with a transition between the 

pass band and the stop band of 24 Hz. That is, in the band [0, 163], 

the gain varies no more than 0.5%, and in the band [187, 500], the 

signal is attenuated by at least 65 dB. 

 

>>> from scipy.signal import kaiserord, firwin, freqz 

>>> import matplotlib.pyplot as plt 

>>> fs = 1000.0 

>>> cutoff = 175 

>>> width = 24 

 

The Kaiser method accepts just a single parameter to control the pass 

band ripple and the stop band rejection, so we use the more restrictive 

of the two. In this case, the pass band ripple is 0.005, or 46.02 dB, 

so we will use 65 dB as the design parameter. 

 

Use `kaiserord` to determine the length of the filter and the 

parameter for the Kaiser window. 

 

>>> numtaps, beta = kaiserord(65, width/(0.5*fs)) 

>>> numtaps 

167 

>>> beta 

6.20426 

 

Use `firwin` to create the FIR filter. 

 

>>> taps = firwin(numtaps, cutoff, window=('kaiser', beta), 

... scale=False, nyq=0.5*fs) 

 

Compute the frequency response of the filter. ``w`` is the array of 

frequencies, and ``h`` is the corresponding complex array of frequency 

responses. 

 

>>> w, h = freqz(taps, worN=8000) 

>>> w *= 0.5*fs/np.pi # Convert w to Hz. 

 

Compute the deviation of the magnitude of the filter's response from 

that of the ideal lowpass filter. Values in the transition region are 

set to ``nan``, so they won't appear in the plot. 

 

>>> ideal = w < cutoff # The "ideal" frequency response. 

>>> deviation = np.abs(np.abs(h) - ideal) 

>>> deviation[(w > cutoff - 0.5*width) & (w < cutoff + 0.5*width)] = np.nan 

 

Plot the deviation. A close look at the left end of the stop band shows 

that the requirement for 65 dB attenuation is violated in the first lobe 

by about 0.125 dB. This is not unusual for the Kaiser window method. 

 

>>> plt.plot(w, 20*np.log10(np.abs(deviation))) 

>>> plt.xlim(0, 0.5*fs) 

>>> plt.ylim(-90, -60) 

>>> plt.grid(alpha=0.25) 

>>> plt.axhline(-65, color='r', ls='--', alpha=0.3) 

>>> plt.xlabel('Frequency (Hz)') 

>>> plt.ylabel('Deviation from ideal (dB)') 

>>> plt.title('Lowpass Filter Frequency Response') 

>>> plt.show() 

 

""" 

A = abs(ripple) # in case somebody is confused as to what's meant 

if A < 8: 

# Formula for N is not valid in this range. 

raise ValueError("Requested maximum ripple attentuation %f is too " 

"small for the Kaiser formula." % A) 

beta = kaiser_beta(A) 

 

# Kaiser's formula (as given in Oppenheim and Schafer) is for the filter 

# order, so we have to add 1 to get the number of taps. 

numtaps = (A - 7.95) / 2.285 / (np.pi * width) + 1 

 

return int(ceil(numtaps)), beta 

 

 

def firwin(numtaps, cutoff, width=None, window='hamming', pass_zero=True, 

scale=True, nyq=None, fs=None): 

""" 

FIR filter design using the window method. 

 

This function computes the coefficients of a finite impulse response 

filter. The filter will have linear phase; it will be Type I if 

`numtaps` is odd and Type II if `numtaps` is even. 

 

Type II filters always have zero response at the Nyquist frequency, so a 

ValueError exception is raised if firwin is called with `numtaps` even and 

having a passband whose right end is at the Nyquist frequency. 

 

Parameters 

---------- 

numtaps : int 

Length of the filter (number of coefficients, i.e. the filter 

order + 1). `numtaps` must be even if a passband includes the 

Nyquist frequency. 

cutoff : float or 1D array_like 

Cutoff frequency of filter (expressed in the same units as `nyq`) 

OR an array of cutoff frequencies (that is, band edges). In the 

latter case, the frequencies in `cutoff` should be positive and 

monotonically increasing between 0 and `nyq`. The values 0 and 

`nyq` must not be included in `cutoff`. 

width : float or None, optional 

If `width` is not None, then assume it is the approximate width 

of the transition region (expressed in the same units as `nyq`) 

for use in Kaiser FIR filter design. In this case, the `window` 

argument is ignored. 

window : string or tuple of string and parameter values, optional 

Desired window to use. See `scipy.signal.get_window` for a list 

of windows and required parameters. 

pass_zero : bool, optional 

If True, the gain at the frequency 0 (i.e. the "DC gain") is 1. 

Otherwise the DC gain is 0. 

scale : bool, optional 

Set to True to scale the coefficients so that the frequency 

response is exactly unity at a certain frequency. 

That frequency is either: 

 

- 0 (DC) if the first passband starts at 0 (i.e. pass_zero 

is True) 

- `nyq` (the Nyquist frequency) if the first passband ends at 

`nyq` (i.e the filter is a single band highpass filter); 

center of first passband otherwise 

 

nyq : float, optional 

*Deprecated. Use `fs` instead.* This is the Nyquist frequency. 

Each frequency in `cutoff` must be between 0 and `nyq`. Default 

is 1. 

fs : float, optional 

The sampling frequency of the signal. Each frequency in `cutoff` 

must be between 0 and ``fs/2``. Default is 2. 

 

Returns 

------- 

h : (numtaps,) ndarray 

Coefficients of length `numtaps` FIR filter. 

 

Raises 

------ 

ValueError 

If any value in `cutoff` is less than or equal to 0 or greater 

than or equal to ``fs/2``, if the values in `cutoff` are not strictly 

monotonically increasing, or if `numtaps` is even but a passband 

includes the Nyquist frequency. 

 

See Also 

-------- 

firwin2 

firls 

minimum_phase 

remez 

 

Examples 

-------- 

Low-pass from 0 to f: 

 

>>> from scipy import signal 

>>> numtaps = 3 

>>> f = 0.1 

>>> signal.firwin(numtaps, f) 

array([ 0.06799017, 0.86401967, 0.06799017]) 

 

Use a specific window function: 

 

>>> signal.firwin(numtaps, f, window='nuttall') 

array([ 3.56607041e-04, 9.99286786e-01, 3.56607041e-04]) 

 

High-pass ('stop' from 0 to f): 

 

>>> signal.firwin(numtaps, f, pass_zero=False) 

array([-0.00859313, 0.98281375, -0.00859313]) 

 

Band-pass: 

 

>>> f1, f2 = 0.1, 0.2 

>>> signal.firwin(numtaps, [f1, f2], pass_zero=False) 

array([ 0.06301614, 0.88770441, 0.06301614]) 

 

Band-stop: 

 

>>> signal.firwin(numtaps, [f1, f2]) 

array([-0.00801395, 1.0160279 , -0.00801395]) 

 

Multi-band (passbands are [0, f1], [f2, f3] and [f4, 1]): 

 

>>> f3, f4 = 0.3, 0.4 

>>> signal.firwin(numtaps, [f1, f2, f3, f4]) 

array([-0.01376344, 1.02752689, -0.01376344]) 

 

Multi-band (passbands are [f1, f2] and [f3,f4]): 

 

>>> signal.firwin(numtaps, [f1, f2, f3, f4], pass_zero=False) 

array([ 0.04890915, 0.91284326, 0.04890915]) 

 

""" 

# The major enhancements to this function added in November 2010 were 

# developed by Tom Krauss (see ticket #902). 

 

nyq = 0.5 * _get_fs(fs, nyq) 

 

cutoff = np.atleast_1d(cutoff) / float(nyq) 

 

# Check for invalid input. 

if cutoff.ndim > 1: 

raise ValueError("The cutoff argument must be at most " 

"one-dimensional.") 

if cutoff.size == 0: 

raise ValueError("At least one cutoff frequency must be given.") 

if cutoff.min() <= 0 or cutoff.max() >= 1: 

raise ValueError("Invalid cutoff frequency: frequencies must be " 

"greater than 0 and less than fs/2.") 

if np.any(np.diff(cutoff) <= 0): 

raise ValueError("Invalid cutoff frequencies: the frequencies " 

"must be strictly increasing.") 

 

if width is not None: 

# A width was given. Find the beta parameter of the Kaiser window 

# and set `window`. This overrides the value of `window` passed in. 

atten = kaiser_atten(numtaps, float(width) / nyq) 

beta = kaiser_beta(atten) 

window = ('kaiser', beta) 

 

pass_nyquist = bool(cutoff.size & 1) ^ pass_zero 

if pass_nyquist and numtaps % 2 == 0: 

raise ValueError("A filter with an even number of coefficients must " 

"have zero response at the Nyquist frequency.") 

 

# Insert 0 and/or 1 at the ends of cutoff so that the length of cutoff 

# is even, and each pair in cutoff corresponds to passband. 

cutoff = np.hstack(([0.0] * pass_zero, cutoff, [1.0] * pass_nyquist)) 

 

# `bands` is a 2D array; each row gives the left and right edges of 

# a passband. 

bands = cutoff.reshape(-1, 2) 

 

# Build up the coefficients. 

alpha = 0.5 * (numtaps - 1) 

m = np.arange(0, numtaps) - alpha 

h = 0 

for left, right in bands: 

h += right * sinc(right * m) 

h -= left * sinc(left * m) 

 

# Get and apply the window function. 

from .signaltools import get_window 

win = get_window(window, numtaps, fftbins=False) 

h *= win 

 

# Now handle scaling if desired. 

if scale: 

# Get the first passband. 

left, right = bands[0] 

if left == 0: 

scale_frequency = 0.0 

elif right == 1: 

scale_frequency = 1.0 

else: 

scale_frequency = 0.5 * (left + right) 

c = np.cos(np.pi * m * scale_frequency) 

s = np.sum(h * c) 

h /= s 

 

return h 

 

 

# Original version of firwin2 from scipy ticket #457, submitted by "tash". 

# 

# Rewritten by Warren Weckesser, 2010. 

 

def firwin2(numtaps, freq, gain, nfreqs=None, window='hamming', nyq=None, 

antisymmetric=False, fs=None): 

""" 

FIR filter design using the window method. 

 

From the given frequencies `freq` and corresponding gains `gain`, 

this function constructs an FIR filter with linear phase and 

(approximately) the given frequency response. 

 

Parameters 

---------- 

numtaps : int 

The number of taps in the FIR filter. `numtaps` must be less than 

`nfreqs`. 

freq : array_like, 1D 

The frequency sampling points. Typically 0.0 to 1.0 with 1.0 being 

Nyquist. The Nyquist frequency is half `fs`. 

The values in `freq` must be nondecreasing. A value can be repeated 

once to implement a discontinuity. The first value in `freq` must 

be 0, and the last value must be ``fs/2``. 

gain : array_like 

The filter gains at the frequency sampling points. Certain 

constraints to gain values, depending on the filter type, are applied, 

see Notes for details. 

nfreqs : int, optional 

The size of the interpolation mesh used to construct the filter. 

For most efficient behavior, this should be a power of 2 plus 1 

(e.g, 129, 257, etc). The default is one more than the smallest 

power of 2 that is not less than `numtaps`. `nfreqs` must be greater 

than `numtaps`. 

window : string or (string, float) or float, or None, optional 

Window function to use. Default is "hamming". See 

`scipy.signal.get_window` for the complete list of possible values. 

If None, no window function is applied. 

nyq : float, optional 

*Deprecated. Use `fs` instead.* This is the Nyquist frequency. 

Each frequency in `freq` must be between 0 and `nyq`. Default is 1. 

antisymmetric : bool, optional 

Whether resulting impulse response is symmetric/antisymmetric. 

See Notes for more details. 

fs : float, optional 

The sampling frequency of the signal. Each frequency in `cutoff` 

must be between 0 and ``fs/2``. Default is 2. 

 

Returns 

------- 

taps : ndarray 

The filter coefficients of the FIR filter, as a 1-D array of length 

`numtaps`. 

 

See also 

-------- 

firls 

firwin 

minimum_phase 

remez 

 

Notes 

----- 

From the given set of frequencies and gains, the desired response is 

constructed in the frequency domain. The inverse FFT is applied to the 

desired response to create the associated convolution kernel, and the 

first `numtaps` coefficients of this kernel, scaled by `window`, are 

returned. 

 

The FIR filter will have linear phase. The type of filter is determined by 

the value of 'numtaps` and `antisymmetric` flag. 

There are four possible combinations: 

 

- odd `numtaps`, `antisymmetric` is False, type I filter is produced 

- even `numtaps`, `antisymmetric` is False, type II filter is produced 

- odd `numtaps`, `antisymmetric` is True, type III filter is produced 

- even `numtaps`, `antisymmetric` is True, type IV filter is produced 

 

Magnitude response of all but type I filters are subjects to following 

constraints: 

 

- type II -- zero at the Nyquist frequency 

- type III -- zero at zero and Nyquist frequencies 

- type IV -- zero at zero frequency 

 

.. versionadded:: 0.9.0 

 

References 

---------- 

.. [1] Oppenheim, A. V. and Schafer, R. W., "Discrete-Time Signal 

Processing", Prentice-Hall, Englewood Cliffs, New Jersey (1989). 

(See, for example, Section 7.4.) 

 

.. [2] Smith, Steven W., "The Scientist and Engineer's Guide to Digital 

Signal Processing", Ch. 17. http://www.dspguide.com/ch17/1.htm 

 

Examples 

-------- 

A lowpass FIR filter with a response that is 1 on [0.0, 0.5], and 

that decreases linearly on [0.5, 1.0] from 1 to 0: 

 

>>> from scipy import signal 

>>> taps = signal.firwin2(150, [0.0, 0.5, 1.0], [1.0, 1.0, 0.0]) 

>>> print(taps[72:78]) 

[-0.02286961 -0.06362756 0.57310236 0.57310236 -0.06362756 -0.02286961] 

 

""" 

nyq = 0.5 * _get_fs(fs, nyq) 

 

if len(freq) != len(gain): 

raise ValueError('freq and gain must be of same length.') 

 

if nfreqs is not None and numtaps >= nfreqs: 

raise ValueError(('ntaps must be less than nfreqs, but firwin2 was ' 

'called with ntaps=%d and nfreqs=%s') % 

(numtaps, nfreqs)) 

 

if freq[0] != 0 or freq[-1] != nyq: 

raise ValueError('freq must start with 0 and end with fs/2.') 

d = np.diff(freq) 

if (d < 0).any(): 

raise ValueError('The values in freq must be nondecreasing.') 

d2 = d[:-1] + d[1:] 

if (d2 == 0).any(): 

raise ValueError('A value in freq must not occur more than twice.') 

 

if antisymmetric: 

if numtaps % 2 == 0: 

ftype = 4 

else: 

ftype = 3 

else: 

if numtaps % 2 == 0: 

ftype = 2 

else: 

ftype = 1 

 

if ftype == 2 and gain[-1] != 0.0: 

raise ValueError("A Type II filter must have zero gain at the " 

"Nyquist frequency.") 

elif ftype == 3 and (gain[0] != 0.0 or gain[-1] != 0.0): 

raise ValueError("A Type III filter must have zero gain at zero " 

"and Nyquist frequencies.") 

elif ftype == 4 and gain[0] != 0.0: 

raise ValueError("A Type IV filter must have zero gain at zero " 

"frequency.") 

 

if nfreqs is None: 

nfreqs = 1 + 2 ** int(ceil(log(numtaps, 2))) 

 

# Tweak any repeated values in freq so that interp works. 

eps = np.finfo(float).eps 

for k in range(len(freq)): 

if k < len(freq) - 1 and freq[k] == freq[k + 1]: 

freq[k] = freq[k] - eps 

freq[k + 1] = freq[k + 1] + eps 

 

# Linearly interpolate the desired response on a uniform mesh `x`. 

x = np.linspace(0.0, nyq, nfreqs) 

fx = np.interp(x, freq, gain) 

 

# Adjust the phases of the coefficients so that the first `ntaps` of the 

# inverse FFT are the desired filter coefficients. 

shift = np.exp(-(numtaps - 1) / 2. * 1.j * np.pi * x / nyq) 

if ftype > 2: 

shift *= 1j 

 

fx2 = fx * shift 

 

# Use irfft to compute the inverse FFT. 

out_full = irfft(fx2) 

 

if window is not None: 

# Create the window to apply to the filter coefficients. 

from .signaltools import get_window 

wind = get_window(window, numtaps, fftbins=False) 

else: 

wind = 1 

 

# Keep only the first `numtaps` coefficients in `out`, and multiply by 

# the window. 

out = out_full[:numtaps] * wind 

 

if ftype == 3: 

out[out.size // 2] = 0.0 

 

return out 

 

 

def remez(numtaps, bands, desired, weight=None, Hz=None, type='bandpass', 

maxiter=25, grid_density=16, fs=None): 

""" 

Calculate the minimax optimal filter using the Remez exchange algorithm. 

 

Calculate the filter-coefficients for the finite impulse response 

(FIR) filter whose transfer function minimizes the maximum error 

between the desired gain and the realized gain in the specified 

frequency bands using the Remez exchange algorithm. 

 

Parameters 

---------- 

numtaps : int 

The desired number of taps in the filter. The number of taps is 

the number of terms in the filter, or the filter order plus one. 

bands : array_like 

A monotonic sequence containing the band edges. 

All elements must be non-negative and less than half the sampling 

frequency as given by `fs`. 

desired : array_like 

A sequence half the size of bands containing the desired gain 

in each of the specified bands. 

weight : array_like, optional 

A relative weighting to give to each band region. The length of 

`weight` has to be half the length of `bands`. 

Hz : scalar, optional 

*Deprecated. Use `fs` instead.* 

The sampling frequency in Hz. Default is 1. 

type : {'bandpass', 'differentiator', 'hilbert'}, optional 

The type of filter: 

 

* 'bandpass' : flat response in bands. This is the default. 

 

* 'differentiator' : frequency proportional response in bands. 

 

* 'hilbert' : filter with odd symmetry, that is, type III 

(for even order) or type IV (for odd order) 

linear phase filters. 

 

maxiter : int, optional 

Maximum number of iterations of the algorithm. Default is 25. 

grid_density : int, optional 

Grid density. The dense grid used in `remez` is of size 

``(numtaps + 1) * grid_density``. Default is 16. 

fs : float, optional 

The sampling frequency of the signal. Default is 1. 

 

Returns 

------- 

out : ndarray 

A rank-1 array containing the coefficients of the optimal 

(in a minimax sense) filter. 

 

See Also 

-------- 

firls 

firwin 

firwin2 

minimum_phase 

 

References 

---------- 

.. [1] J. H. McClellan and T. W. Parks, "A unified approach to the 

design of optimum FIR linear phase digital filters", 

IEEE Trans. Circuit Theory, vol. CT-20, pp. 697-701, 1973. 

.. [2] J. H. McClellan, T. W. Parks and L. R. Rabiner, "A Computer 

Program for Designing Optimum FIR Linear Phase Digital 

Filters", IEEE Trans. Audio Electroacoust., vol. AU-21, 

pp. 506-525, 1973. 

 

Examples 

-------- 

For a signal sampled at 100 Hz, we want to construct a filter with a 

passband at 20-40 Hz, and stop bands at 0-10 Hz and 45-50 Hz. Note that 

this means that the behavior in the frequency ranges between those bands 

is unspecified and may overshoot. 

 

>>> from scipy import signal 

>>> fs = 100 

>>> bpass = signal.remez(72, [0, 10, 20, 40, 45, 50], [0, 1, 0], fs=fs) 

>>> freq, response = signal.freqz(bpass) 

 

>>> import matplotlib.pyplot as plt 

>>> plt.semilogy(0.5*fs*freq/np.pi, np.abs(response), 'b-') 

>>> plt.grid(alpha=0.25) 

>>> plt.xlabel('Frequency (Hz)') 

>>> plt.ylabel('Gain') 

>>> plt.show() 

 

""" 

if Hz is None and fs is None: 

fs = 1.0 

elif Hz is not None: 

if fs is not None: 

raise ValueError("Values cannot be given for both 'Hz' and 'fs'.") 

fs = Hz 

 

# Convert type 

try: 

tnum = {'bandpass': 1, 'differentiator': 2, 'hilbert': 3}[type] 

except KeyError: 

raise ValueError("Type must be 'bandpass', 'differentiator', " 

"or 'hilbert'") 

 

# Convert weight 

if weight is None: 

weight = [1] * len(desired) 

 

bands = np.asarray(bands).copy() 

return sigtools._remez(numtaps, bands, desired, weight, tnum, fs, 

maxiter, grid_density) 

 

 

def firls(numtaps, bands, desired, weight=None, nyq=None, fs=None): 

""" 

FIR filter design using least-squares error minimization. 

 

Calculate the filter coefficients for the linear-phase finite 

impulse response (FIR) filter which has the best approximation 

to the desired frequency response described by `bands` and 

`desired` in the least squares sense (i.e., the integral of the 

weighted mean-squared error within the specified bands is 

minimized). 

 

Parameters 

---------- 

numtaps : int 

The number of taps in the FIR filter. `numtaps` must be odd. 

bands : array_like 

A monotonic nondecreasing sequence containing the band edges in 

Hz. All elements must be non-negative and less than or equal to 

the Nyquist frequency given by `nyq`. 

desired : array_like 

A sequence the same size as `bands` containing the desired gain 

at the start and end point of each band. 

weight : array_like, optional 

A relative weighting to give to each band region when solving 

the least squares problem. `weight` has to be half the size of 

`bands`. 

nyq : float, optional 

*Deprecated. Use `fs` instead.* 

Nyquist frequency. Each frequency in `bands` must be between 0 

and `nyq` (inclusive). Default is 1. 

fs : float, optional 

The sampling frequency of the signal. Each frequency in `bands` 

must be between 0 and ``fs/2`` (inclusive). Default is 2. 

 

Returns 

------- 

coeffs : ndarray 

Coefficients of the optimal (in a least squares sense) FIR filter. 

 

See also 

-------- 

firwin 

firwin2 

minimum_phase 

remez 

 

Notes 

----- 

This implementation follows the algorithm given in [1]_. 

As noted there, least squares design has multiple advantages: 

 

1. Optimal in a least-squares sense. 

2. Simple, non-iterative method. 

3. The general solution can obtained by solving a linear 

system of equations. 

4. Allows the use of a frequency dependent weighting function. 

 

This function constructs a Type I linear phase FIR filter, which 

contains an odd number of `coeffs` satisfying for :math:`n < numtaps`: 

 

.. math:: coeffs(n) = coeffs(numtaps - 1 - n) 

 

The odd number of coefficients and filter symmetry avoid boundary 

conditions that could otherwise occur at the Nyquist and 0 frequencies 

(e.g., for Type II, III, or IV variants). 

 

.. versionadded:: 0.18 

 

References 

---------- 

.. [1] Ivan Selesnick, Linear-Phase Fir Filter Design By Least Squares. 

OpenStax CNX. Aug 9, 2005. 

http://cnx.org/contents/eb1ecb35-03a9-4610-ba87-41cd771c95f2@7 

 

Examples 

-------- 

We want to construct a band-pass filter. Note that the behavior in the 

frequency ranges between our stop bands and pass bands is unspecified, 

and thus may overshoot depending on the parameters of our filter: 

 

>>> from scipy import signal 

>>> import matplotlib.pyplot as plt 

>>> fig, axs = plt.subplots(2) 

>>> fs = 10.0 # Hz 

>>> desired = (0, 0, 1, 1, 0, 0) 

>>> for bi, bands in enumerate(((0, 1, 2, 3, 4, 5), (0, 1, 2, 4, 4.5, 5))): 

... fir_firls = signal.firls(73, bands, desired, fs=fs) 

... fir_remez = signal.remez(73, bands, desired[::2], fs=fs) 

... fir_firwin2 = signal.firwin2(73, bands, desired, fs=fs) 

... hs = list() 

... ax = axs[bi] 

... for fir in (fir_firls, fir_remez, fir_firwin2): 

... freq, response = signal.freqz(fir) 

... hs.append(ax.semilogy(0.5*fs*freq/np.pi, np.abs(response))[0]) 

... for band, gains in zip(zip(bands[::2], bands[1::2]), 

... zip(desired[::2], desired[1::2])): 

... ax.semilogy(band, np.maximum(gains, 1e-7), 'k--', linewidth=2) 

... if bi == 0: 

... ax.legend(hs, ('firls', 'remez', 'firwin2'), 

... loc='lower center', frameon=False) 

... else: 

... ax.set_xlabel('Frequency (Hz)') 

... ax.grid(True) 

... ax.set(title='Band-pass %d-%d Hz' % bands[2:4], ylabel='Magnitude') 

... 

>>> fig.tight_layout() 

>>> plt.show() 

 

""" # noqa 

nyq = 0.5 * _get_fs(fs, nyq) 

 

numtaps = int(numtaps) 

if numtaps % 2 == 0 or numtaps < 1: 

raise ValueError("numtaps must be odd and >= 1") 

M = (numtaps-1) // 2 

 

# normalize bands 0->1 and make it 2 columns 

nyq = float(nyq) 

if nyq <= 0: 

raise ValueError('nyq must be positive, got %s <= 0.' % nyq) 

bands = np.asarray(bands).flatten() / nyq 

if len(bands) % 2 != 0: 

raise ValueError("bands must contain frequency pairs.") 

bands.shape = (-1, 2) 

 

# check remaining params 

desired = np.asarray(desired).flatten() 

if bands.size != desired.size: 

raise ValueError("desired must have one entry per frequency, got %s " 

"gains for %s frequencies." 

% (desired.size, bands.size)) 

desired.shape = (-1, 2) 

if (np.diff(bands) <= 0).any() or (np.diff(bands[:, 0]) < 0).any(): 

raise ValueError("bands must be monotonically nondecreasing and have " 

"width > 0.") 

if (bands[:-1, 1] > bands[1:, 0]).any(): 

raise ValueError("bands must not overlap.") 

if (desired < 0).any(): 

raise ValueError("desired must be non-negative.") 

if weight is None: 

weight = np.ones(len(desired)) 

weight = np.asarray(weight).flatten() 

if len(weight) != len(desired): 

raise ValueError("weight must be the same size as the number of " 

"band pairs (%s)." % (len(bands),)) 

if (weight < 0).any(): 

raise ValueError("weight must be non-negative.") 

 

# Set up the linear matrix equation to be solved, Qa = b 

 

# We can express Q(k,n) = 0.5 Q1(k,n) + 0.5 Q2(k,n) 

# where Q1(k,n)=q(k−n) and Q2(k,n)=q(k+n), i.e. a Toeplitz plus Hankel. 

 

# We omit the factor of 0.5 above, instead adding it during coefficient 

# calculation. 

 

# We also omit the 1/π from both Q and b equations, as they cancel 

# during solving. 

 

# We have that: 

# q(n) = 1/π ∫W(ω)cos(nω)dω (over 0->π) 

# Using our nomalization ω=πf and with a constant weight W over each 

# interval f1->f2 we get: 

# q(n) = W∫cos(πnf)df (0->1) = Wf sin(πnf)/πnf 

# integrated over each f1->f2 pair (i.e., value at f2 - value at f1). 

n = np.arange(numtaps)[:, np.newaxis, np.newaxis] 

q = np.dot(np.diff(np.sinc(bands * n) * bands, axis=2)[:, :, 0], weight) 

 

# Now we assemble our sum of Toeplitz and Hankel 

Q1 = toeplitz(q[:M+1]) 

Q2 = hankel(q[:M+1], q[M:]) 

Q = Q1 + Q2 

 

# Now for b(n) we have that: 

# b(n) = 1/π ∫ W(ω)D(ω)cos(nω)dω (over 0->π) 

# Using our normalization ω=πf and with a constant weight W over each 

# interval and a linear term for D(ω) we get (over each f1->f2 interval): 

# b(n) = W ∫ (mf+c)cos(πnf)df 

# = f(mf+c)sin(πnf)/πnf + mf**2 cos(nπf)/(πnf)**2 

# integrated over each f1->f2 pair (i.e., value at f2 - value at f1). 

n = n[:M + 1] # only need this many coefficients here 

# Choose m and c such that we are at the start and end weights 

m = (np.diff(desired, axis=1) / np.diff(bands, axis=1)) 

c = desired[:, [0]] - bands[:, [0]] * m 

b = bands * (m*bands + c) * np.sinc(bands * n) 

# Use L'Hospital's rule here for cos(nπf)/(πnf)**2 @ n=0 

b[0] -= m * bands * bands / 2. 

b[1:] += m * np.cos(n[1:] * np.pi * bands) / (np.pi * n[1:]) ** 2 

b = np.dot(np.diff(b, axis=2)[:, :, 0], weight) 

 

# Now we can solve the equation (use pinv because Q can be rank deficient) 

a = np.dot(pinv(Q), b) 

 

# make coefficients symmetric (linear phase) 

coeffs = np.hstack((a[:0:-1], 2 * a[0], a[1:])) 

return coeffs 

 

 

def _dhtm(mag): 

"""Compute the modified 1D discrete Hilbert transform 

 

Parameters 

---------- 

mag : ndarray 

The magnitude spectrum. Should be 1D with an even length, and 

preferably a fast length for FFT/IFFT. 

""" 

# Adapted based on code by Niranjan Damera-Venkata, 

# Brian L. Evans and Shawn R. McCaslin (see refs for `minimum_phase`) 

sig = np.zeros(len(mag)) 

# Leave Nyquist and DC at 0, knowing np.abs(fftfreq(N)[midpt]) == 0.5 

midpt = len(mag) // 2 

sig[1:midpt] = 1 

sig[midpt+1:] = -1 

# eventually if we want to support complex filters, we will need a 

# np.abs() on the mag inside the log, and should remove the .real 

recon = ifft(mag * np.exp(fft(sig * ifft(np.log(mag))))).real 

return recon 

 

 

def minimum_phase(h, method='homomorphic', n_fft=None): 

"""Convert a linear-phase FIR filter to minimum phase 

 

Parameters 

---------- 

h : array 

Linear-phase FIR filter coefficients. 

method : {'hilbert', 'homomorphic'} 

The method to use: 

 

'homomorphic' (default) 

This method [4]_ [5]_ works best with filters with an 

odd number of taps, and the resulting minimum phase filter 

will have a magnitude response that approximates the square 

root of the the original filter's magnitude response. 

 

'hilbert' 

This method [1]_ is designed to be used with equiripple 

filters (e.g., from `remez`) with unity or zero gain 

regions. 

 

n_fft : int 

The number of points to use for the FFT. Should be at least a 

few times larger than the signal length (see Notes). 

 

Returns 

------- 

h_minimum : array 

The minimum-phase version of the filter, with length 

``(length(h) + 1) // 2``. 

 

See Also 

-------- 

firwin 

firwin2 

remez 

 

Notes 

----- 

Both the Hilbert [1]_ or homomorphic [4]_ [5]_ methods require selection 

of an FFT length to estimate the complex cepstrum of the filter. 

 

In the case of the Hilbert method, the deviation from the ideal 

spectrum ``epsilon`` is related to the number of stopband zeros 

``n_stop`` and FFT length ``n_fft`` as:: 

 

epsilon = 2. * n_stop / n_fft 

 

For example, with 100 stopband zeros and a FFT length of 2048, 

``epsilon = 0.0976``. If we conservatively assume that the number of 

stopband zeros is one less than the filter length, we can take the FFT 

length to be the next power of 2 that satisfies ``epsilon=0.01`` as:: 

 

n_fft = 2 ** int(np.ceil(np.log2(2 * (len(h) - 1) / 0.01))) 

 

This gives reasonable results for both the Hilbert and homomorphic 

methods, and gives the value used when ``n_fft=None``. 

 

Alternative implementations exist for creating minimum-phase filters, 

including zero inversion [2]_ and spectral factorization [3]_ [4]_. 

For more information, see: 

 

http://dspguru.com/dsp/howtos/how-to-design-minimum-phase-fir-filters 

 

Examples 

-------- 

Create an optimal linear-phase filter, then convert it to minimum phase: 

 

>>> from scipy.signal import remez, minimum_phase, freqz, group_delay 

>>> import matplotlib.pyplot as plt 

>>> freq = [0, 0.2, 0.3, 1.0] 

>>> desired = [1, 0] 

>>> h_linear = remez(151, freq, desired, Hz=2.) 

 

Convert it to minimum phase: 

 

>>> h_min_hom = minimum_phase(h_linear, method='homomorphic') 

>>> h_min_hil = minimum_phase(h_linear, method='hilbert') 

 

Compare the three filters: 

 

>>> fig, axs = plt.subplots(4, figsize=(4, 8)) 

>>> for h, style, color in zip((h_linear, h_min_hom, h_min_hil), 

... ('-', '-', '--'), ('k', 'r', 'c')): 

... w, H = freqz(h) 

... w, gd = group_delay((h, 1)) 

... w /= np.pi 

... axs[0].plot(h, color=color, linestyle=style) 

... axs[1].plot(w, np.abs(H), color=color, linestyle=style) 

... axs[2].plot(w, 20 * np.log10(np.abs(H)), color=color, linestyle=style) 

... axs[3].plot(w, gd, color=color, linestyle=style) 

>>> for ax in axs: 

... ax.grid(True, color='0.5') 

... ax.fill_between(freq[1:3], *ax.get_ylim(), color='#ffeeaa', zorder=1) 

>>> axs[0].set(xlim=[0, len(h_linear) - 1], ylabel='Amplitude', xlabel='Samples') 

>>> axs[1].legend(['Linear', 'Min-Hom', 'Min-Hil'], title='Phase') 

>>> for ax, ylim in zip(axs[1:], ([0, 1.1], [-150, 10], [-60, 60])): 

... ax.set(xlim=[0, 1], ylim=ylim, xlabel='Frequency') 

>>> axs[1].set(ylabel='Magnitude') 

>>> axs[2].set(ylabel='Magnitude (dB)') 

>>> axs[3].set(ylabel='Group delay') 

>>> plt.tight_layout() 

 

References 

---------- 

.. [1] N. Damera-Venkata and B. L. Evans, "Optimal design of real and 

complex minimum phase digital FIR filters," Acoustics, Speech, 

and Signal Processing, 1999. Proceedings., 1999 IEEE International 

Conference on, Phoenix, AZ, 1999, pp. 1145-1148 vol.3. 

doi: 10.1109/ICASSP.1999.756179 

.. [2] X. Chen and T. W. Parks, "Design of optimal minimum phase FIR 

filters by direct factorization," Signal Processing, 

vol. 10, no. 4, pp. 369-383, Jun. 1986. 

.. [3] T. Saramaki, "Finite Impulse Response Filter Design," in 

Handbook for Digital Signal Processing, chapter 4, 

New York: Wiley-Interscience, 1993. 

.. [4] J. S. Lim, Advanced Topics in Signal Processing. 

Englewood Cliffs, N.J.: Prentice Hall, 1988. 

.. [5] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, 

"Discrete-Time Signal Processing," 2nd edition. 

Upper Saddle River, N.J.: Prentice Hall, 1999. 

""" # noqa 

h = np.asarray(h) 

if np.iscomplexobj(h): 

raise ValueError('Complex filters not supported') 

if h.ndim != 1 or h.size <= 2: 

raise ValueError('h must be 1D and at least 2 samples long') 

n_half = len(h) // 2 

if not np.allclose(h[-n_half:][::-1], h[:n_half]): 

warnings.warn('h does not appear to by symmetric, conversion may ' 

'fail', RuntimeWarning) 

if not isinstance(method, string_types) or method not in \ 

('homomorphic', 'hilbert',): 

raise ValueError('method must be "homomorphic" or "hilbert", got %r' 

% (method,)) 

if n_fft is None: 

n_fft = 2 ** int(np.ceil(np.log2(2 * (len(h) - 1) / 0.01))) 

n_fft = int(n_fft) 

if n_fft < len(h): 

raise ValueError('n_fft must be at least len(h)==%s' % len(h)) 

if method == 'hilbert': 

w = np.arange(n_fft) * (2 * np.pi / n_fft * n_half) 

H = np.real(fft(h, n_fft) * np.exp(1j * w)) 

dp = max(H) - 1 

ds = 0 - min(H) 

S = 4. / (np.sqrt(1+dp+ds) + np.sqrt(1-dp+ds)) ** 2 

H += ds 

H *= S 

H = np.sqrt(H, out=H) 

H += 1e-10 # ensure that the log does not explode 

h_minimum = _dhtm(H) 

else: # method == 'homomorphic' 

# zero-pad; calculate the DFT 

h_temp = np.abs(fft(h, n_fft)) 

# take 0.25*log(|H|**2) = 0.5*log(|H|) 

h_temp += 1e-7 * h_temp[h_temp > 0].min() # don't let log blow up 

np.log(h_temp, out=h_temp) 

h_temp *= 0.5 

# IDFT 

h_temp = ifft(h_temp).real 

# multiply pointwise by the homomorphic filter 

# lmin[n] = 2u[n] - d[n] 

win = np.zeros(n_fft) 

win[0] = 1 

stop = (len(h) + 1) // 2 

win[1:stop] = 2 

if len(h) % 2: 

win[stop] = 1 

h_temp *= win 

h_temp = ifft(np.exp(fft(h_temp))) 

h_minimum = h_temp.real 

n_out = n_half + len(h) % 2 

return h_minimum[:n_out]