1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

from __future__ import division, print_function, absolute_import 

 

import numpy as np 

from numpy.dual import eig 

from scipy.special import comb 

from scipy import linspace, pi, exp 

from scipy.signal import convolve 

 

__all__ = ['daub', 'qmf', 'cascade', 'morlet', 'ricker', 'cwt'] 

 

 

def daub(p): 

""" 

The coefficients for the FIR low-pass filter producing Daubechies wavelets. 

 

p>=1 gives the order of the zero at f=1/2. 

There are 2p filter coefficients. 

 

Parameters 

---------- 

p : int 

Order of the zero at f=1/2, can have values from 1 to 34. 

 

Returns 

------- 

daub : ndarray 

Return 

 

""" 

sqrt = np.sqrt 

if p < 1: 

raise ValueError("p must be at least 1.") 

if p == 1: 

c = 1 / sqrt(2) 

return np.array([c, c]) 

elif p == 2: 

f = sqrt(2) / 8 

c = sqrt(3) 

return f * np.array([1 + c, 3 + c, 3 - c, 1 - c]) 

elif p == 3: 

tmp = 12 * sqrt(10) 

z1 = 1.5 + sqrt(15 + tmp) / 6 - 1j * (sqrt(15) + sqrt(tmp - 15)) / 6 

z1c = np.conj(z1) 

f = sqrt(2) / 8 

d0 = np.real((1 - z1) * (1 - z1c)) 

a0 = np.real(z1 * z1c) 

a1 = 2 * np.real(z1) 

return f / d0 * np.array([a0, 3 * a0 - a1, 3 * a0 - 3 * a1 + 1, 

a0 - 3 * a1 + 3, 3 - a1, 1]) 

elif p < 35: 

# construct polynomial and factor it 

if p < 35: 

P = [comb(p - 1 + k, k, exact=1) for k in range(p)][::-1] 

yj = np.roots(P) 

else: # try different polynomial --- needs work 

P = [comb(p - 1 + k, k, exact=1) / 4.0**k 

for k in range(p)][::-1] 

yj = np.roots(P) / 4 

# for each root, compute two z roots, select the one with |z|>1 

# Build up final polynomial 

c = np.poly1d([1, 1])**p 

q = np.poly1d([1]) 

for k in range(p - 1): 

yval = yj[k] 

part = 2 * sqrt(yval * (yval - 1)) 

const = 1 - 2 * yval 

z1 = const + part 

if (abs(z1)) < 1: 

z1 = const - part 

q = q * [1, -z1] 

 

q = c * np.real(q) 

# Normalize result 

q = q / np.sum(q) * sqrt(2) 

return q.c[::-1] 

else: 

raise ValueError("Polynomial factorization does not work " 

"well for p too large.") 

 

 

def qmf(hk): 

""" 

Return high-pass qmf filter from low-pass 

 

Parameters 

---------- 

hk : array_like 

Coefficients of high-pass filter. 

 

""" 

N = len(hk) - 1 

asgn = [{0: 1, 1: -1}[k % 2] for k in range(N + 1)] 

return hk[::-1] * np.array(asgn) 

 

 

def cascade(hk, J=7): 

""" 

Return (x, phi, psi) at dyadic points ``K/2**J`` from filter coefficients. 

 

Parameters 

---------- 

hk : array_like 

Coefficients of low-pass filter. 

J : int, optional 

Values will be computed at grid points ``K/2**J``. Default is 7. 

 

Returns 

------- 

x : ndarray 

The dyadic points ``K/2**J`` for ``K=0...N * (2**J)-1`` where 

``len(hk) = len(gk) = N+1``. 

phi : ndarray 

The scaling function ``phi(x)`` at `x`: 

``phi(x) = sum(hk * phi(2x-k))``, where k is from 0 to N. 

psi : ndarray, optional 

The wavelet function ``psi(x)`` at `x`: 

``phi(x) = sum(gk * phi(2x-k))``, where k is from 0 to N. 

`psi` is only returned if `gk` is not None. 

 

Notes 

----- 

The algorithm uses the vector cascade algorithm described by Strang and 

Nguyen in "Wavelets and Filter Banks". It builds a dictionary of values 

and slices for quick reuse. Then inserts vectors into final vector at the 

end. 

 

""" 

N = len(hk) - 1 

 

if (J > 30 - np.log2(N + 1)): 

raise ValueError("Too many levels.") 

if (J < 1): 

raise ValueError("Too few levels.") 

 

# construct matrices needed 

nn, kk = np.ogrid[:N, :N] 

s2 = np.sqrt(2) 

# append a zero so that take works 

thk = np.r_[hk, 0] 

gk = qmf(hk) 

tgk = np.r_[gk, 0] 

 

indx1 = np.clip(2 * nn - kk, -1, N + 1) 

indx2 = np.clip(2 * nn - kk + 1, -1, N + 1) 

m = np.zeros((2, 2, N, N), 'd') 

m[0, 0] = np.take(thk, indx1, 0) 

m[0, 1] = np.take(thk, indx2, 0) 

m[1, 0] = np.take(tgk, indx1, 0) 

m[1, 1] = np.take(tgk, indx2, 0) 

m *= s2 

 

# construct the grid of points 

x = np.arange(0, N * (1 << J), dtype=float) / (1 << J) 

phi = 0 * x 

 

psi = 0 * x 

 

# find phi0, and phi1 

lam, v = eig(m[0, 0]) 

ind = np.argmin(np.absolute(lam - 1)) 

# a dictionary with a binary representation of the 

# evaluation points x < 1 -- i.e. position is 0.xxxx 

v = np.real(v[:, ind]) 

# need scaling function to integrate to 1 so find 

# eigenvector normalized to sum(v,axis=0)=1 

sm = np.sum(v) 

if sm < 0: # need scaling function to integrate to 1 

v = -v 

sm = -sm 

bitdic = {'0': v / sm} 

bitdic['1'] = np.dot(m[0, 1], bitdic['0']) 

step = 1 << J 

phi[::step] = bitdic['0'] 

phi[(1 << (J - 1))::step] = bitdic['1'] 

psi[::step] = np.dot(m[1, 0], bitdic['0']) 

psi[(1 << (J - 1))::step] = np.dot(m[1, 1], bitdic['0']) 

# descend down the levels inserting more and more values 

# into bitdic -- store the values in the correct location once we 

# have computed them -- stored in the dictionary 

# for quicker use later. 

prevkeys = ['1'] 

for level in range(2, J + 1): 

newkeys = ['%d%s' % (xx, yy) for xx in [0, 1] for yy in prevkeys] 

fac = 1 << (J - level) 

for key in newkeys: 

# convert key to number 

num = 0 

for pos in range(level): 

if key[pos] == '1': 

num += (1 << (level - 1 - pos)) 

pastphi = bitdic[key[1:]] 

ii = int(key[0]) 

temp = np.dot(m[0, ii], pastphi) 

bitdic[key] = temp 

phi[num * fac::step] = temp 

psi[num * fac::step] = np.dot(m[1, ii], pastphi) 

prevkeys = newkeys 

 

return x, phi, psi 

 

 

def morlet(M, w=5.0, s=1.0, complete=True): 

""" 

Complex Morlet wavelet. 

 

Parameters 

---------- 

M : int 

Length of the wavelet. 

w : float, optional 

Omega0. Default is 5 

s : float, optional 

Scaling factor, windowed from ``-s*2*pi`` to ``+s*2*pi``. Default is 1. 

complete : bool, optional 

Whether to use the complete or the standard version. 

 

Returns 

------- 

morlet : (M,) ndarray 

 

See Also 

-------- 

scipy.signal.gausspulse 

 

Notes 

----- 

The standard version:: 

 

pi**-0.25 * exp(1j*w*x) * exp(-0.5*(x**2)) 

 

This commonly used wavelet is often referred to simply as the 

Morlet wavelet. Note that this simplified version can cause 

admissibility problems at low values of `w`. 

 

The complete version:: 

 

pi**-0.25 * (exp(1j*w*x) - exp(-0.5*(w**2))) * exp(-0.5*(x**2)) 

 

This version has a correction 

term to improve admissibility. For `w` greater than 5, the 

correction term is negligible. 

 

Note that the energy of the return wavelet is not normalised 

according to `s`. 

 

The fundamental frequency of this wavelet in Hz is given 

by ``f = 2*s*w*r / M`` where `r` is the sampling rate. 

 

Note: This function was created before `cwt` and is not compatible 

with it. 

 

""" 

x = linspace(-s * 2 * pi, s * 2 * pi, M) 

output = exp(1j * w * x) 

 

if complete: 

output -= exp(-0.5 * (w**2)) 

 

output *= exp(-0.5 * (x**2)) * pi**(-0.25) 

 

return output 

 

 

def ricker(points, a): 

""" 

Return a Ricker wavelet, also known as the "Mexican hat wavelet". 

 

It models the function: 

 

``A (1 - x^2/a^2) exp(-x^2/2 a^2)``, 

 

where ``A = 2/sqrt(3a)pi^1/4``. 

 

Parameters 

---------- 

points : int 

Number of points in `vector`. 

Will be centered around 0. 

a : scalar 

Width parameter of the wavelet. 

 

Returns 

------- 

vector : (N,) ndarray 

Array of length `points` in shape of ricker curve. 

 

Examples 

-------- 

>>> from scipy import signal 

>>> import matplotlib.pyplot as plt 

 

>>> points = 100 

>>> a = 4.0 

>>> vec2 = signal.ricker(points, a) 

>>> print(len(vec2)) 

100 

>>> plt.plot(vec2) 

>>> plt.show() 

 

""" 

A = 2 / (np.sqrt(3 * a) * (np.pi**0.25)) 

wsq = a**2 

vec = np.arange(0, points) - (points - 1.0) / 2 

xsq = vec**2 

mod = (1 - xsq / wsq) 

gauss = np.exp(-xsq / (2 * wsq)) 

total = A * mod * gauss 

return total 

 

 

def cwt(data, wavelet, widths): 

""" 

Continuous wavelet transform. 

 

Performs a continuous wavelet transform on `data`, 

using the `wavelet` function. A CWT performs a convolution 

with `data` using the `wavelet` function, which is characterized 

by a width parameter and length parameter. 

 

Parameters 

---------- 

data : (N,) ndarray 

data on which to perform the transform. 

wavelet : function 

Wavelet function, which should take 2 arguments. 

The first argument is the number of points that the returned vector 

will have (len(wavelet(length,width)) == length). 

The second is a width parameter, defining the size of the wavelet 

(e.g. standard deviation of a gaussian). See `ricker`, which 

satisfies these requirements. 

widths : (M,) sequence 

Widths to use for transform. 

 

Returns 

------- 

cwt: (M, N) ndarray 

Will have shape of (len(widths), len(data)). 

 

Notes 

----- 

:: 

 

length = min(10 * width[ii], len(data)) 

cwt[ii,:] = signal.convolve(data, wavelet(length, 

width[ii]), mode='same') 

 

Examples 

-------- 

>>> from scipy import signal 

>>> import matplotlib.pyplot as plt 

>>> t = np.linspace(-1, 1, 200, endpoint=False) 

>>> sig = np.cos(2 * np.pi * 7 * t) + signal.gausspulse(t - 0.4, fc=2) 

>>> widths = np.arange(1, 31) 

>>> cwtmatr = signal.cwt(sig, signal.ricker, widths) 

>>> plt.imshow(cwtmatr, extent=[-1, 1, 31, 1], cmap='PRGn', aspect='auto', 

... vmax=abs(cwtmatr).max(), vmin=-abs(cwtmatr).max()) 

>>> plt.show() 

 

""" 

output = np.zeros([len(widths), len(data)]) 

for ind, width in enumerate(widths): 

wavelet_data = wavelet(min(10 * width, len(data)), width) 

output[ind, :] = convolve(data, wavelet_data, 

mode='same') 

return output